$$
\text { Wing Gi, } 224
$$

 fithraty

Kemary

Collaction
Shelf

THE
 W ORKS
 OF
 Edmund Gunter.

A

THE
 WO R K 1 $4=1$
 0 F

EDMUNDD

Containing the Defcription and v fe of the

Sector, Crofs-ftaff,Bow, Quadrant,

And other Inftruments.
With a Canon of Artificial Sines and Tangents to a Radius of 10.00000 parts, and the Logarithms from an Unite to 10000 :
The Ules whereof are illuftrated in the Practice of Arithmetick, $\}\{$ Afronomy, $\}\{$ Dialling, and Geometry, $\}\{$ Navigation, $\}\left\{\begin{array}{l}\text { Fortification. }\end{array}\right.$ And fome Queftions in Navigation added by Mr. Henry Bond, Teacher of Mathematicks in Ratcliff, near London.

> To which is added,

The Defcription and Ufe of another Sector and Quadrant, both of them invented by Mr. Sam. Fofer, Late Profeffor of Aftronomy in Grefham Colledge, London, furnithed with more Lines, and differing from thofe of Mr. Gunters both in form and manner of Working.

ILDE Jifty EDition,

Diligently Corrected, and divers neceffary Things and Matters (pertinent thereunto) added, throughout the whole work, not before Printed.

By William Leybourn, Philomath.

Printed by A.c. for L ONDON, St. Pauls Church-yard Eglesfield at the Marigold in St. Pauls Church-yard. MDC $1 \times \times 11!$.

TO THE

RIGHT HONOURABLE, Jo H

Earl of Bridgwater, Vifcount Brackley, Baron Ellefmore : One of the Lords of His Majefties moft Honourable Privie Council, and Lord Lieutenant of the County of Buckingham.

My Lord,

 Heje Works of the Learned Gunter, do naturally and of right, addrefs themfelves to your Elonours Patronage: ba* ving been originally Infignalized with the Titles of your Renovoned Ancefors, under whom (near Eifty years fince) they received their firft Life: So that they Jeem to be Ino, tailed on your Illuftrious Family: Epecially; conjidering the wobole World owns your Lordjhip; no lefs. Heir to your Ancefters refplendent Demeans, then of their love to No. ble Arts, amongst which thofe of the Matbematicks; is none of the meaneft you are Mafter of.

The Epintle Dediramín.

My Eord, The World taking example by fo good a Com. mendum bas excouraged tjis Work to this Eifth Edition. But it baving met with the ill ufage in former Impreßions to bave contracted feveral Typographical Sphalmata, which did fomewhat disfigure its beauty, I thought it requifite to befors fome pains in their removal; as allo to furnifh it with tbe attendance of fome compleat Tracts of Mr. Samuel Fofter our Learned Authors Succeffor in bis Aftronomical Profeßion in Grefham Colledge: What otber Additions I have made to the Work, in feveral places, wbicb are not only pertinent, but neceffary, the Reader is acquainted witb in the Preface. My Lord, This Work being arrived to th is fate of Perfection, pleads for a bolder accels to your Honours hands; and makes it bumbly confident to find your Honour no le β favourable to it, now grown up, than your Predeceffors bave been to its infancy. My Lord, I bave derived, likenbife, bence fome Thare of that bumble confidence, that your Honour will. pardon this prefumption, of my fubfcribing my felf,

My Lord,

Your LordMhips moft obliged, and obfequious Servant,

William Leybourn.

WILLIAM LETBOURN

 TO THE READER. Am far from the vanity of defiring to have it thought, that I prefix my Name as a Bufh or Garland to invite any to to the Purcbafing of this Book; The Learned Autbors Authority is more than I or any other can fay for it, and the number of Imprefsions that have been fo welcomed by the Publick is a fufficient Teftimony of its good acceptance in the World, for indeed, of all the Matbematical Books yet extant, I know not one more full of Variety of matter, nor more Practical than this is.

All that I defign in this Preface is an Apology for my felf, to ask pardon of the more knowing Mathematician, for my confidence in prefuming to Shelter any of my mean and weak Performances under the C_{a}. nopy of fo profound a Mafer of Mathematical Learning as this our Autbor was. But to fuch as Miall be offended therewith (as, I hope, none jufly can) let me fay thus much for my felf:
(a) $\quad 1.1$

To the Reader.

1. I am not the firft that (with good fuccefs) have attempted the like.
2. In what I have done in this Work, I have not diminifhed or expunged one Syllable of the learned Autbors, but retained his own Metbod, and the feveral Examples throughout the Book I have carefully examined, and where I found any Typograpbical Error, I made bold to correct it, for which, I prefume, I deferve rather Tbanks than Blame.
3. That whatfoever herein I have attempted to infert, is nothing but what is abfolutely pertinent to our Authors Works, and renders his Inftruments to young Tyroes in thefe Sciences more ufeful than they could otherwife imagine.
4. In what part of this Book foever I have added any thing, I have done the Autbor this right, for in the Contents before the Book, relating to the Page wherein any Inferfion of mine is, I have before it placed the figure of a band pointing thus $\frac{3}{3}$: So that if I have done any thing, misbecoming an Artift, the Author may not be charged with it, but my felf juftly blamed.

And alchough, there are here and there fome hints of things in Several places of the Book of mine inferted, yet the principal are thefe, viz.

1. In the SECTOR, where (after our Autbar

To the Reader.

hath treated of Projecting of the Spbere in Plano upon all the principal Spherical (ircles) I have added one other Projection upon an Oblique (ircle, wherein (if I deceive not my felf) I have given more light to Projection in Plano, than is yet extant in our Mother Tongue: for out of this Oblique Projection may be demonftrated the whole Art of Dialling, and in fome meafure it is there effected.
2. In the CR OSS-S T A FF (after our Author hath treated of the , Menj/uration of Plain Regular Superficies) I have inferted the Menfuiration of fuch as are not Uniform, as alfo of Multangulars, Regular Poligons, \&c. And (after his Menfuration of Regular Squared Solids) I have added the Menfuration of Prijmes, Pyramids, and Cones, both whole and dijfected. And with thele and fuch like neceffary matters, I have in feveral other places fupplied a Vacancy.

To the fecond Appendix, which is the ufe of a Quadrant, of Mr. Samuel Eofters Invention, Printed with the former Edition of thele our Autbors Works, I have alcered nothing, but have added the Confruction of the fame Quadrant formerly wholly omitted. And in his Alteration of the SECTOR, I have corrected fome Overfights, and miftakes, which were in the former Edition (char being Printed by a Copy lefs Correct) by the help of Mr. Fofters own Manuo

$$
\left(\begin{array}{ll}
\mathrm{a} & 2
\end{array}\right) \quad \text { foript, }
$$

To the Reader.

jcript, which I was accommodated with from the worthy Dr. Fobn 7 midden, a moft induftrious Mathematician, and a worthy honourer of the Learned Mr Foffer, to whom (not only my felf, but) the whole World in general is engaged for his care and pains in the Publication of divers of Mr. Eofers Works with feveral of bis own both in Latine and Eng: lifh in a Book Entituled Muifcellanies, or Matbematical Luchbrations of Mr. Samuel Eofer.

Having thus far declared my felf, and endeavoured to take offfuch afperfions as might poffibly have been thrown upon me; Give me leave (for the Dead cannot plead for themfelves) to take notice of fome Plagiavies and Purlciners of other mens Labours and Ingenuities, who our of Lucre to themfelves, and Emulation to otbers of better parrs, have lately thrown into the World (to the grand abure thereof) Several trivial Tractates, extracted (or rather tranfcribed) both from our Autbor, and allo from the Works and Manu/cripts of the fore-mentioned Mr. Foffer, our Authors Succeffor in the Aftronomical Profepion in GreTham Celledge, London, Publifhing them to the WWorld in cheir own names, without taking the leaft notice of the learned Aurhors, whence they originally filtcht thofe ornaments wherewith they pride themfelves in their feveral Pamphlets, not fo much as mentioning their

To the Reader.

their names with any due refpect. I need not tell thee who they be, Their own Impertinencies having made them notorious enough; for fome of them (rather than they will want applaufe) become their own Encomiafers, founding their own Trumpets before their Books, both in Engli/h, Greek, and Latine. But leaving thefe to the juft cenfure of all that fhall take due notice of them, give me leave to commend thee to the perufal of thele Works of our Judicious Authors, in the \mathcal{U} / e and Prafice whereof (as in all other thy honeft Attempts and Endeavours) I wifh thee. good fuccefs, and lo for this time bid thee

Arts and Sciences Mathematical Profeffed and Taught by William Leybourn.!

aritbmetick,
© In Whole Numbers, and Fractions.
In Decimals, and by Logarithms.
Inftrumentally, by Decimal Scales, Napiers Bones: and to extract the Square and Cube Roots by Infpection.
ஞrometry:
\{The Principles there of $\{$ Practice, with the and
Demonftration.
The Defcription of the Circles of the Sphere.
aftronontr:
The.use of the Globes, \(\left\{\begin{array}{l}Celeftial, and
Terreftrial.\end{array}\right.\)
To project the Sphere in Plano upon any Circle, $\{$ Right, or And upon thefe Foundations the following Superfructures.

'T	
obometricat	Planometrid, or the $\left.\begin{array}{l}\text { Board, } \\ \text { Glafs, }\end{array}\right\}$ Or any other Superficies
Inttrunients, in the	$\text { Menfuration of }\left\{\begin{array}{l} \text { pavement, } \\ \text { Tiling,* } \end{array}\right\}$
Prastice of	$\begin{aligned} & \text { Stereometria, or the }\left\{\begin{array}{l} \text { Iimber, growing or fquared. } \\ \text { Menfuration of } \\ \text { Stone, regular or irregular. } \\ \text { Sask, commonly called Gauging. } \end{array}\right. \end{aligned}$
	Geodafia, or the Meafuring of Land divers ways, and by feveral Inftruments ; to draw the Plot of a whole Mannor or Lordfhip; to calt up the Content thereof; and to beautifie the fame with all neceffary Ornaments thereunto belonging.

The Application thereof, in the folution
$\left\{\begin{array}{l}\text { Geonetry. } \\ \text { Aftronony. }\end{array}\right.$ of Problems in

Or काalling: Geometrically, by $\left\{\begin{array}{l}\text { Scale, and } \\ \text { Compaifes. }\end{array}\right.$ Logarithms.

Inftrumentally, by the Sector, Quadrants,Scales,and other In-: itruments, accommodated with Lines for that purpofe,
You may hear of him at Mr.Hayes's at the Crofs-daggers in Moor-fields.

THE CONTENTS 0 F

The Firf Book of the Sector.

CHAP. I.

T He defcription, making, and general ufe of the Sector Chap. 2. The ufe of the Scale of Lines
To fet down a Line refembling any given parts, or fraction of parts Ibid.
Tu increafe, or diminifh a Line in agiven proportion 18
To divide a Line into partsgiven Ibid.
To find a proportion between two or more right Lines given 19
Two Lines being given, to find a third in continsal proportion 20
Three Lines being given, to find a fourth in difcontinsal proportion 21
To divide a Line in fuch fort, as another. Line is before divided 22
Troo Numbers being given, to find a third in continual proportion 23
Three Numbers being given, to fond a foarth in difcontinual propertion 24
Chap. 3. The ufe of the Lines of Superfcies I. To find a proportion between two or more like Superficies 26
To augment, or dimisifh a Superficies in a given proportion Ibid.
To add one like Superficies to another. To fubtract one like Superficies froms anather 27
To find a mean proportional between two Linesgiven 28
To make a Square equal to a Superficies given Ibid.
To find a proportion between Superficies, though they be unlike one to anotber

The Contents.

Tomake a Susperficies like to one Superficies, and equal to anolber Ibid.

 To find a mean Proportional between two Numbers given 30 To find the fquare root of a Number, the root being given, to find the fquare Number of that rootTo deforibe a Parabola by help of the Line of Lines and Superficies35
Chap. 4. The ase of the Lines of Solids. To fund a proportion between two, or more like Solids 36
To augment, or diminifh a Solid, in a given proportion 37
Toadd one like Solid to another. To fobtrait one like Solid from another Ibid.
To find two mean proportional Lines between two extrome Lines given 38
To find the like Number betwees two Numbers 39
To find the Cabick root of a Number. 40
Three Numbers being given, to find the fourth in a triplicated proportion

The Contents of the fecond Book of the Settor.

Chap.1. F the natare of Sines, Chords, Tangents, and Secants Page 4:
Chap.2. 7 be general ufe of Sines and tangents
The Radiusbeing known, to find the right Sine of any Ark or Angle. Ibir. The right Sine of any Ark being given, to find the Radius The Redius of a Circles or the right Sine of any Ark given, and a firigho Line refirabling a Sine, to find the getatity of that unknown Sine Ibid. The Radius, or any right Sine given, to find the verfed Sine of any Ark Having the Diameter, or Semidiameter of a Circle, to find the Chords of every Ark Ibic. Having tao right Lines refermling the Chords, and verfed Sine, to find the Diameter and Raditis
T bi Cburd of any Arkbing given, to find the Dinmeter and Radius 5
Having
The Contents．
Having the Diamseters of an Ellipfs，to deforibe the fame upora alane52
To open the Sellor to any Angle，or the SeElur being opened，to find the greas． tity of the Angle 54
To find the quantity of any Amgle given 55
Upon aright Line，and apoint given in it，to make an Angle equal to any Angle given 56
To divide the Circumference of a Circle into parts given Ibid．
To divide a vigbt Line by extremic and mean proportion 57
Chap．3．Of the Projection of the Sphere in plano 58
With a Nocturnal to ghew the hour of the night 64
言 The ufe of the Hurizontal Projection in Dialling 71
垂家 To Project the Sphere upon Oblique Circles 72
Chap．4．Of the refolution of right Line Triangles 76
Chap．5．Of the refolution of Spherical Triangles，in 28 cafes 85
Chap．6．Of the ufc of the Meridian Line．To divide a Sea－chart afterMercators Projection，with a Table to that purpofe99
To find bow many Leagues anf wer to one degree of Longitude in every \int everalLatituleIII
To find how many Leagses anjwer to one degree of Latitude，in every feweralRamb113
By one Latitude，Rumb，and diftance，to find the difference of Latitudes115
By the Rumb and both Latitudes，to find the diftance rpos the Rumb116
By the difance and both Latitudes，to find the Rumb 120
By the Longitude and Latitude of two places，to find the Rumb 121
By the Rums and both Laitudes，to find the difference of Longitude，withSeveral Tables to this purpofe，which may a＇fo ferve for drawing off theRumbs upon any Chart or Globe12%
By the difference of Longitude，Rumb，and ane Latitude，to fond the otherLatitude133
By one Latitude，Rumb，and diffence，to find the difference of Longitade134
By one Latitude，Rumb，and Difference of Longitude，to find the diftance 135 By one Latitude，diftance，and differense of Longitude，to fud the Rumb 136

The Contents.

By the Longitude and Latilude of two places, to find their diffance upon the Rumb
By the Latitude of two places; and the diffance; to find the difference of Longitude
By one Latitside, diftance, and differcnce of Longitudes, to find the differences of. Latitudes

The Contents of the third Book of the Sector.

Chap. I. ()F the Lines of quadrature: To make a Square equal to a Circle, or a Circle equal to a S grare

Page 14r
Toreduce a Circle or a Square into an equal Pentagon, or otber like fided and like Angled figure.
To find a right Line equal to the Circumference of a Circle, or other part. ibereof

143
Chap.2. Of the Lines of Segments: To divide a Circle into two Segments, according to a proportion given: or to find a proportion between a Circle and bis Segments given

Ibid.
Chap. 3. Of the Lines of infcribed bodies: for comparing of the fides of the five Regular bodies, with the Semidiameter of a Spheres wherein they may be infcribed

145
Chap. 4. Of the Lines of Egwated bodies, for comparing of the fudes of the five Regular bodies, with the Semidiameici- of a Sphere equal to thofe bodies
Chap. 5; Of the Lines of Metals, for finding the proportion between feveral Metals in their weight and Magnitude

Ibid.
Chap. 6. Of the Line of the leffer Tingents for deforibing of hour-lines on feveral Planes
Mr. S. Folters alteration of the Sectur. 157

The Contents of the Firf Book of the Cro/s-Staff.

CHAP. I.

0F the defcription of the Staff, and infoription of the Several Lines 199 Chap.2.The ufe of the Lines of Inches, for Perpendicalar heights and diffances

202
Chap.3. The ufe of the Tangext Lives for taking of Angles, and obferving the Altitude of the Sun
Chap.4. The ufe of the Lines of equal parts, joyned with the Lines of Chords, for protracting of right Line Triangles
Chap. 5. The wfe of the Meridian Line in making of a S:a-Chart, and pricking down the way of a lhip

212
Chap. 6. Of the general ufe of the Line of Numbers for finding of proportional Numbers, and extraction of Roots.
Chap. 7. Of the general ufe of the Limes of artificial Sines 221
Chap. 8. The ufe of the Line of ArtificialTangents, in refolving of Spherical Triangles
Chap. 9. Of the general ife of the Lizes of Sines and Tangents joyned with the Line of Numbers in refolving of right lined Triangles
Chap. 10. The general ufe of the Line of Verfed Sines in refolving of a Spherical Triangle, whercin thrce fides are known, and an Angle reguired

The Contents of the fecond Book of the Crofs.Staff.

WHere the fermer Lines of proportion are more particulurly explained in Seviral kinds
To find the Area of any Triangie

The Contents.

To fond the Area of the Trapefia whofe fides are neither equal norparallelIbid.
3 To find the fide of a Square equal to an Oblong Superficies 239
I3 Of the Mensaration of Regwlar Polygoins 240
B Of the Menfuration of Circles 241
F1. By the Diameter to find the Circumference lbid.
2. By the Circumsference to find the Diameter 242
3 By the Diameter to find the Area Iord.
4. By the Are: to find the Diameter Ibid.
云 5. By the Circumference to find the Area 243
6. By the Area to find the Circumference Ibid.
7. By the Diameter to find the fide of a Square equal to the Circle Ib .
8. By the Circumference to find the fide of a Square equal to theCircle244
Chaf.2. The ufe of the Line of Numbers in the meafure of Land by
Perches and Acres Ibid.
Chap. 3. Of the ufe of the Line of Numbers in folid meanure in finding thecontent of a Squared Solid248
And of a Cylinder 251
O Of the Menfuration of Cones 255
51. By the Diameter and length of the Cide, to find the Saperficial content
2. By the Diameter and Axis to find the Solid content Ibid. Ibid.
3, Of the Menfuration of Spheres 256
I. By the Diamzeter to find the Superficial content Ibid.
2. By the Superficies to find the $A x$ is Ibid.
3. By the Axis to find the Solid content 257
4. By the Solid content to find the Axis Ibid.
\rightarrow Of the Menjuration of Prifms Ibid.
T $\{1$. Of Triangslar Prifms Ibid.22. Of multangstar Prifms258
Of the Menfuration of Pyramids 259
OI 3 Of Menfuration of Fruftrums of. Pyramids and Cones Ibid.
Chap. 4 The ufe of the Line of Numbers ingauging of Veffels 261
Chap. 5.Of refolving fuch Aftronomical Propofitions as are of ordinary ufe in the practice of Navigation, as in finding the Altitude of the Sunn
The Suns Declisation: the time of the Suns rifing and Setting 264
The Amp'itude 265

The Contents:

The time and amplitude when the Sun cometh to be due Enft or Weff
The Suns Altitude and Azimuth at the boar of fix $\quad 267$
The Azimuth at any Altitude lbid.
The bour of the day 270
The Right eAfcerifon
With the manner of refolving thefe Propoftions by Tables of artificial Sints and Tangents 277
And the finding of the variation of the Compals 278
Chap 6. Of fuch nautical queftions as are of ordinary ufe concerning Longitude, Latitude, Rumb, and diftance
$=80$
With an Appendix. of the ufe of an Inftrument in form of a Crofs Bow, for the more eafie finding of the Latitude at Sel 299°
BeA Table of the Right Afcenfon and Declination of fome eminent fixed Stars

The Contents of the third Book of the Cro/s-Staff.

THe difinction of Planes whereon hour lines may be defcribed $\mathbf{P}_{d_{z}} \in$ I
Of the ufe of the Lines of N wmbers, Sines, and Tangents, for the drawing of hour-lines in all forts of Planes
To find the inclination of a Plane 5
To find the declination of a Plane 6
Chap. I. Todraw the horr-lines in an Equinoctial Plane 9
Chap. 2.To draw the hour-lines in a direet Polar Plane 10
Chap. 3. To draw the borr-lines in a Meridlans Plane 14
Chap. 4. To draw the bour lines in an Horizontal Plane 15
Chap. 5. To draw the hoxr lines in a prime Vertical Plane 19
Chap. 6. To draw the hour-lines in a Vertical inclining Plane 21
Chap. 7. To draw the hour-lines in a Vertical declining Plane 24
Chap. 8. To draw the bour-lines in a Meridian inclining Plane 37
Chap. 9. To draw the hour-lines in a Polar declining Plane 42
Chap. Io. To drawo the hour-lines in a declining inclining Plane 47
Chap. II. To defcribe the Tropicks and other Parallels of declination in an Equinoctial Plane 55

Chap. ${ }^{2}$ 2,

The Contents.

Clap. 12. Todefcribe the Tropicks and otber Parallels of declination in a Polar Plane
Chap. 3. Todefcribe the Tropicks, and other Parallels of declination in any other Plane, not Equinoctial, nor Polar Chater Plane, not Equinoctial, nor Polar.
Chap. 4. To deforibe the Parallels of the Signs in any of the former
Planes Plames
Chap. 15. To defcribe the Parallels of the length of the day in any of the
former Planes former Planes
Chap. 16.T ${ }^{\circ}$ draw the old unequal planetary howrs in the former Planes Chap. 17 . To draw the hour-lines from Sun-rifing, and Swn-Setting, in the 74
former Planes

Chap. 18. To draw the Horixontal Line in the former Planes	76
7	

Chap. 19. To draw the Vertical. Circles or Azimuth in the former Planes
Chap. 20. Todefcribe the Parallels of the Horizon in the former Planes 79
Todefcribe fuch Lines as may Gew the proportion of the Badown usto the
Gnomsos
Lafly, an Appendix concerning the use of a fmall portable Quadrant for the more eafie finding of the hour and the Azinusth
Chap. 1. Of the defoription of the Quadrant Ibid.
Chap. 2. Of the ufe of the Quadrant in taking the Altitude of the Sun,
Moon, or Stars
Chap. 3. Of the Echiptick
Chap. 4. Of the Line of declination
Char. 5. Of the Circle of the moneths and days II 5
Chap. 6. Of the hosr lines
Chap. 7. Of the Horizon
Chap. 8. Of the five Stars
Chap. 9: Of the Azirsuth Lines 122
Chap.io. Of the Qsiadrant 124
A fecond Appendix, being the defoription and ufe of a Quadrant of WIr. Fo-
fters invention
Its Defcription
Its USe

1. To. find the Declination
2. To rect fie the Bead to find the Hand and Azimuth
3. The Afcenjomal difference

The Contents.

4: 7 be Amplitude Ibid.
5. The Twy Light 138
To find the requifues in the moof ufual firts of Sun Dials 139
TThe height of the Sun upon any Azimuth 142The beight at any bour144
Tofind The Azimuth Ibid.
The bour by the Sisis 146
Thedectination of a Plats 147
To make declining Dinls 148
To make for Decliners 150
To make Eaft or Weft Dials 154
To find tbe bour by the Stars 159
To take Altitades of buildings. 161
The Contents of the general ufe of the Canon, and Table of Logarithms.

Chap. I. Oncerning the ufe of the Line of Numbers, is fet down tin general propoftions tn the use of the Crofs-Staff, and thefe may be applied to the Tables of Logarithms
The Use of the Table of Logaxithms in Arithmetick

Advertifement.

WElereas the whole Subject of the following Treatifes do contain the ufe of Infiruments, and that the true and exact making of them is principally to be minded and enquired into, I thought good to give notice, That if any Gentlemen fludious in the Mathematicks bave or Shall bave occafion for any Inftrament belonging to this Book, as aljo with all others ufeful botb for Sea or Land, they may be furni/hed either in Silver, Brafs, or Wood, by Walter Hayes, at the Crols-daggers in Moor-fields, next door to tbe Pope's-head Tavern; where they may bave all forts of Maps, Globes, Sea plats, Carpenters Rules, Poft and Pocket-Dials for any Latitude, \&c.

THE

FIRST BOOK

OF THE
 SECTOR.

CHAP. I.

The Defcription, the ©Making; and the General UJe of the SECTOR.

SECTOR in Geomerry, is a Figure comprehended of two right Lines containing an Angle at the Center, and of the Circumference affumed by them. This Geometrical Inftrument having two Legs, conveining all variety of Angles, and the diftance of the Feet, reprefenting the Subcenfes of the Circumference, is therefore called by the fame name.
It conteineth 12 Teveral Lines or Scales, of which 7 are gencral, the other 5 more particular. The firt is the Scale of Line, divided into 100 equal parts, and numbred by $1,2,3,4,5,6,7 ; 8,9,10$.
The fecond, the Lines of Superficies, divided into 100 unequal parts, and numbred by $1,2,3,4,5,6,7,8,9,10$.
3. The third, the Lines of Solids, divided into 1000 unequal parts, and numbred by $1,1,1,2,3,4,5,6,7,8,9,10$.
4. The fourth, the Lines of Sines and Chords, divided inro 90 degrees, and numbred with $10,20,30$ unto 90.

2

The Defrription of the Liweso

Thefe four Lines, of Lines, of Superficief, of Sollds, and of Simes, are all drawn from the Ceinter of the Sector almoft to the end of the Legs. They are drawn on both the Legs, that every Line may liave his fellow. All of them are of one Length, that they may anfwer one to the other: And every one hath his Parallets, that the eye may the becter diftirguifh the Divifions. But of the Parallels thofe only which are inwardmoft contein the true Divifions.

Theic arethree o her general Lines, which becaufe they are inffite are placed on the Side of the Sector.
5. The fift a Eine of Tangents, numbred with $10,20,30,40,50$, 60, fignifying fo miny degrees from the beginning of the Eine, of which 45 are equal to the whole Line of Sines, the reft follow as the length of.che Sector will bear.
6. The fecond, a Line of Secants, divided by Pricks into 60 degrees, is the fame with that of the Line of Tangents to which it is joyned.
7. The third is the Meridian Line, or Line of Rumbs, divided unequally into degrees, of which the firt 70 are almoft equal to the whele Line of Sines, the ref follow anto 85, according to the length of the Sector.

Of the particular Lines inferted aitiong the general, bocaufe there was void face.
8. The firt are the Lines of Quadrature placed between the Lines of Sincs, and noted with 10,$9 ; 8 ; 7, S, 6,5,90,0$.

9: The fecond, the Lines of Segments, placed between the Lines of Sines and Superficies, divided into so parts, and numbred with 5,6 , $7,8,9,10$.
ro. The thitd, the Linis of incribed bodies in the fame Sphere, placed between the Scales of Lines; and noted with D. S. I. C. O. T.
17. The fourth, the Lines of Equated Bodies, placed beeween the Lines of Lines and Solids, and noted with D. I. G. S. O. T.
12. The fifth, are the Lines of Metals, inferted with the Lines of Equated Bodies, (there being room fufficient) and noted with the Characters 0 \& 8 - 4 .

There remain the Edges of the Sectori and on the one I have fer ac Line of Inches, which are the twelfth parts of a Foor Englifh: on the other a leffer Line of Tangents to which the Gnomon is Radius.

2. Of the making of the SECTOR.

LEr a, Ruter be firf made either of Brals or of Wood like unto the Figure before the Book annexed. Which may open and thut upon his Center: the Head of it may be about the twelfth part of the whole Length, that it may bear the moveable Foot, and yer the moft part of the Divifions may fall without it. Then let a moveable Gnomon be fet at the end of the moveable Foor, and there curn upon an Axis, fo as ir may fometimes ftand ar a right Angle with the Feet; and fometimos be inclofed within the Feet. But this is well known to the Work-man.

For drawing of the Lines. Upon the Center of the Sector, and Semidiameter fomewhat horter than one of the Feet, draw an occult Ark of a Circle, croffing the Clofure of the inward Edge of the SeAtor, about the Letter T.

In this Ark, at ene degree on either Side from the Edge, draw right Lines from the Center, firting them with Parallels, and divide them into anhundred equal parts, with Subdivifions into 2 , fis, or 10 , as the Line will bear, but let the Numbers fer to them, be only $i, 2,3,4, *$ c. unto 10, as in the Example. Thefe Lines fo divided, I call the Lines or Scales of Lines; and they are the ground of all the reft.

In this Ark, at 5 degrees on either Side, from the Edge near T; draw other right Lines from the Center, and fit them with Parallels: thefe thall ferve for the Lines of Solids.

Then on the other Side of the Se\{tor, in like manner, upon the Cenrer, and equal Semidiameter, draw another like Ark of a Circle: and here again at one degree near on eicher Side from the Edge, near the letter $Q_{\text {. draw }}$ right Lines from the Center, and fie them with Paralfels: Thefe hall ferve for the Lines of Sines.

At 5 degrees, on cither Side from the Edge near Q, draw other right Linesfrom the Center, and fir them with Parallels: thefe fhall ferve for the Lines.of Superficies.

Thefe four principal Lines being drawn, and firted with Parallels, we may draw orher Lines in the middle betwees the Edges and the Lines of Lines, which fhall ferve for the Lines of Inicribed Bodies, and others between the Edges and the Sintes for the Lines of Qaadrature. And fo the reft asin the Example.

3. To divide the Lines of Superficies.

SEeing the Siperficies do hold in the Proportion of the h molog it Sides duplicared by the 29. Prop. 6. Lib. Eaclid. If youa hall find mean Proporionals between the whole Side, and each hundred part of the like Side, by the 13.Prop. 6. Lib. Enclid. all of them cutting the fame Line, that Line fo cit fhall contain the Divifions required; wherefore upon the Cener A, and Semidiameter equal to the Line of Lines, defrribe a Semicircle ACB D, with A B perpendicular to the Diameter CD. And lee the Semidiame er A D be divided as the Line of Lines into an hundred parts, and $A E$ the one half of $A C$ divided alfo into an hundred parts, fo fhall the Divifions in A E be the Centers from whence you hall defribe the Semicircles C10. C 2C. C 30 . © c. div:ding the Line A B into an hundred unequal parts: and this Line A B fo divided fhall be the Line of Superficies, and mult be transferred into the Sector. Bur let the numbers fer to them be only I.I. 2.3. unto 10. as in the Example.

Or thefe Lines of Superficies may otherwife be transferred into the Sector, our of the Line of Lines, by a Table of Square Roots; For the Root taken out of the Line of Lines, fhall give the Square in the Lines of Superficies.

As, to infcribe the Divifion of 25 in the Lines of Superficies; put fix Ciphers to 25, and make it 25000000, then find the Square Roor of chis Number, which will be 9000 .
Take therefore 5000 out of the Line of Lines (fuppofing the whole Eine to be 10000) and it will give the crue Diftance between the Center, and the points of 25 , in the Lines of Superficies.

So, for the Divifion of 30 , pur to 30 fix Ciphers, and make it 30000000 , whofe Square Root is 5477°. This (taken out of the Line of Lines) Thall, give the place for the Points of 30 , in the Lines of Superficies. And the like reafon holderh for all the reft, according to this following Table.

If any pleafe to make ufe of a Diagonal Scale, equal to the Line of Lines, he may put eight Ciphers to the Number propofed, and make the Table of Roots to five Places: So, his work will be more exact.

ATable of Square Roots for the Divifion of the Lines of Superficies.

A Table of Square Roots for Divifion of the Line of Suparficies.

4. To divide the Lines of Solids.

SEeing like Solids do hold in the Proportion of their homologal Sides triplicated, if you Thall find tiwo mean Proportionals between the whole Side and each thoufandth part of the like. Side: all of them curting the lame two right Lines, the former of thofe Lines fo cur, thall conrain the Divifions required.

Wherefere upon the Center A, and Semidiameter equal to the Line of Lines, defrribea Circle and divide it inco 4 equal parts CEBD, drawing the crols-Diameters C B ED. Then divide the Semidiameter A C, filt into 10 equal parts, and between the whole Line A D and AF, the tenth part of AC, feek out two mean Proportional Lines AI and AH: again berween AC and AG (being two Tenchs of A B) feek out two mean Proporionals A L and AK, and fo forward in the ref. "So thall the Line AB, be divided into 10 anegual parts.

Secondly, divide each terth part of the Line AC into 10 more, and between the whole Line A D, and each of them, feck out two mean Proportionals as before: So fhall the Line A B be divided now inso an hundred unequal parts.

Thirdly,

Thirdly, if the Length will bearit, fubdivide the Line AC once again, each part in ten more, and between the whole Line A D, and each Subdivifion, feek two mean Proportionals as before. So fhall the Line A B be now divided into 1000 parts. But the Ruler being fhort, it Chall faffice, if thofe 10 which are neareft the Center be expreffed, the reft be underftood to be fo divided, thongh actually they be divided into no more than 5 or 2, and this Line A B fo divided thall be the Line of Solids, and mult be cransferred into the Sector: Bur lee the Numtersifiec to them be only 1. 3. 1. 2. 3. orc. unto 10 , as in the Example.

The Defaription of the Eines.

Or there Limes of Solids may otherwife be cransferred iato the SeCtor, out of the Line of Lines (or racher, out of a Diagonal Scale equal to the Line of Lines) by a Table of Cubique Roots. For the Root taken out of the Line of Lines, thall give the Cube in the Lige of Solids.

As to inferibe the Divifion of 125 in the Lines of Solids; put xii. Ciphers to 125, and make it 125000000000000 : Then find the Cubique Roor of the Number, which will be 50000 . Take therefore 50000 our of the Line of Lines; (fuch as the whole Line is 100000) and it will give the true Diffance between the Points of 125 in the Lines of Solids.

So, for the Divifion of 300 , put to 300 sii. Ciphers more, and make it 300000000000000 , whofe Cubique Root is 66943 . This, taken out of the Line of Lines, fhall give the place for the points of 300 in the Lines of Solids. And the like reafon holdeth for all the reft, actording to the enfuing Table.

1 Table of the Cubique Roots.

A Table of Cubique Roois.

The Divifion of the Lines of Solids.

cub.	Root.						
4.25	7518	575	8315	725	8983	875	9564.
430	7547	580	$8: 39$	730	9004	880	9580
435	7576	585	8363	735	9024	885	9600
440	7605	590	8387	740	9045	890	-9619
445	7634	595	8410	745	9065	895	9636
450	7663	600	8434	750	9085	900	9654
455	7691	605	8457	755	9105	905	9672
460	7719	610	8480	760	9125	910	9690
66;	7747	615	8504	765	9145	915	9708
470	7774	620	8527	770	9165	920	9725
475	7802	625	8549	775	9185	925	9743
480	7820	630	8572	780	9205	930	9761
485	7856	635	8595	785	9224	935	9778
490	7883	640	8617	790	9244	940	9795
495	7910	645	8640	795	9263	945	9813
500	7937	650	8662	800	9283	950	9830
505	7963	655	8684	805	9302	955	9847
510	7989	660	8706	810	9321	960	9864
515	8015	665	8728	815	9340	965	9881.
520	8041	670	8750	820	9359	970	9898
525	8067	675	8772	825	9378	975	9915
530	8092	680	8793	830	9397	980	9932
535	8118	685	8815	835	9416	985	9949
540	8143	690	8836	840	9435	990	9966
545	8168	695	8857	845	9454	995	9983
550	8193	700	8879	850	9472	1000	10000
555	8217	705	8900	855	949 I		
560	8242	710	8921	860	9509		
565	8267	715	8942	865	9529		
570	8291	720	8962	870	9546		
1575	8315	725	8983	875	9564		

5. To divide the Lines of. Sines and T angents on the Side of the Sedur.

UPon the Center A, and Senidiameter equal to the Line of Limes, defcribe a Semicircle A B C D, with A B, perpendicular to the Diameter CD. Then divide the Qaadrant CB, B D, each of them into 90 , and fubdivide each degree into two parts: For fo if ftreight Lines be drawn parallel to the Diamerer C D, through thefe 90, and their Subdivifions, they fhall divide the Perpendicular A B unequally inte 90.

And this A B (\{o divided) Thall be the Line of Sines, and muft be transferred into the Sector. The Number fet to them are to be 10,20, 30, cto. unto 90, as in the Example.

If now in the point D, unto the Diameter $C D$, we hall raife a Perpendicular $D E$, and to it draw ftreight Lines from the Center A, through each Degree of the Quadrant D B, thefe ftreight Lines thall be Secants, and this Perpendicular fo divided by them thall be the Line of Tangents, and mult be transferred unte the Side of the Sector: The Number fee to them, are fo be 10, 20, 30, ©fc. as in the Example.

If between A and D , anorher ftreight Line GF be drawn parallel to DE, it will be divided by thofe Lines from the Center in like fort as

C 2
DE

The Defcription of Lines.

$D E$ is divided, and it may ferve for 2 leffer Line of Tangents, to be fet on the Edge of the Sector.

If the Compaffes hall be extended from C to each degree of the Qiadrant C B, and thofe Extents transferred into one Line (C A) this Line C A fo divided into 60 (or rather into 90 gr .) fhall be a Line of Chords, and may befet on fome void place of the Sector.

Thefe Lines of Sines and Tangents, may yet otherwife be transferred into the Sector out of the Line of Lines (or rather out of a Diagonal Scalc equal to the Line of Lines;) by Tables of Natural Sines and Tangents.

For the Sine of 92 gr . being equal to the whole Line of Lines of 100000 parts, the Sine of 90 gr . will be equal to 50000 (half the Line of Lines;) and the Sine of 45 gr . equal to 70710 parts of the Line of Lines, according to the ufual Table of natural Sines.

In like manner the Tangent of 45 gr . being equal to the whole Line of Lines, the Tangent of 40 gr . will be equal to 83910 parts of the Line of Lines: and che Tangent of 50 gr . equal to 119175, that is, to one Radius (or whole Line) and 19175 parts more of the fame Line of Lines, according to the old Table of Tangents.

And (upon the fame ground) the Secant of 40 gr . will be equal to 1.30540, that is, one Radius and 3.0540 parts of the Line of Lines: and the Secant of 50 gr . equal to 1.55572 , and fo the reft, according to the like Table of Secants.

The Line of Chords may alfo be divided by help of the Table of Sines 2nd Line of Lines. For the double Sine of half the Ark taken out of the Line of Lines will give the Chord.

As if the Ark propofed were 60 gr . The half of this Ark is 30 gr . and the Sine thereof 50000, which being doubled, make 100000 , the whole Line of Lines, equal to a Chord of 60 gr .

So for the Chord of 90 gr . the half Ark is 45 degrees, and the Sine thereof 70710 , which being doubled, make 1414240, that is, one Radius, and 41420 parts of the Line of L'nes, equal to the Chord of 90 gr . required.

6. To ghew the Grosnd of the Suctor.

LEr AB,AC, reprefent the Legs of the Sector; then feeing thefe two A B, A C are equal, and their Sections A D, A E, allo equal, they Thall be cut proportionally: and if we draw the Lines BC, DE, shey will be parallel by Prop.2. Lib.6. Enclid, and fo the Triangles

The Defeription of Lixes.
$\triangle B C, A D E$, thall be equiangled, by reaton of the common Angle at A, and the equal Angles at the Bafe, and therefore fhall have the Sides papportional about thofe equal Angles, by Prop.4.Lib.6. of Exclid.

The Side A D Thall be to the Side A B, as the Bafis, D E, unto the parallel Bafis BC, and by converfion A B thall be unto AD, as BC unto $D E$; and by permutation $A D$ fhall be unto $D E$, as $A B$ to B C, efr. So that if A D be the fourch part of the Side A B, then D E Thall alfo be the fourth pare of his parallel Bafis BC. The like reafon holdech in all orher Sections.

7. To hey the general U Se of the Sector.

THere may fome Condlufions be wrought by the Sector even then when it is Thur, by reafon that the Lines are all of one length: but generally the Ufe hereof conlifts in the folution of the Golden Rule, ,where three Lines being given of a known Denomination, a fourth Proportional is to be found. And this Solution is diverfe in regard both of the Lines and of the Encrance into the Work.

The Solution in regard of the Lines is Comerimes fimple, as when the Work is begun and ended upon the fame Lines. Sometimes it is compound, as when it is begun on one kind of Lines and ended on another. It may be begun upon the Lines of Lines, and finimed upon the Lines of Superficies. It may begin on the Sines, and end on the Tangents.

The Solution in regard of the Encrance into the work, may be cither with a Parallel, or elfe Lateral on the Side of the Sector, 1 call it Parallel Entrance, or entring with a Parallel, when the two Lines of the firft Denomination are applied in the Parallels, and the third Line, and that which is fought for, are on the fide of the Sector: I call ir lateral Entrance, or entring on the fide of the Sector, when the two Lincs of

14

The general ve of the Sector:

the firt Denomination are on the fide of the Sector, and the third Line, and that which is to be found out do ftand in the Parallels.

As for Example, let there be given three Lines A, B, C, to which I am to find a fourch Proportional, let A meafured in the Line of Lines, be 40, B 50, and C 60, and fuppofe the Queftion be this: If 40 Months give 50 pounds, what fhall 60 ? Here are Lines of two De_{e} nominations, one of Months, another of Pounds, and the firft, with which I am to enter, muft be that of 40 Months. If then I would enter with a Parallel, firft I take A, the Line of 40, and put it over as a Parallel in 50, reckoned in the Line of Lines, on either fide of the Sector from the Center, fo as it may be the Bale of an Ifofcheles Triangle B A C, whofe Sides A B, AC are equal to B, the line of the fecond Denomination.

Then the Sector being thus opened, I take C the Line of 60 , between the Feer of the Compaffes, and carrying them parallel to BC, I find them to crofs the Lines A B, A C, on the fide of the Sector in D and E, numbred with 75 , wherefore I conclude the Line A D or A E is the fourth Proportional and the correfpondent Number 75, which was required.

But if I would enter on the Side of the Sector, then would I difpofe the Lines of the firt Denomination A and C in the Line of Lines, on bort fides of the Sector in A B, A C, and in A D, A E, fo as they thould all meet in the Center A, and then taking B the Line of the fecond Deriomination, put it over as a Parallel in B C, that it may be the Badis of the Iforcheles Triangle B A C (whofe Sides A B, A C, are equal to A the firft Line of the firt Denomination) for to the Sector being thus opened, the otlier Parallel from D to E, fhall be the fourth Proportional which was required, and if it be meafured with the other Lines, it fhall be 75 , as before.

In both thefe manners of Operations, the two firt Lines do ferveto open the Sector to his due Angle, the Difference between them is efpecially

The generalu fe of the Sectior:

this, that in Parallel Entrance, the two Lines of the firf Denomination, are placed in the Parallels BC, DE, and in Lateral Entrance they are placed on both Sides of the Sector, in A B, A D, and in A C, A E.

Now in fimple folution which is begun and ended upon the fame kind of Lines, it is all one which of the two later Lines be pur in the fecond or third places. As in cur Example we may fay, As 40 are to 50 , So 60 unto 75 , or elfe, As 40 are to $60, \int 050$ wsto 75 . And hence it comerh, that we may enter both with a Parallel, and on the Sides two manner of ways at either Eatrance, and fo the m ft part of Queftions may be wrought four feveral ways, though in the Propofitions following, I mention only that which is molt convenient. If any have not the Sector, he may make ufe of the former Figure, as in our Example, where we have three Numbers given (40.50 .60 .) to find the fourth Proportional.

Firf, draw a right line (A D) to reprefent one of the Lines of the SeCtor. Then take out the firft Number (48) out of the Line of Lines, and prick it down from A to B; and on the Center (A,) and Semidiameter (A B) defcribe an occulc Ark of a Circle from B towards C. In like manner, take out (60) the other Number of the firt Denomination, and prick it down from A to D. And on the Center (A) and Semidiameter (A D) defcribe a fecond Ark of a Circle, from D toward E. That done, take the third Number (50) and inferibe it into the firt Ark from B to C; and laying the Ruler to che Center (A) and the Point C, draw the right Line AC, our in length, till it cut the fecond Ark in the point E. So the Diftance from D to E (taken and meafured in the fame Scale with the thind Number) will give 75 for the fourth Proporrional.

Thus much for the general Ule of the Sector, which being confidered, and well undertood, there is nothing hard in that which followerh.

1. To fet down a Line, refombling any given Parts or Fraction of Partso.

T${ }^{1}$ He Lines of Lines are divided actually into 100 parts, buc we have put only 10 Numbers in them. Thefe we would have to fignifie either chemfelves alone, or ten times chemfelves, or an handred times themfelves, or a thoufand times themfelves, as the matter thall require. As if the Numbers given be no more than 10, then we may think the Lines only divided into ten parts according to the number fer to them. If they be more than 10, and not more than 100, then either Line fhall contain 100 parts, and the Numbers fer by them fhall be in value $\mathbf{1 0 , 2 0 ,}$ 30, efo. as they are divided actually. If yet they be more than 100, then every part muft be thought to be divided into 10, and either Line Thall be 1000 parts, and the Numbers fet to them Thall be in value 100 ; 200,300 , and fo forward ftill increafing themfelves by 10. This being prefuppofed, we may number the Parts and Fraction of Parts given in the Line of Lines; and raking out the Diftance with a Pair of Compaffes, fer it by, for the Line fo taken hall refemble the Number given.

In this manner may we fet down a Lire refembling 75, if either we take 75 out of the hundred parts, into which one of the Line of Lines is actually divided, and note it in A , or $7 \frac{\pi}{2}$ of the firt 10 parts, and note it in B, or only $\frac{3}{4}$ of one of thofe hundred Parts, and note it in C. Or if this be either too great or too fmall, we may run a Scaleat pleafure, by opening the Compals to fome fmall diftance, and running it cen times over, then opening the Compals to thefe ten, run them over nine times more, and fer Figures to them as in this Example, and out of this we may take what parts we will as before.

To this end I have divided the Line of Inches on the Edge of the Sector, fo as one Inch contcineth 8 parts, another 9 , another 10, ofc. according as they are figured, and as they are diftant from the other end of the Sector, that fo we might have the better Eftimare.

The Use of the Line of Limes.

2. To increafe a Line in a given Proportion.

3. To dimsinifh a Line in a given Proportion.

TA ke the Line given with a pair of Compaffes, and open the Sector, fo as the Feet of the Compaffes may fland in the point of the Number given, thein keeping the Sector at this Angle, the Parallel Diftance of the points of the Number required, Chall give the Line required.

Let A be a Line given to be increafed in the Proportion of 3 to 5 . Firft, I take the Line A with the Compaffes, and open the Sector till I may put ir over in the Points of 3 and 3, fo the Parallel between the Points of 5 and 5 , doth give me the Line B, which was required.

In like manner, if B be a Line given to le diminifhed in the Proportion of 5 to 3, I take the Line B: and to it open the Sector in the points of 5 and 5 , fo the Parallel between the Points of 3 and 3, doth give me the Line A, which was required.

If this manner of work doth not fuffice, we may multiply or divide the Numbers given by 2 , or 3 , or 4 , of c. And to work by their Numbers aqui-multiplioes, as for 3 and 5 , we may open the Sector in 6, and 10, or clife in 9 and 15 , or elle in 12 and 20 ,or in 15 and 25 , or in 18 and 30 , orc.

4. To divide a Line into any number of Parts given.

TA ke the Line given, and open the Sector according to the length of the faid Line in the points of the parts, whereinto the Line fhould be divided, then keeping the Sector at this Angle, the Parallel Diftance between the points of 1 and I Chall divide the Line given into the Parts required.

Let $A B$ be the Line given, to be divided into five parts, firf I take this Line A B, and to it open the Sector in the point of 5 and 5 , the Parallel berween the points of x ind 1 , doth give me the Line AC, which doth divide it into the parts required.

Or lec the like Line A B be to be divided into twenty three parts? Firf, I take out the Line and putit upon the Sector in the points of 23, then may I by the former Propofition diminifh it in A C, C D, in the Proportion of 23 to 10, and after that divide the Line A C into 10, ero. as before.

5. To find a Preportion between two or more right Lines given.

TAke the greater Line given, and according to it open the Sector in the points of 100 and 100 , then take theleffer Lines feverally, and carry them parallel to the greater, till they ftay in like points, fo the Number of points wherein they flay, fhall hew their Proportion unto $\mathbf{1 0 0 .}$

Let the Lines given be $A B, C D$, firft I take the Line $C D$, and to it open the Sector in the points of 100 and 100 , then keeping the Sector at this Angle, I enter the leffer Line AB, parallel to the former, and find it to crofs the Lines of Lines in the points of 60 . Wherefore the Proportion of A B to $=D$, is as 60 to 100.

Or if the Line CD be greater that can be put over in the Points of 100, then I admit the leffer Line A B to be 100, and curting off CE equal to A B, I find the Proportion of C E unto E D to be as $\mathbf{1 0 0}$, almoft to 67 ; wherefore this way the Proportion of $A B$ unto $C D$, is as 100 unto almoft 167 .
This Proportion may alfo not unfitly be wrought by any other Number, that admits feveral Divifions, and namely, by the Numbers of 60 .

$$
D_{2}
$$

And
$20 \quad$ The vje of the Lines of Lines.
And fo the leffer Line will be found to be 36 , which is as before in leffer Numbers, as 3 unto 5. It may allo be wrought without opening the Sector. For if the Lines between which we feek a proportion, be applied to the Lines of Lines (or any other Scale of equal parts) there will be fuch Proportion found between them, as between the Lines to which they are equal.
6. Two Lines being given, to find a third in continual Proportion.

HIft place both the Lines given, on both fides of the Sector from the Center, and mark the terms of their Extenfion, then take our the

fecond
fecond Line again, and toit open the Sector, in the terms of the firt Line, fo keeping the Sector at this Angle, the parallel Diftance between the terms of the fecond Line, fhall be the third Proportional.

Let the two Lines given be A B, A.C, which I take out and place on both fides of the Sector, fo as they all meet in the Center A, let the terms of the firft Line be B and B, the terms of the fecond C and C. Then do I take out A G the fecond Line again, and to it open the Sector in the terms B B. So the Parallel between C and C doth give me.the third Line in continual Proportion. For as AB is unto A C, fo BB equal to $A C$, is unto C .
7. Three Lines being given, to find the fourth in difcontinual Proi portion.

HEre the firft Line and the third are to be placed on both fides of the Sector from the Center, then take out the. fecond Line, and to it open the Sector in the cerms of the firft Line. For fo keeping the Sector at this: Angle, the parallel Diftance between the terms of the third Line, thall be the fourth Proportional. Let the three Lines given be A, B, C.

Firt, I take out A and C, and place them on both fides of the Se: ctor, in $A B, A C$, and $A D, A E$, laying the beginning of both \boldsymbol{L} ines

The vje of the Lines of Lines.

at the Center A, then do \mathbf{I} take out \mathbf{B} the fecond Line, according to it I open the Sector in B and C, the terms of the firt Line: fo the Parallel between D and E, doth give me the fourth Proportional which was required.

As in efrithmetick, it fufficeth if the firft and third Number given be of one Denomination, the fecond and the fourth which is required be of another. For one and the fame Denomination is not required neceffarily in them all. So in Geometry, it fufficeth if the Sides $A B, A D$, relembling the firt and third lines given be meafured in one Scale, and the Parallels B C, DE be meafured in another. Wherefore knowing the Proportion of A the frift Line, and C the third Line by thefifth Propofition before. Which is here as 8 to 12, and defcending in leffer Numbers; is as 4 to 6 , or as 2 to 3, or afcending into greater Numbers, as 16 unto 24 , or 18 to 27 , or 20 to 30 , or 30 to 45 , or 40 to 60 , or 6. If the Sector be opened in the points of 8 and 8 , to the quantity of B, the fecond Line given, then a Parallel between 12 and $\mathbf{I} \mathbf{2}$, fhall give $\mathbf{D} E$, the fourch Line required. So likewife if it be opened in 4 and 4 , then a Parallel between 6 and 6 ; or if in 16 and 16, then a Parallel between 24 and 24 fhall give the fame DE: and fo in the reft.

8. To divide a Lixe in fuch fort as another Line is before divilded.

FIrf, take out the Line given, which is already divided, and laying it on both fides of the Sector from the Center ; mark how far it extendeth. Then take out the fecond Live which is to be divided, and to it open the Sectorin the terms of the fint Line. This done, take out the parts of the firf Line, and place them alfo on the fame fide of the Sector from the Center. For the Parallels taken in the terms of thefe parts fhall be che correfpondent parts in the Line which is to be divided.

Let $A B$, be a Line divided in D and E, and $B C$ the Line whith I am to divide in fuch fors, as $A B$ is divided.

Firt, I take Line AB, and place it on the Line of Lines in AB, $A C$, both from the Center A, then take I out the fecond $B C$, and to it open the Sector in \mathbf{B} and C, the terms of the firt Line. The Sector thus opened tohis due Angle, I take out AD and A E, the parts of the firt Line $A B$, and place themallo on both the fides of the Sector $A D, A$, fo the Parallel DD givech me BF, and the Parallel E E givech B G, and the Line BC is divided in F and G, as is the other Line $A B$ in D and E, which was required.

If the Line $\mathbf{A} \mathbf{B}$ were longer than one of the Sides of the Ruler, them fhould I find what proportion it hath to his parts A D, A E, and that known, Imay work as before in the former Propefition.:
9. Two Numbers being given, to find a third-in continusl Pro: portion.

FIrf reckon the two numbers given on both fides of the Lines of Lines from the Center, and mark the terms to which either of them extendeth, then take out a Line refembling the fecond number agaia, and to it open the Sector in the terms of the firft number, for fo keeping the Sector at this Angle, the Parallel Diftance between the terms of the fecond lateral Number, being meafured in the fame Scale, from whence his Parallel was taken, Shall give the third Number Proportional.
Let the two Numbers given be 18,24. Thefe being refembled in Lines, the work will be in a manner all one with that in Prop.6. and fo the third Proportional number will be found to be 32.

The vfe of the Lines of Eineso

10. Three Numbers being given; to find a fourth in difcostisual Proportion.

THe Solution of this Propofition, is in a manner all one with that before in Prop.7. only there may be fome difficulty in placing of the numbers. To avoid this, we muft remember that three numbers being given, the queftion is annexed but to one, and this muft always be placed in the third place, that which agrees with this third number in denomination, fhall be the firft number, and that which remaineth the fecond number. This being confidered, reckon the firft and third numbers, which are of the firft Denomination on both fides of the Lines of Lines from the Center, and mark the terms to which either of them extendeth, then take out a Line refembling the fecond number, and to it open the Sector in the terms of the firft number, for fo keeping the Sector at this Angle, the parallel Diftance between the terms of the third lateral Number, being meafured in the fame Scale from whence his Parallel was taken, fhall give the fourch number Proportional.

As if a queftion were propofed in this manner, to yards coft 81 . how many yards may we buy for $\mathbf{2} 2$. here the queftion is annexed to 12; and therefore ir thall be the third number, and becaufe 8 is of the fame denomination, it thall be the firt number, then Io remaining, it muft be the fecond number, fo will they ftand in this order, 8, 10,12 . There being refembled in Lines, the work will be in a manner the fame with that in Prop.7. and the fourth Proportional number will be found to be 15 : for ais are to 10, fo 12 whto 15.

And this holdeth in direa Proportion; where as the firft number is to the fecond, fo the third to the fourth. So that if the third number be greater than the firt, the fourch will be greater than the fecond ; or if the third number be lefs than the firt, the fourth will be lefs than the fecond, but in reciprocal Proportion, commonly called the Back Rale, where, by how much the firt number is greater than the third, fo much the fecond will be lefs than the fourch, or by how much the fint number is lefs than the third, fo much the fecond will be greater than the fourth; the manner of working mult be contrary, that is, the Seetor is to be opened in the terms of the third number: and the Parallel refembling the number required, is to be found between the terns of the firf number, the reft may be obierved as before, as for example.

If twelve men would raife a Frame in ten days, in how many days mould eight men raife the fame Frame? Here, becaufe the fewer men would require longer time, though the numbers be 12, 10, 8, yet the fourth Proportional will be found to.be 15 .

So if 60 Tards of three quarters of a Yard in bredth would bang yound about. a room, and it were required to know how many Yards of bolf a Yard in bredth would ferve for the fame room. The fourth Proportional moald be found to be go.

Soif to make a Foot fuperfcial 12 inches in bredth do require 12 inebes in length, and the bredth being 16 inches, it were required to knowo the length. Here, becaufe the mere bredth, the lefs length, the fourth Proportional will be forund to be 9 .

So if to make a folld Foot, a Bafe of 144 inches, require 12 inches iss beight, and a Bafe given being 216 inches, it were required to know howo many inches it (ball have in height. The fourth Proportional would be fownd to be 8.

This laft Propofition of finding a fourth Proportional Number may be wrought alfo by the Lines of Superficies; and by the Lines of Solids.

CHAP. III.

The vee of the Lines of Superficies.

1. To find a Proportion letween two or more like Superficies.

TAke one of the fides of the greater Superficies given, and according to it open the Sector in the points of 100 and 100 in the Lines of Superficies, then take the like fides of the leffer Superficies feverally, and carry them parallel to the former, till they fay in like poinss, fo the number of points wherein they ftay, thall thew their Proportion unto 100.

Let A and B, be the fides of like Superficies, as the fides of two Squares, or the Diameters of two Circles, firft I take the fide A, and to it open the Sector in the poines of 100; then keeping the Sector to this Angle, I enter the leffer fide B, parallel to the former, and find it to crofs the Lines of Superficies in the points of 40 , wherefore the Proportion of the Superficies, whole fide is A, to that whofe fide is B; is as 100 unto 40, which is in leffer number as 5 unto 2 .

This Propofition might have been wrought by 60 , or any orher Number that admits feveral Divifions. It may alfo be wrought without opening the Sector, for if the fides of the Superficies given be applied to the Lines of Superficies, beginning always at the Center of the Sector, there will be fuch Proportion found between them, as between the number of parts whereon they fall.

2. To augment a Superficies in a given Proportion.
 3. Todiminifha Superfcies in a given Proportion.

TAke the fide of the Superficies, and to it open the Sector in the points. of the numbers given; then keeping the Sector at that Angle, the parallel diftance between the points of the number required, fhall give the like fide of the Superficies required.

Let A be the fide of a Square, to be augmented in the Proportion of 2 to 5. Firft, I take the fide A, and put it over in the Lines of Superficies in 2 and 2 ; fo the Parallel between 5 and 5 , doth give me the fide B, on which if I thould make a Square, it would have fuch Proportion to the Square of A, as 5 unto 2 .

In like manner, if B were the Semidiameter of a Circle to be diminifhed in the Proportion of 5 unto 2, I would take out B, and put it over in the Lines of Superficies in 5 and 5 ; fo the Parallel between 2 and $\mathbf{2}$ would give me \mathbf{A}; on which Scmidiámeter if I fhould make a Circle, it would be lefs than the Circle made upon the Semidiameter B, in fuch Proportion as 2 is lefs than 5 .

For variety of work, the like caution may be here obferved to that which we gave in the third Propoficion of Lines.

> 4. To add one like Superficies to another. 5. To wutract one like Superficies from anot ber.

FInft, the Proportion between like fides of the Superficies given, is to be found by the firft Propoficion of Superficies, then add or fubtract the numbers of thofe Proportions, and accordingly augment or diminif. by the former Propofition.

$A s$ if A and B were the fide of two Squares, and it were required to make a third Square equal to them both. Firft the Proportion between the Squares of A and B, would be found to be as 100 unto 40 , or in the leffer numbers as 5 to $\mathbf{2}$; then becaufe 5 and 2 added do make 7,1 augment the fide A in che Proportion of 5 to 7 , and it will produce the fide C, on which if I make a Square, it will be equal to both the Squares of A and B, which was required.

In like manner A and B being the fides of two Squares, if it wore required to fubtract the Square of B, out of the Square of A, and to make a Square equal to the Remainder, here the Proportion being as 5 to 2, becaufe 2 taken out of 5 , the Remainder is 3 , I would diminifh the fide A in the Proportion of 5 to 3 , and fo 1 hould produce the fide E 2

D, on

The ve of the Limes of Superficies:

D, on which if \mathbf{I} make a Square, it will be equal to the Remainder, when the Square of B is taken out of the Square of A, that is, the two Squares made upon B and D, hall be equal to the firt Square made upon the fide A.

6. Ta find' a mean Propertional between two Lines given.

FIrf find what Proportion is between the Lines given, as they are Lines, by the fifth Propoficion of Lines, then open the Sector in the Lines of Superficies, according to his Number, to the quantity of the one, and a Parallel taken between the points of the Number belonging to the ocher Line Ghall be the mean Proportional.

Let the Lines given be A and C. The Proportion between them (as they are Lines) will be found, by the fifth Propofition of Lines, to be, as 4 to 9 . Wherefore, I take the Line C, and pat it over to the Lines of Superficies between 9 and 9 ; and keeping the Sector at this Angle, his Parallel between 4 and 4 doth give me B, for the mean Proportional. Then for proof of the Operation I may. take this Line B, and put over between 9 and 9 : fo his Parallel between 4 and 4 , fhall give me the firf Line A. Whereby it is plain, that thefe three Lines do hold in continual Proportion; and therefore B is a mean Proportional between A and C; the extremes given.

Upon the finding out of this mean Proportion, depend many Corollaries, as

To make a Square equal to a Superficies giver.

IFthe Superficies given be a rectangle Parallelogram, a mean Proportional between the two unequal Sides fhall be the Side of his equal Square:
If it Chall be a Triangle, a mean Proportion between the Perpendicular and half the Bafe fhall be the Side of his equal Square. If it Chall be any other rightolined Figure, ir may be reolved into Triangles, and fo
a side of a Square found equal to every Triangle, and thefe being reduced into one equal Square, it thall be equal to the whole right-lined Figure given.

To find a Proportion between Superficies, though they be wnlike one to the other.
I
F to every Superficies we find the fide of his equal Square, the Proportion between thefe Squares thall be the Proportion between the: Superficiesgiven.

Let the Superficies given be the oblong A; and the Triangle B: Firft berween the unequal Sides of A, I find a mean Proportional, and note it in C : This is the fide of a Square equal unto A . Then between the Perpendicular of B ; and half his Bafe, I find a mean Proportional, and note it in B: this is the fide of a Spuare equal to B : but the Proportion between the Squares of Cand B; will be found, by the firf Propofition of Superficies ro be as 5 to 4: and therefore this is the Proportion berween thofe given Superficies:

To make a Superfcies, like to one Superficies, and equal to another.

T.Et the one Superficies given be the Triangle A; and the other thie Rhomboides \mathbf{B}; and let it be required to make another Rhomboides like to B , and equal to the Triangle A.

The Ufe of the Lines of Superfcies.

Fift, between the Perpendicular and the Bafe of B, I find a mean Proportional, and note it in B, as the fide of his equal Square, then berween the Perpendicular of the Triangle A, and half his Bale, I find a mean Proportional, and note it in A, as the fide of his equal Square. Wherefore now as the fide B is to the fide A, fo thall the fides of the Rhomboides given be ro C and D, the fides of the Rhomboides required, and his Perpendicular alfo to E , the Perpendicular required.

Having the Sides and the Perpendicular, I may frame the Rhomboidesup, and it will be equal to the Triangle A.

If the Superficies given had been any other right-lined Figures, they might have been refolved into Triangles and then brought into Squares as before.

Many fuch Corollaries might have been annexed, but the means of finding a mean Proportional being known, they all follow of chemfelves.

7. To find a mean Proportional between two Numbers given.

FIrf, reckon the two Numbers given on both fides of the Lines of Superficies, from the Center, and mark the terms whereunto they extend; then take a Line out of the Line of Lines, or any other Scale of equal parts refembling one of thofe Numbers given, and pur it over in the terms of his like Number in the Lines of Superficies; for To keeping the Sector at this Angle, the Parallel taken from the terms of the other Number and meafared in the fame Scale from which the other Parallel was taken, fhall here fhew the Mean Proportional which was required.

Let the Numbers given be 4 and 9. If I Shall take the Line \mathbf{A} in

The Ufe of the Lines of Superficies.

the Diagram of the fixth Propofition refembling 4 ; in a Scale of equal parts, and to it open the Sector in the terms of 4 and 4 , in the Lines of Superficies, his Parallel between 9 and 9 doch give me B for the Mean Proportional, And this meafured in the Scale of equal parts doth exrend ro 6 , which is the Mean Proportional Number between 4 and 9: For as 4 to 6 , fo 6 to 9 .

In like manner, if I take the Line C, refembling 9, in a Scale of equal parts, and to it open the Sector in the terms of 9 and 9 , in the Lines of Superficies, his Parallel between 4 and 4 doth give me the fame Line B, which will prove to be 6, asbefore, if it be meafured in the fame Scale whence C was taken.

For the Figures $\mathrm{I}, \mathbf{2 , 3 , 4 , \text { , } c \text { . here fet down upon the Line, do fome- }}$ time fignifie themfelves alone: fometime $10,20,30,40,60$. fometime 100, 200, 300, 400, ofc. and fo freward, as the matter fhall require. The fift Figure of every Number is alway that which is here fet down : the reft muft be fupplied according to the nature of the Queftion.

If you fuppofe Pricks under the Number given (as in Arithmerical Excraction) and the laft Prick to the left hand fhall fall under the laft Figure (which will be as oft as there be odd Figures) the unite will be beft placed at $\mathbf{1}$, in the middle of the Line; fo the Root and the Square will both fall torward, roward the end of the Line. But, if the laft Prick fhall fall under the laft Figure but one (which will be as ofs as there bs even Figures) then the unite may be placed at I in the beginning of the Line, and the Square in the fecond length: or the unice may be placed at 10, in the end of the Line, fo the Root and the Square will both fall backward, toward the middle of che Line.

8. To find the Square Root of a Number.
 9.- The Root being given, to find the Square Number of that Root.

IN the Extraction of a Square Root it is ufual ro Ser Pricks under the firft Figure, the third, the fifth, the feventh, and lo forward, beginning from the right hand toward the left, and as many Pricks as fall to be under the Square Number given, fo many Figures fhall be in the Root: fo that if the Number given be lefs than 100, the root fhall be only of one Figure; if lefs than roD00, it thall be but two Figures; if lefs than 100000 , it fhall be three Figures, ofs.

Thereupon the Lines of Superficies are divided fift into an bundred

The Use of the Lines of Superficies.

parts, and if the Number given be greater than 100, the firt Divifion (which before did fignifie only one) mult fignifie 100, and the whole Line fhall be 10000 parts: if yet the number given be greater than 10000, the firf Divifion muft now fignifie 10000; and the whole Line be efteemed at 1000000 parss: and if this be too little to exprefs the Nunber given, as oft as we have recourfe to the beginning, the whole Lime thall increafe itfelf an hundred times.

By thefe means if the laft Prick to the left hand thall fall under the 1aft Figure, which will be as ofe as there be odd Figures, the Number given thall fall out between the Censer of the Sector and the tenth Divifion: but if the laft Prick fhall fall under the laft Figure but one, which will be as off as there be even. Figures, then the Numbergiven thall fall our between the tenth Divifion and the end of the Sector.

This being confidered, when a Number is given, and the Square Root is required, take a pair of Compaffes, and fetting ene Foot in the Center, exiend the other to the term of the number given in one of the Lines of Superficies; for this Diftance applied to one of the Lines of Lines, thall thew what the Square Root is, without opening the Sector.

Thus 36 doth give a Root of 6 ; and 360, a Root of almoft 19: and 3600 , a Root of 60 ; and 36000 , a Root of 189 , 屯 6 .

In like manner, the neareft Root of 725 is here found to be (about) 27, the neareft Root of $\mathbf{7 2 5 0}$, about 85 : the neareft of $\mathbf{7 2 5 0 0}$, about 269: and the neareft Root of 725000 , about 851 : And fo in the reft.

On the contrary, a Number given may be fquared, if firt we extend the Compaffes to the Number given in the Lines of Lines, and then apply that Diftance to the Lines of Superficies, as may appear by the former Examples.

10. Three Numbers being given, to find the foarth in a duplicated Proportion.

IT is plain (by Euclid. Lib.6. Prop.19 2 20.) that like Superficies doth hold in a duplicated Proportion of their homologal Sides, whereupon a queftion being moved concerning Superficies and their Sides: It is ufal in Arithmetick, that the Proporion be firft duplicated before the Queftion be refolved, which is not neceflary in the Ulif of the Sector,
only the Numbers which do fignifie Superffices, muft be reckoned in the Lines of Superficies, and they which fignific the Sides of Superficies, in the Lines of Lines, afeef this manner.
If a Queftion be made concerning a Superficies, the two Numbers of the fir O D siniomination muft be reckoned in the Lines of Lines :'and the Setor opened in the terms of the firf Number to the quantiiy of a Line out of the Scale of Superficies refembling the fecond Number; fo his Parallels taken between the terms of the third Number, being meafured in the fame Scale of Superficies, fhall give the Superficial Number which was required.

As if a Square, whofe fide is 40 Perches in length, Thall contain ro Acres in the Superficies, and it be required to know how many Acres the Square lhould contain, whofe fide is 60 Perches.

Here if I took 10 out of the Line of Superficies, and put it over in 40, in the Lines of Lines, his Parallel between 60 and 60 , meafured in the Line of Superficies, would be $22 \frac{1}{2}$, and fuch is the number of Acres required. Fcr Squares do hold in a duplicated Proportion of their fides; wherefore when the Proportion of cheir fides is as 4 to 6 , and 4 multiplied into 4 become 16, and 6 multiplied into 6 become 36, the Proportion of their Squares thall be as 16 to $\mathbf{3 6}$, and fuch is the Proportion of 10 to $22 \frac{1}{2}$.

If a Field meafured with a Statute Perch of $16 \frac{1}{2}$ foot, Thall contain 288 Acres, and it be required to know how many Acres it would contain if it were meafured with a Woodland Perch of 18 foor.

Here becaufe the Proportional is reciprocal, if I took 288 out of the Line of Superficies, and put it over in 18 in the Lines of Lines, his Parallel berween $16 \frac{1}{2}$ and : $6 \frac{1}{2}$ meafured in the Line of Superficies, would be 242; and fuch is the Number of Acres required.

For reeing the Proportion of the Sides is as $16 \frac{1}{2}$ to 18 , or in leffer Numbers as 1 I to 12, and that II mulciplied into 1 I become 121, and 12 into 12 become 144, the Proportion of thefe Superficies thall be as 121 to $\mathbf{1 4 4}$, and fo have 288 to 242, in reciprocal Proportion.

On the conurary, if a queftion be propofed concerning the Side of a Superficies, the two Numbers of the firf Denomination muft be recm koned in the Lines of Superficies, and the Sector opened in the terms of the firft Number to the quantity of a Line, out of the Line of Lines or fome Scale of equal parts, refembling the fecond Number; fo his Paral. lel taken between the terms of the third Number being meafured in the

34

The ve of the Line of Superficies.

fame Scale with the fecond Number, fhall give the fourth Number required.

As if a Field contained 288 Acres when it was meafured with a Scatute Perch of $16 \frac{1}{2}$, and being meafured with another Perch, was found to contain 242 Acres, it were required to know what was che lengeh of the Perch with which it was fo meafured.

Here becaule the Proportion is reciprocal, if I took $16 \frac{1}{2}$ our of the the Line of Lines, and put it over in 242 in the Lines of Superficies, his Parallel between 288 and 288, being meafured in the Line of Lines, would be 18 , and fuch is the length of the Perch (in Feer) wherewith the Field was laft meafured.

For feeing the Proportion of the Acres is as 288 unto 242, or in the leaft Numbers, as 144 10 $\mathbf{1 2 1}$, and that the Root of 144 is 12 , and the Root of 121 is 11 , the Proportion of Roots, and confequently of the Perches, thall beas 12 to 11, and fo are $16 \frac{1}{2}$ to 18 in reciprocal Proportion.

If 360 men were to be fet in form of a long Square, whofe Sides Thall have the Proportion of 5 to 8 ; and it were required to know the Number of men to be placed in front and file: If the Sides were on'y. 5 and 8 , there fhould be but 40 men ; but chere are 360 : thesefore, working as before, I find that,

As 40 to the Square of $5:$
So 360 ta the Square of 1.5 .
As 40 to the Square of $8:$
So 360 to the Square of 24 . and 1015 and 24 are the Sides required.

If 1000 men were lodged in a fquare ground whofe Side were 60 paces, and it were required to know the Side of the Square wherein 5000 might be fo lodged, here working as before, I fhould find that,

As 1000, are to the Square of 60 : So 5000 to the Sgrare of 134. And fuch, very near, is the Number of paces required.
11. Hoyy to defcribe a Parabola, by belp of the Line of Lines and Su: perfocies.

UPon An as the Diameter; prick down, by the Line of Lines, the equal Parts Ao, Au, Ay, A1, Am, An, orc. and from thefe Points raife the Perpendiculars of, $u z, y g, l p$, mq, nh, or. And upon the Perpendicular ox, aflume the Point x, and open the Sector in the Line of Superficies, fo that ox (being the firft Perpendicular) may fall in with the Points $\mathbf{1} \ldots \mathbf{1}$ (the firf of the Line of Superficies:) Then if you take off from the fame Line $20.0,2$, you hall prick down $u z$, and $3 \ldots 3$
 gives yg ; and $4 \ldots 4,1 \mathrm{p} ; 5 \ldots 5, \mathrm{mq}$; $6 . .06, \mathrm{nh}$; ©゚c.

Or, you may begin your work from $n h$, which (becaufe it is the fixth Perpendicular) take from n to h, the Point affumed, and fet that length in the Line of Superficies from 6 to 6 , fo may yous prick down the other Points correfpondently.

Through thefe Points h, q, p, g, with an even hand draw the Parabola.

And here note, that Parabolass may be defribed of infinite Varieties, according to the Cones from whence they are taken, yet keep: ing all one and the fame length.

CHAP. IV.

The vee of the Lines of Solids.

I. To find a Proportion between two or more like Solids.

IN the Sphere, in regular, parallel, and other like bodies, whofe Sides next the equal Angles are proportional, the work is in a manner the fame, with that in the firl Propofition of Superficies, but that it is wrought: on other Lines.

Take one of the fides of the greater Solid, and according to it open the Sector in the points of 1000 and 1000 , in the Lines of Solids, then take the like Sides of the leffer Solids feverally, and carry them parallel to the former, till they fay in like points, fo the number of points wherein they, Gay fhall hew their proportion to 1000 .

Let A and B be the like Sides of like Solids, either the Diameters orSemidiamerers of two Spheres, or the fides of two Cubes or orher like. Finf I take the fide A, and to it open the Sector in the points of $\mathbf{1 0 0 0}$; then keeping the Sector at this Angle, I enter the leffer Side B parallel to the former, and find it to crofs the Line of Solids in the points of 400 , and fuch is the Proportion becween the Solids required, which in leffer Numberis, as 5 to 2.

This Propofition might have been wrought by 60 , or any ocher Number that admits feveral Divifions:

It may alfo be wrought without opening the Sector, for if the fides of: the Solids given be applied to the Lines of Solids, beginning always at the Center of the Sector, there will be fuch Proportion between them, as be. tween the Numbers of parts whereon they fall.

2. To augment a Solid in a given Proportion.
 3. Todiminifh a Solid in agiven Propurtion.

TAke the fide of the Solid given, and to it open the Sector, in the points of the Number given: then keeping the Sefor at that Angle, the parallel Diftance between the points of the Number required, hall give the like Side of the Solid required.

If it be a parallclopipedon or fome irregular Solid, the other like Sides my be found our in the fame manner, and with them the Solids required; may be made up with the fame Angles.

Let \mathbf{A} be the fide of a Cube, to be augmented in the Proportion of 2 to 3. Finft, Itake the fide A, and put it over in the Lines of Solids in 2and 2; fo the Parallel between 3 and 3; doth give me the fide B; on which if I make a Cube, it will have fuch Proportion to the Cube of $A_{\text {, }}$ as 3 to 2.
In like manner, if B were the Diameter of a Sphere, to be diminifhed in the proporion of 3 to 2 : I would take our B, and put it over in the Lines of Solids, in 3 and 3 ; fo the Parallel berween 2 and 2 , would give me A : to which Diamerer if I fhould make a Sphere, it would be lefs than the Sphere, whofe Diamecer is B_{5} in fuch proportion as 2 is lefs than 3 .

Herealio for variety of work, may the like caution be obferved to that which we gave in the third Propofition of Lines.

4. To add one like Solid to another. 5. To fuberact one like Solid from another.

FIrt the Proportion between the fides of the like Solids given, is to be found by the firt Propofition of Solids : then add or fubtract thofe Proportions, and accordingly augment or diminith by the former Pros pofition.

1. As if A and B were the fides of two Cubes, and it were required to make a third Cube equal to them both : firt the Proportion between the fides A and B, would be found to be as 100 to 40_{2} or in leffer terms as

The vre of the Zimes of Solids?

5 to 2 : then becaufe 5 and 2 being added do make 7 , I augment the fide A, in the proportion of 5 to 7 , and produce the fide C , on which if \mathbf{I} make a Cube, it will be equal to both the Cubes of A and B, which was required.

In like manner A and B being the fides of two Cubes, if it were re: quired to fubtract the Cube of \mathbf{B} out of the Cube of A, and to make a Cube equal to the Remainder. Here the Proportion being as 5 to 2, becaufe 2 taken out of 5 , the Remainder is 3 , I hould diminifh the fide A in the proportion of 5 to 2, and fo I thould have the fide D, on which if I make a Cube, it will be equal to the Remainder, when the Cube of B is taken out of the Cube of A, that is, the two Cubes made upon B and D fhall be equal to the firt Cube made upon the fide A.

6. To find two mean proportional Lines between two extremse Lines given.

TIrft I fnd what Proportion is between the two extreme Lines given, as they are Lines, by the fifth Propofition of Lines, then open the Sector in the Lines of Solids, to the quanticy of the former Extreme, and a Parallel beeween the points of the number belonging to the other Extreme, thall be that mean Proportional, which is next the former Extreme. This done, open the Sector again to this mean Proportional in the points of the former Extreme, and the parallel Diftance between the points of the latter Extreme, fhall be the other mean Proportional required.

Let the two extreme Lines given be A and D, the Proportion betweeri them, as they are Lines, will be found to be as 27 to 8. Wherefore I take the Line A, and put it over in the Lines of Solids between 27 and

27, and keeping the Sector at this Angle, his Parallel between 8 and 8, doth give me B the mean Proportional next unto A. Then put I overthis Line B, berween the aforefxid 27 and 27, and this Parallel between 8 and 8 'doth give me the Line C, the other mean Proportional which was required.

Again, for proof of the operacion I put over this Line C in the aforefaid 27 and 27 , and his Parallel berween 8 and 8 dorh give me the very Line D : whereby it is plain char the'e four Lines do hold in continual Proportion; and fo B and C are found to be the Mcan Proportionals between A and D he Exereme given.

7. To find two mean proporiinal Nambirs between two extrense Numsbers given.

FIrf reckon the Numbersgiven on both fides of the Lines of Solids, beginning from the Center, and marking the terms whereto they extend: then take a Line out of the Line of Lines, or any other Scale of equal parts refembling the former of thofe Numbers, and put it over in the Lines of Solids, between the points f his like Number, and a Parallel between the poines belonging to the othen Exrreme, meafured in the Scale from whence the other Parallel was taken, thall give that mean proportional Namber which is next the former Excreme. This done open the Seetor again to this mean Proportional in the Points of the former Extreme, and the parallel Diffance between the points of the latter E_{X} treme, meafured in the fame Scale as before, fhall there thew the other mean Proportional required.

Let the two extreme Numbers given be 27 and 8, if I Thall take thic Line A, refembling 27 in a Scale of equal parts, and to it open the Sector in 27 and 27 , in the Line of Solids, his Parallel between 8 and 8 doth give me B, for his next mean Proportional, and this meafured in the former Scale doth extend to 18. Thien put I over this Line B, between the forefaid 27 and 27 , and his Parallel between 8 and 8 doth give me C, for the other mean Proportional, and this meafured in the former Stale:

The Ufe of the Lines of Solitios.

Scale doth extend to 12. Again, for proof ofmy work, I put over this Line C, between 27 and 27 , as before, and his Parallel between 8 and 8 doth give me D, which meafured in the former Scale dorh extend to 8, which was the later extreme Number given; whereby it is plain, that thefe four Numbers do hold in continual Proportion : and therefore 18 and 12 are Mean Proportionals between 27 and 8, which was required.

If you fuppofe Pricks under the Number given as in Arithmerical Ex= traction, and that laft Prick to the left hand fhall fall under the laft figure; as in 1728, the unite will be left placed at 1 , in the middle of the Line, and the Roor, Square and Cube will all fall forward toward the end of the Line.

If the laft Prick fhall fall under the laft Figure but one, as in 17280; the unite may be placed at \mathbf{I}, in the beginning of the Line, and the Cube in the fecond length: or the unite may be placed at 10 , in the end of the Line, and the Cube in the firt length.

But if the laft Prick fhall fall on the laft Figure but two, as in 172800; then, place the unite always at 10 in the end of the Line: fo the Roor, Square and Cube will all fall backward and be found in the fecond lengeh.

8. To find the Cubigue Root of Number.

9. The Root being given to find the Cwbe Number of that Root.

IN the Extraction of a Cubique Root, it is ufual to fet Pricks under the firf Figure, the fourth, the feventh and cench, and fo forward omitting two, and pricking the third from the right hand toward the left; and as many Pricks as fall to be under the Cubique Numbers, fo many Figures thall be in the Root. So that if the Number given be lefs than 1000, the Root fhall be only of one Figure; if lefs than 1000000, it Shall be bur of two Figures; if above thefe, and less, than $1000000000_{\text {, }}$ it fhall be buc three' Figures, whereupon the Lines of Solids are divided, firt into 1000 parts, and if the Numbers given be greater than 1000 the firt Divifion (which before did fignifie only one) muft fig nifie 1000, and the whole Lime fhall be 1000000: if yet the Number given be greater than 1000000, the firft Divifion mult now fignifie 1000000 , and the whole Line be efteemed at 1000000000 parts, and if thefe be too little to exprefs the Numbers given, as oft as we have recourfe to the beginning, the whole Line fhall increafe itelf a thouland times.

The vee of the Lines of Solids.

 41By there means, if the laft Prick, to the left hand, fhall fall under the laft Figure, the Number given fhall be reckoned at the beginning of the Lines of Solidsfrom $\mathbf{1}$ to 10, and the firt Figure of the Root thall be always either 1 or 2. If the latt Prick fhall fall under the laft Figure but one, then the Number given thall be reckoned in the middle of the Line of Solids, berween 10 and 100 , and the firt Figure of the Roor Thall be always cither 2 , or 3, or 4. But if the laft Prick fhall fall under the laft Figure but two, then the Number given fhall be reckoned at the end of the Line of Solids, between 100 and 1000.

This being confidered, when a Number is given, and the Cubique Root required, fet one Foot of the Compaffes in the Center of the Sector, extend the other in the Line of Solids to the Points of the Number given : For this Diftance applied to one of the Lines of Lines, fhall hew what the Cubique Roor is, without opening the Sector.

So the neareft Root of 8490000, is about 204. The neareft Root of 84900000 , is about 439. The nearef Roor of 849000000 , is about 947.

On the contrary, a Number may be cubed, if firf we extend the Compaffes to the Number given, in the Line of Lines, and then apply the Diftance to the Lines of Solids, as may appear by the former Examples.

10. Three Numbers being given, to find a fourth in a triplicated Proportion.

AS like Superficies do hold in a duplicated Proportion, fo like Solids in a triplicated Proportion of their homologal Sides : and therefore the fame. Work is to be obferved here on the Lines of Solids, as before in the Lines of Superficies, as may appear by thefe two Examples.

If a Cube whofe fide is 4 inches, fhall be 7 pound weight, and if is be required to know the weight of a Cube whofe fides is 7 inches; here the Proportion would be,

> As 4 are to a Cube of 7 :
> So 7 toa Cabe of $37 \frac{1}{2}$.

42 The refe of the Lines of Solids.
And if I took 7 out of the Lines of Solids, and put it over in 4 and 4; in the Lines of Lines, his Parallel between 7 and 7, meafured in the Lines of Solids, would be $37 \frac{1}{2}$; and fuch is the weight required.

If a Bullet of 27 pound weight, have a Diameter of 6 inches, and it be required to know che Diamecer of the like Buller, whole weight is 125 pounds; here the Proportion would be,

> As the Cubique Reot of 27 , is unto 6 , So the Culique Root of 125 , is unto 10 .

And if I took 6 our of the Line of Lines, and put it over in 27, and 27 of the Line of Solits, his Parallel between 125 and 125 meafured in the Line of Lines, would be 10; and fuch is the length of the Diameter required.

The End of the firft Book. .

THE
 SECOND BOOK OFTHE

SECTOR

Containing the Ule of the Circular Lines.

CHAP. I.

Of the Nature of Sines, Chords, Tangents, and Secants; fit to be known before-band; in reference to right-lined Triangles.

TN the Canon of Triangles, a Circle is commonly divided into 360 Degrees, each Degree into 60 Minutes, each Minute into 60 Seconds.
A Semicircle therefore is an Ark of 180 gr .
A Quadrant is an Ark of 90 gr .
The meafure of an Angle is the Ark of a Circle defcribed out of the angular point, intercepted between the Sides fufficiently produced.

So the meafure of a right Angle is always an Ark of 90 gr . and in this Example the meafure of the Angle BAD in the following Figure, is the Ark B C of 40 gr . the meafure of the Angle B A G, is the Ark BF of 50 gr .

The Complement of an Ark or of an Angle doth commonly fignific the Ark which the given A:k doth want of $90 \mathrm{gr}_{\mathrm{o}}$ and to the Ark BF is the Complement of the Ark BC, and the Angle B A F, whofe

44 Of the nature of Sines and Tangents:
meafure is $B F$, is the Complement of the Angle BAC ; and on the contrary,

The Complement of an Ark or Angle in regard of a Semicircle, is that Ark which the given Ark wanted to makeup 180 gr : and to the Angle EAH is the Complement of the Angle E A F, as the Ark EH is the Complement of the Ar' FE, in which the Ark CE is the excefs above the Quadrant.

The Proportions which thefe Arks (being the meafures of Angles) have ro the Sides of a Triangle, cannot be certain, unlefs that which is crooked be brought to a ftreiglte Line, and that may be done by the application of Chords, Right Sines, Ver Sed Sines, Tangents and Secants to the Semidiameter of a Circle.

A Chord is a right Line fubtending an Ark: $\{0 \mathrm{BE}$ is the Chord of the Ark B C E, and B F: a Chord of the Ark B 40 F.

A right Sine is half the Chord of the double Ark, viz. the righe Line which fallerh perpendicularly from the one Extreme of the given Ark, upon the Diameter drawn to the orher Extreme of the faid Ark.

So if the given Ark be B C, or the given Angle be B A C, let the Diameter be drawn through the Center A unto C, and a Perpendicular B D be let down from the Extreme B upon A C, this Perpendicular B D thall be the right Sine both of the Ark BC, and alfo of the Angle

B A C: and it is alfo the half of the Chord BE, fubrending the Ark BCE, which is double to the given Ark BC. In like manner, the Semidiameter FA, is the right Sine of the Ark F C, and of the right Angle FAC ; for it fallech perpendicularly upon A C, and it is the half of the Chord FH.

This whcle Sine of 90 gr . is hereafer called Radius, but the other Sines take their Denomination from the Degrees and Minutes of their Arks.

Sinus verfus, the Verfed Sine is a Segment of the Diameter, intercepred berween the right Sinie of the fame Ark, and the Circumference of the Circle. So DC is the Verifed Sine of the Ark C B, and GF the Verfed Sine of the Ark B F, and GH the Verfed Sine of the Ark B H.

A Tangent is a right Line perpendicular to the Diameter drawn by the one Extreme of the given Ark, and terminated by the Secant drawn from the Center, through the other Extreme of the faid Ark.

A Secant is a right Line drawn from the Center, through one Extreme of the given Ark, till it meet with the Tangent raifed from the Diameter at the other Extreme of the faid Ark.
So if the given Ark be C E, or the given Angle be C A E, let the Diameter be drawn through the Center A to C, and in C to $A C$, be raifed a Perpendicular CI. Then ler anether Line be drawn from the Center A through E, till it meer with the Perpendicular CI in I; the Line $C I$ is a Tangent, and $A I$ is the Secant bosh of the Ark CE , and of the Angle C A E.

CHAP.

CHAP. II.

Of the general Ufe of Sines and Tangonts.

1. The Radius being known, to find the right Sine of any eArk or Akgle.

IF the Radius of the Circle given be equal to the lateral Radius, that is to the whole Line of Sines on the Sector, there needs no farther work, but to take the other Sines allo out of the Side of the Sector. But if it be either greater or leffer, then let it be made a parallel Radius, by applying it over in the Lines of Sines, between 90 and 90 , fo the Parallel taken from the like lateral Sines, fhall be the Sine required.

As if the given Radius be A C, and it were required to find the Sine of 50 g. and his Complement agreeable to that Radius.

Let

Let A B, A B reprefent the Lines of Sines on the Sector, and let B B the Diftance between 90 and 90 , be equal to the given Radius A C. Here the Lines A 40, A 50 , A 90 may be called the lateral Sines of 40 , 50 , and 90 , in regard of their place on the fide of the Eector. The Lines between 40 and 40 , berween 50 and 50 ;berween 90 and 90 , may be called the parallel Sines of 40,50 , and 90 , in regard they are parallel one to the other. The whole Sine of 90 gr . here ftanding for the Semidiameter of the Circle, may be called the Radius. And therefore if AC be put over in the Line of Sines in 90 and 90 , and to made a Parallel Radius, his parallel Sine between 50 and 50 fhall be B D, the Sine of 50 required. And becaufe 50 taken out of 90 , the Complement is 40 , his parallel Sines between 40 and 40 hall be BG, the Sine of the Complement which was required.
2. The right Sine of any Ark being given to find the Radius.

TUrn the Sine given into a parallel Sine, and his parallel Radius fhall be the Radius required.
As if B D were the given Sine of sogr. and it were required to find the Radius, Lee B D be made a parallel Sine of 50 gr . by applying it over in the Lines of Sines between 50 and 50 , fo his parallel Radius between 90 and $9 \circ$ fhall be $A C$, the Radius required.
3. The Radiui of a Circle, or the right Sine of any Ark, being givm, and a freight Line refembling a Sine, to find the quantity of that unknown Sine.

LEt the Radius or right Sine given be curned into his Parallet, then take the sight Line given, and carry ir parallel to the former, till it ftay in like Sines, fo the number of Degrees and minutes where if Rtayech, Thall give the quantity of the Sine reguired.

As if B D were the given Sine of 50 gr . and BG the freight Line given, firt 1 make B D a parallel Sine of 50 gr . then keeping the Sector at this Angle, I carry the Line B G parallel, and find it to ftay in no other but 40 and 40 , and therefore 40 gr . is his Quanticy required.

The general $v \int_{0}$ of sines and Tangents.

4. The Radius or any right Sine teing given, to find the Verfed Sine of any Ark.

IF the Ark, whofe Verfed Sine is required, be lefs than the Quadrant, take the Sine of the Complement our of the Radius, and the Remainder fhall be the Sinus Verfus, the Verfed Sine of that Ark.

As if A B being the lateral Radius, it were required to find the Verfed Sine of 40 gr . here the Sine of the Complement is A 50 , and therefore B 50 is the Verfed Sine required. Or if I reckon from B at the end of the Sector, toward the Center, the Diftance from 90 to 80 is the Verfed Sine of 10 gr . from 90 to 70 , the Verfed Sine of 20 gr . from 90 to 60 is the Verled Sine of 30 gr . and fo in the reft.

If A D be the given Sine of $50 \mathrm{gr}^{\text {. and }}$ it be required to find the Verfed Sine of 50 gr . here becaufe A D is unequal to the lateral Sine of 50 gr . I make it a Parallel. And firft I find the Radius A C, then the Sine of the Complement A 40, which being taken out of A C, leaverh C 40, for the Verfed Sine of 50 gr . which was required.

But if the Ark whofe Verfed Sine is required, be greacer than the Quadrant, his Verfed Sine allo is greater than the Radius, by the right Line of his excefs above 90 gr .

As if A C being the Radius given, it were required to find the Verfed Sine of 130 gr . here the excefs above 90 gr . is 40 gr . and therefore the Verfed Sine required is equal to the Radius A C and A 40, both being fer rogecher.

5. The Diameter or Radius being given, to find the Cbords of every Ark:

THe Sines may be fitted many ways to ferve for Chords, I. A Sine being the half of the double Ark, if the Sine be doubled; it givech the Chord of the double Ark, a Sine of 10 gr. doubled givech a Chord of 20 gr . and a Sine of 25 gr . being doubled giverh a Chord of 50 gr . and to in the reft; As here B D, the Sine of BC, an Ark of 40 gr . being doubled, givech BE the Chord of BCE, which is an Ark of $80 \mathrm{gr}^{\text {r }}$ Wherefore if the Radius of the Circle given be equal to the lateral Radius, ler the Sector be opened near unto his lengeth, fo that both the Lines of Sines may make bur one direct Line: fo the Diftance on the Sines berween 10 and to thall be a Chord of 20, the Diftance between

20 and 20 hall bea Chord of 40 , and the Diftance between 30 and 30 ; thall be a Chord of 60 , and fo in the reft.
2. Becaufe a Sine is the half of the Chord of the double Ark, the Proportion holdeth.

As the Diameter FH unto the Radius A.H., fo the Chord BE unto the Sine D E, or the Cherd G L unto the Sine A L, and then if the Radius A H be put for the Diamerer, which is a Chord of 180 gr . the Sine D E or A L, thall ferve for a Chord of 80 gr . and the Semiradius which is the Sine of 30 gr . fhall ferve for a Chord of 60 gr . and go for the Semidiameter of a Circle, and fo in the reft. So that by thefe means we Thall not need to double the Lines of Sines as before, but only to double the Numbers. And to this purpofe I have fubdivided each degree of the Sines into two, that fo they might fhew how far the half degrees do reach in the Sines, and yet ftand for whole degrees when they are ufed as Chords.

Wherefore if the Radius of the Circle given be equal to the lateral Semiradius (the Sine of 30 gr . and Chord of 60 gr .) there needs no farther work, then to take the Sine of 10 gr . for a Chord of 20 gr . and a Sine of 15 gr . for a Chord oc 30 gr . Gr .

But if the Radius of the Circle given be either greater or leffer than the lateral Semiradius, take che Diameter of it, and make it a Paralle Chord of 180 gr . by applying is over the Lines of Sines between 90

The general Ufe of sines and Tangextso

and 90 , or take the Radius or Semidiameter, which is equal to the Chord of 60 gr . and make it a parallel Radius of 60 gr . by applying it over in the Sines of 30 and 30 , and keep the Sector at this. Angle. The Parallels taken from the lateral Chords thall be the Chords required.

As if the Diameter of a Circle given were the Line AB, and it were required to find the Chord of 80 gr . Firft I make AB a parallel Chord of 180 gr . or the half of it a parallel Chord of 90 gr . fo his Parallel L G, doth give me F G the Chord of 80 gr . which was. required.
3. Seeing that as the Sine of the Complement of the half Ark is unto the Radius, fo the Sine of the fame whole Ark is unto the Chord of it: If we feek but for one fingle Chord, we may find it without either doubling the Sines, or doubling the Number. For applying over the Radius. given in the Sine of the Complement of half the Ark required; his Pasallel Sine fhall be the Chord required.

As if the Semidiameter of the Circle given were AC, and it were required to find the Chord of 40 gr . the half of 40 gr . is 20 gr . theComplement of 20 gr . is 70 gr . Wherefore I make AC a purallel Sine of 70 gr . and his parallel Sine GL, doth give me FG, the Chord of fe gr. agreeable to the Semidiameter A C.

Having two right Lines.refenbling the Chordwand: Verfed Sine, to find the Diameter and Radius.

Let the two right Lines given be A B, refembling the Chord, G D the Verfed Sine of a Circle, whofe Arch A G B is unknown, and and let it be required to find the Diameter, GF.

Having two Lines given, the firf G.D; the fecond AD, the half of A B, we may: find a third in continual Proportion (by the
 fixth or nineth Propofition of the Lines) and that thall be the Line DF (18) the Sum whereof and of GD gives the. Diameter GF (20) znd the half thereof is the Radius (E G).

6. The Chord of any Arkbeing given, to find the Diameter and Radins.

TUre the Chord given unto a parallel Chord, and his parallel Semiradius fhall be the Semidiamerer, and the parallel Radius fhall be the Diameter.

As if F G be the Chord of 80 gr . I put this over in G and L, the Sine of 40 , and Chord of 80 gr . and the parallel Chord of 180 gr . givech me A B the Diameter required.

Or if I turn the Chord given into a parallel Sine of the fame quanity? his parallel Sine of the Complement of half the Ark, doch give sue the Semidiameter.

As if F G be the given Chord of 40 gr . I put it over in G and L ; the Sines of 40 gr . then becaufe the half of 40 gr . is 20 gr . and the Complenent of 20 gr . is 70 gr . I take out the parallel Sinc of 70 gr : and it givech me AB for the Semidiameter, agrtable to that Chord of 40 gr .

Having the Diameter of an Ellippos to defcribe the Same spon äplaix.
If each Semidiameter be divided, in fuch fort, as the Line of Sines is divided upon the Sector, and right Lines drawn through each divifion Perpendicular to thofe Semidiameters like unto Sines; The Points where the Sines drawn through the one Semidiameter do meet the Sines of the Complement drawn through the other Semidiameter, fhall be the Points through which the Ellipfis is to be drawn.

Let the Dismeters be A $B, D E$, one croffing the middle of the other in the Point C. Divide firft the Semidiameters C A, C B ; then the Semidiameters C D, C E, like unto the Lines of Sines upon the Sector, by the eighth Propofition of Lines: So, the Ellipfis fhall be drawn: through the Points at the meeting of the Sines of 10 and 80 , of $2 Q$ and 70 , of 30 and 60 , of c.

Or (without the help of the Line of Sines) we may draw the Circle AFB upon the Center C, and Semidiameter: A C, for fo, croffing the Diameter A B with feveral Perpendicular Lines continued unto the Circumference of the Circle, if we divide thefe Rerpendiculars on
either fide of the Diameter in fuch fort as the greater Semidiameter C F is divided by the leffer, in the Point D, and draw a Line winding through all thofe Points, the Line fo drawn fhall be the Ellipfis.

Or (withour the help of the Sector) we may with the Radius A C, upon the Centers D and E, defcribe two occult Arches meeting in the Points K and L. Then taking between C and K, any Number of of Points $M N$,we may from the Centers K and L, with the Semidiamerer M B detcribe four occule Arches; and with the Radius A M; and the fame Centers K and L , crofs them again with other four Arches in the Points at O. In like manner, from the fame Centers K and L, with the Radius N B, we may defcribe other four occult Arches; and with the Radius A N, and the former Centers crofs them again, with four Arches in the Points at P, and fo draw the Ellipfis through the Points O.P, © C.

This is (in effect) as we fhould tye a thread about A and L, and then draw it eafily from the Point A round sbout the two former Centers K and L , until it were brought to the Point A again: which is allo an esfie way to defcribe an Elliphis.

The diftance of thefe former Points from either Semidiameter may: be fee down in Numbers. For fuppofing the leffer SemidiameterC D,to be ro, the greater (CB) to be 16, (or ocherwife divided into any Number of known Points,) If we have the proportion between $C G$ and C B, we may find the length of the Perpendicular G I.

If the Proportion be as I to 2, the Perpendicular will be 8, 66.
If the Proportion be as 2 to 3, the Perpendicular will be abolit: 7.45.

As the greater Semidiameter	CB
to the part given	CG
So 100000 , the Radius	CB
to the Sine of	CG
whofe Complement is	GH
As the Radius	CF

So the leffer Semidiamerer CD to the Perpendicular. G I
The fame may alfo be found without knowing the Sines. For the Perpendicular GH is a mean Proportional between A Gand G Bis: which being known

As C F unto ED, fo is G Hinnto GIo.
7. To open the ScClor to the quantity of any Angle given. 8. The Sector being opened, to find the grantity of the Angle:

IT is one thing to open the Edges of the Sector to an Angle, and ano: ther thing to open the Lines on the Sector to the fame Angle. For the Lines of Lines onthe one fide, and the Lines of Sines on the other fide, do make an Angle of 2 gr . when the SeEor is clofe fhut, and the Edges do make no Angle at all. So likewife the Lines of Superfcies and the Lines of Solids do make an Angle of 10 g . which are to be allowed to the Edges.

The Lines of Lines may be opened to a right Angle, if the whole Line of 100 parts be applied over in 80 and 60.

The Line of Sines may be opened to a right Angle, if the large Secant of 45 gr . be applied cver in the Sines of 90 gr . or if the Sine of 90 gr . be applied over in the Sines of 45 gr . or if the Sine of 45 gr . be applied over in the Sines of 30 gr .

If it be required to open thole Lines to any other Angle, take ous the Chord thereof, and apply it over in the Sermiradius, and thofe Lines Thall be opened to that Angle.

As if it were required to open the Sector in the Lines of Sines to an Angle of 40 gr . cake out the Chord of 40 gr . and to it open the Sector in the Chord of 60 gr . $f 0$ fhall theLines of Sines be opened to the Angle required. Or if the fame Chord of 40 gr . be applied over between 50 , and 50 , inthe Line of Lines, they thall alfo be opened to the fame Angle. If it beapplied over in 25 of the Lines of Superficies, or 125 in the Lines of Solids, they alfo thall be opened to the fame Angle: becaufe the Chord of 60 gr . or Sine of 30 gr . and 50 in the Lines of Lines, and 25 in the Lines of Superficies, and 125 in the Solids, are all of the fame length with the Semiradius.

Or if the Scmiradius by applied over between the Sine of 30 gr . and she Sine of the Complement of the Angle required, it will open the Lines of Sines to thar Angle.

As if the Semiradius be applied over in the Sines of 30 gr . and the Sine of 50 gr . it thall open the Lines of Simes to an Angle of 40 gr .

On the contrary, it the Setior be opened to an Angle, and it be required to know the quantity thereof, open the Compaffes to the Semiradius, and fetting one foot in the Sine of 30 gr . turn the other toward she orher Line of Sines, and it fall fall there in the Complement
of the Angle; if it fall on 50 gr . the Angle is 40 gr . if on 60 gr . the Angle is 30 gr .8 c .

Or take over the parallel Chord of 60 gr . and meafure it in the lateral Chord, and it thall there thew the quantity of the Angle. As if the Sefor being opened to an Angle, I fould take over the Parallel of 30 gr . of the Sines, and 60 gr . of the Chords, and meafure it in the lateral Chords, find it to be 40 gr . the Angle comprehended between the Lines of Sines is 40 gr . but the Angle between the Edges of the Sector is 2 gr . lefs, and therefore but $3^{8} \mathrm{gr}$.

9. To find the quantity of any Angle given:

IF out of the Angular Point, to the quantity of the Semiradius, bedefrribed an occult Ark that may cut both fides of the Angle, the Chord of this Ark meafured in the lateral Chord, fhall give the quantity of the Angle.

Let the Angle given be B A C : firt I take the Semiradius with the Compaffes, and fetting one foot in A, I cut the fides of the Angle in B and C; shen I take the Chord $B C$, and meafure it in the lateral Chord, and I find it to be II gr . and 15 min. and fuch is the quantity of he Angle given.

Or if the Ark be defcribed out of the Angular Point at any other diftance, let the Semidiameter be curned into a parallel Chord of 60 gr . then take the Chord of this Ark, and carry it Parallel, till it crofs in like Chords: fo the place where it ftayech Jhall give the quano. sity of the Angle.

As in the former example, if Imake the Semidiameter A B a parallel Chord of 60 gr and then keeping the Sector at that Angle, carry the Chord B C paralle, cill it fay in like Chords; I Thall find isto ftay in no other bui 11 gr .15 ming and fuch is the Angle B A C.
10. Upons
10. Upon a right Line, and a Point given in it, to make angle equal to any Angle given.

FIrft out of the Point given defcribe an Ark, cutting the fame Line : then by the 5 Prop. afore, find the Chord of the Angle given agrecable to the Semidiameter, and infcribe it into this Ark:-fo a right Line drawn through the Point given, and the end of this Chord, fhall be the fide that makes up the Angle.

Let the right Line given be $\mathrm{A} B$, and the Point given in it be A, and let the Angle given be 11 gr . 15 min . Here I open the Compaflas to any Semidiameter A B, (but as oft as I may conveniently to the lateral Semiradins) and ferting one foot in A, I defcribe an occult Ark BC; then I feek out the Chord of $11 \mathrm{gr}_{\mathrm{t}} 15$ min. and taking it with the Compafles, I fer one foot in B, the other croffeth the Ark in C, by which I draw the Line A C, and it makes up the Angle required.

11. To divide the Circsmference of a Circle into any parts required.

IF 360, the meafure of the whole Circumference, be divided by the Number of parts required, the Q iotient giveth the Chord, which being found will divide the Circumference.

So a Chord of 120 gr . will divide the Circumference into three equal parts; a Chord of 90 gr . into four parts; a Chord of 72 gr . into five parts; a Chord of 60 gr . into fix parts; a Chord of 51 gr .26 min. into leven parts; a Chord of 45 gr . into eight parts $;$ a Chord of 40 gr . into nine parts; a Chord of 36 gr . into sen parts; a Chord of 32 gr . 44 min. into eleven parts; a Chord of 30 gr . into twelve parts.

In like manner if it be required to divide the Circumference of the Circle whofe Semidiamerer is A B, into 32 ; firf I take the Semidiameter A B, and make it a parallel Chord of 60 gr , then becaule 360 gr . being divided by 32 the Quotient will be I 1 gr: 15 min. I find the parallel Chord of 1 I gr .15 min . and this will divide the Circumference into 32.

Bit here the parts being many, is were better to divide it firft into fewer, and after to come over it again. As firft to divide the Circumference into 4 , and then each 4 parrs into 8 , or otherwife, as the parts may be divided.
12. To divide a right Line by extreme and mean proportion.

THe Line to be divided by extreme and mean proportion, hath the fame proportion to his greater Segment, as in Figures infer ibed in the fame Circle, the fide of an Hexagon a figure of fix Angles, hath to a fide of a Decagon a figure of ten Angles : but the fide of a Hexa* gon is a Chord of 60 gr . and the fide of a Decagon is a Chord of 36 gr . Let A B be the Line to be divided : if I make A B a parallel Chord of 60 gr . and to this Semidiameter find AC a Chord of 36 gr . this AC thall be the greater Segment, dividing the whole Line in C, by extreme and mean proportion. So thar,

As A B the whole, is unto AC the greater Segment: fo AC the greater Segment, unto C B the leffer Segment.

Or let A C be the greater Segment given: if I make this a parallel Chord of 36 gr . the correfpondent Semidiamerer thall be the whole Line A B, and she difference C B the lefler Segment.

A
C
Or let C B be the leffer Segment given : if I make this a parallel Chord of 36 gr . the correfpondent Semidiameter fhall be the greater Segment A C, which added to C B, gives the whole Line A B.

To avoid doubling of Lines or Numbers, you may pus over the whole Line in the Sines of 72 gr . and the parallel Sine of 36 gr . Thall be the greater Segment.

Or if you pue over the whole Line in the Sires of 54 gr . ehe paralle! Sine of 30 gr . Shall be the greater Segment, and the paratlel Sine of 18 gr . Thall be the leffer Segment.

CHAP. III.

Of the projection of the Sphere in Plano.

SECT. I.

To Projeet the Sphere in Plano, by freight Lines.

THe Sphere may be projected in Plano in freight Lines, as in the Analemma, if che Semidiameter of the Circles given be divided in fuch fort as the Line of Sines on the Sector.

As if the Radius of the Circle given were A E, the Circle thereon defcribed may reprefent the Plane of the general Meridian, which divided into four equal parts in $\mathrm{E}, \mathrm{P}, \notin, S$, and croffed at right Angles with E E and P S, che Diameter E E, fhall reprefent the Equator, and P S, the Circle of the hour of 6 . And it is alfo the Axis of the World, wherin Pitands for the North Pole, and Sfor the South Pole. Then may each quarter of the Meridian be divided into 90 degrees from the Equator towards the Poles. In which we number 23 degrees, 30 min. the greateft declination of the Sun from Eto 5 Northwards, from $\not \mathbb{E}_{\text {to }}$ 40 Southwards, the Line drawn from 510 w fhall be the Ecliptick, and the Lines drawn parallel to the Equator through 5 and us fall be the Tropick.

Having thefe common Sections with the Plane of the Meridian, if we fhall divide each Semidiameter of the Ecliptick into 90 degrees, in fuch fort as the Sines are divided on the Sector. The firl 30 degr. from A towards 5 hall ftand for the Sign of r. The 30 degr. next follow-
 means we have the place of the S un for all times of the year.

If again we divide A P, A S, in the like fort, and fet thereto the Nambers $10,20,30$, efo. unto 90 degrees, the Lines drawn through each of thefe degrees parallel to the Equaror fhall thew the declination of the Sun, and reprefent the Parallels of Latitude.

If farcher, we divide A E, A E, and each of his Parallels equally in the like fort, and then carefully draw a Line through each 15 degr. fo as it makes no Angles, the Lines fo drawn Shall be Eliptical, and

Of the Projection of the sphere,

reprefent the Hour-circles. The Meridian PES, the hour of 12 as noon; that next unto it drawn through 75 degrees from the Center, the hours of II and r , that which is drawn through 60 degrees from the Center, the hours of 10 and 2, ofc.

To thele we may add the months of the year, and the days of each month, placing Fanuary about F, March about E, Fsne about J, Frily aboure K, September about E 压, December abour the Tropick of y : and fo she reft accoording to their Declination from the Equator.

Then having refpect unto the Latitude, we may number it from 13

E North:

E Northward unto Z, and there place the Zenith: by which, and the Center, the Line drawn Z A N, thall the Vertical Circle, paffing through the Zenith and Nadir, and through the Center at A, in the Points of Eaft and Weft, and the Line M A H croffing it at right Angles, hall reprefent the Horizon.

Thefe two being divided in the fame fort as the Ecliptick and the Equator, the Line drawn through each degree of the Semidiamerer A Z, parallel to the Horizon, fhall be the Circles of Altitude, and the Divifions in the Horizon and his parallels fhall give the Azimuth.

Laftly, If through 18 gr . in A N, be dranna right Line 1 K parallel to the Horizon, it fhall hhew the time when the day breaketh, and she end of the twilight.

Some Ufes of this Projection.

FOr Example of this Projesion, let the place of the Sun be the laft degree of γ, the Parallel paffing through this place is I. D, and therefore the Meridian Alcitude ML, and the depreifion below the Horizon ar midnight H D : the Semidiurnal Ark L C, the Seminoturnal Ark C D; the Declination A B, the Afcentional difference BC, the Amplitude of Afcention AC. The difference between the end of twilight and the day break is very fmall; for it feems the Pa_{2} rallel of the Sun doth hardly crofs the Line of twilight.

If the Altitude of the Sunbe given, let a Line be drawn from it Parallel to the Horizon: fo it fhall crofs the Parallel of the Sun, and there fhew both the Azimuth and the Hour of the day. As if the place of the Sunbeing given as before, the Altitude in the morning were found to be 20 degrees, the Line F G drawn Parallel to the Horizon through 20 degrees in A Z, would crofs the Parallel of the Sun in ©. Wherefore F © Thewerh the Azimuth, and L © the quantity of Hours from the Meridian. It feems to be about half an hour paft 6 in the morning, and yet more than half a Point fhort of the Eaft.

The diftance of ewo places may be alfo thewed by this Projection, their Laticudes being known, and their difference of Longitude.

For fuppofe a place in the Eaft of Arabia, having 20 degrees of North Lativude, whofe difference of Longitude from London, is found by an Eclipfe to be 5 Hours, $\frac{3}{2}$. Let Z be the Zenith of London, the Parallel of Latitude for that other place mult be L D, in which the difference difference of Longitude is L \bigcirc. Wherefore \odot reprefenting the fite of that place, I draw through © a Parallel to the Horizon M H,croffing the Vertical A Z near abous 70 degrees from the Zenith, which maltiplied by 20 , heweth the diftance of London, and that place to be 1400 Leagues. Or multiplied ty 60 , to be 4200 miles.

> Sxc t. II.

To project the Spherc in Plano, by Circular Lines.

${ }^{2} \mathrm{~T}$He Sphere may be projected in Plano by Circular Lines, as in the general Aftrolabe of G emma Frifus, by the help of the Tangent on the fide of the Sector.
For let the Circle given reprefent the Plane of the general Meridian as before; ler it be divided into four parts, and croffed at right Angles with E E the Equator, and P S the Circle of the Hour of 6, wherein Pftands for the North Pole, and S for the South Pole: Let each quarter of the Meridian be divided into 90 degrees, and fo the whole into 360, beginning from P, and ferting to the Numbers of $10,20,30$, $f=$. 90 at $E, 180$ at $S, 270$ at $E, 360$ at P. The Semidiameters A P, A E, AS, A E, may be divided according to the Tangents of half their Arks, that is a Tangent of 45 degrees, which is always 10000 , equal to the Radius, frall give the Semidiameter of 90 degrees, a Tangent of 40 degrees 83910 , fhall give 80 degrees in the Semidiameter : a Tangene of 35 degrees 7002 I hall give $7 \circ$, \& cc. So that the Semidiameters may be divided in fuch fort as the Tangent on the fide of the Sector, the difference being only in their denomination.

Having divided the Circumference and the Semidiameters, we may eafily draw the Meridians and the Parallels by the help of the Sector.

The Méridians are to be drawn through both the Poles P and S , and the degrees before graduated in the Equator. The diftance of the Center of each Meridian from A,the Center of the Plane, is equal to the Tangent of the fame Meridian, reckoned from the general Meridian P ES E, and the Semidiameter equal to the Secant of the fame degree.

As for example, If I Thould draw the Meridian P B S, which is the renth from P E S , the Tangent of 10 gr .17633 , givech me A C, and the Secant of $10 \mathrm{gr}, 101543$, giveth me $S \mathrm{C}$, wherefore. C is the

Of the Projection of the Sphere.

Center of the Meridian, P BS, and CS his Semidiameter: fo A Fa Tangent of 20 gr .36397 fheweth F to be the Center of P D S, the tweatieth Meridian from $P \notin S$, and A G a Tangent of $23 \mathrm{gr}_{\mathrm{r}} 30 \mathrm{mo}$ 4348 I , heweth G to be the Center of $\mathrm{P} \Phi \mathrm{S}$, of c.

The parallels are to be drawn through the degrees, in A P, AS, and their correfpondent degrees in the general Meridian. The diftance of the Center of each Parallel from A the Center of the Plane, is equal to the Secant of the fame Paralle from the Pole, and the Semidiameter equal
equal to the Tangent of the fame degree. As if 1 chould draw the Parallel of 80 degrees, which is the tenth from the Pole S, firt I open the Compaffes unto $A C$ the Tangent of 10 degrees 17633 , and this giveth me the Semidiamerer of this Parallel, whofe Center is a little from S, in fach diftance as 101543 the Secants S C is longer than 10000, the Radius S A.

The Meridians and Paralleis being drawn, if we number she 23 deg.o 30 min! from Eto os Northwards, from E to w Sowhwards the Line drawn from Φ_{g} to Thall be the Ecliptick: which being divided in fuch fort as the Semidiameter A P, the firt 30 degrees from A to os thall ftand for the Sine of r; the 30 degr. next following for \forall; the reft for II; $\mathcal{J} . \Omega$, , c. in their order.

If farther we have refpect unto the Latitude, we may number is from E Northward unto Z, and there place the Zenith, by whichand the Center, the Line drawn Z A N, Gall reprefent the verticle Circle, and the Line M A H, croffing it at right Angles, fhali reprefent the Horizon, and thefe divided in the fame fort as AP, the Circles drawn through each degree of the Semidiameter A Z, Parallel to the Horizon, fhall be the Circles of Altitude : and the Circles drawn through the Horizon and bis Poles, Gall give the Azimuths.

Some U Jes of this Projection.

FOr Example of this Projection, let the place of the Sun be in the beginning of m, the Parallel paffing through this place is, m $\odot L_{2}$ and therefore the Meridian Altitude M L, and the depreffion below the Horizon at Midnight H O, the Semidiurnal Ark L \odot, the Sem:nocturnal Ark $O \odot$, the Declination $A R$, the Alcenfional difference R © ; the Amplitude of the Afcenfion A \odot.

Or if A be pur to reprefent the Pole of the World, then Thall $P E S E$ ffand for the Equator, and $P \sigma S$ yp for the Ecliptick, and the reft which before ftood for Meridians, may now ferve for particular Horizons, according to their feveral Elevations. Then fuppofe the place of the Sun given to be 24 degrees of \succ, his Longitude fhall be PI, his right Afcemfion P H, his Declination HI. And if the place given be 19 degrees of Ω, his Longitude fhall be PK , his right Afcenfion PN, his Declination N K. Again, the Declination brought to the Horizon of the place, Thall there fhew the Afcenfional difference: Amplitude of Afcenfion, and the like conclufions of the Globe. But I

Of the Projection of the Sphere.

intend not here to thew the Ufe of the Aftrolabe, bat the Ufe of the seltor in Projection.

And after this manner may a Nocturnal be projected to thew the Hour of the Night, whereof I will fet down a Type for the ufe of Seamen.

It confifts, as you fee, of two parts, the one is a Plane divided equally according to the 24 hours of the day, and each hour into quarrers or minutes, as the Plane will bear: the Line from the Center to XII, ftands for the Meridian, and XII fands for the hour of 12 at midnight. The other part is a rundle for fuch fars as are near the North-pole, together with the twelve months, and the days of each month fitted to the right Afcenfion of the farse Thofe that have occafion to fee the South-pole, may do the like for the Southern Conttellations, and pus them in a Rundle on the back of shis Plane, and fo it may ferve for all the World.

of the Proiection of the spherce.

The Ure of this Nocturnal.

The ule of this Nocturnal is eafie and ready. For look up to the

Thall be given by the Tangent of 11 degrees 45 min. The Center of the Circle of Longitude paffing through this Pole $\mathbb{E} r_{i}$ and w^{2}, Thall

And after this manner may a Nocturnal be projected to thew the Hour of the Night, whereof I will fet down a Type for the ufe of Seamen.
eq
$r e$
X
m
N
m
mic
lai
min
man

The Use of this Nocturnal.

The ure of this Nocturnal is eafie and ready. For look up to the Pole, and fee what Stars are near the Meridian : then place the Rundie to the like fituation, fo the day of the month will hew the hour of the Night.

Sact. III.

Another way to Project the Spbere by Circular Lines.

${ }^{3} \mathrm{~T}$He Sphere may be projected in Plane, by circular Lines, as in the particular Aftrolabe of \mathcal{J} obn Stophlerin, by help of the Tan: gent, as before.

For let the Circle given reprefent the Tropick of ψ, let it be divided inro four parts, and crofled at right Angles with A C che Equinoctial Colure, and MB the Solftitial Colure, and general Meridian, she Center Preprefenting the Pole of the World. Let each quarter be divided into 90 degrees, and to the whole into 360 , beginning from A towards B. The Meridian PM or P B, may be divided according to the Tangent of half his Ark. So as the Ark from the North Pole to the Tropick us being 90 degrees, and 23 degrees 30 min . that is 113 degrees 30 min . and the half Ark 56 degrees 45 min. the Meridian thall be divided into 90 degrees and 23 degrees 30 min . in fuch fort as the Tangeat of 56 degrees 45 min . on the fide of the Sector is divided into degrees and half degrees, of which PE the Ark of the Equator 90 degrees from the Pole, thall be given by the Tangent of 45 degrees. And P so the Ark of the Summer Tropick 66 degrees 30 min . from the Pole, thall be given by the Tangent of 33 degrees 15 min . And the Circles drawn upon the Center P through \mathbb{E} and σ, hall be the Equasor, and the Summer Tropick.

Having the Equator and both the Tropicks, the Ecliptick r क Thall be drawn from the one Tropick to the other, through the interfection of the Equator and the Equinoctial Colure. And is may be divided firft into twelve Signs after this manner: PE the Ark of the Pole of the Ecliptick 23 degrees 30 min. from the Pole of the Worlds thall be given by the Tangent of 11 degrees 45 min . The Center of the Circle of Longitude paffing through this Pole $\mathrm{E} V_{i}$ and \approx, Thall

Of the Projection of the Sphere.

be found at D (fomewhat below B) by the Tangent of 66 degrees 30 min. Then through D draw an occult Line parallel to $A C$, and divide it on each fide from D, in fuch fort as the Tangent is divided on the fide of the Sector, allowing 45 degrees to be equall to D E, fo the thirtieth degree from D toward the right hand, thall te the Center of the Circle of Longitude palfing through $\mathrm{E} \succ$ and x . The n

Fixtieth degree, the Center of II $\mathrm{E} x^{7}$. The thirtieth gr. from D towards the left hand, the Center of \mathcal{E} 叹. The fixtieth, the Center of $\approx \mathrm{E}$ 凡. And the other intermediate degrees Thall be the Centers to divide each fign into 30 gr .

If farther we have refpet unto the Latitude, we may (the Meridian being before divided) number it from P Northward unto H , and there place the North Interfection of the Meridian and Horizen: then the Complement of the Latitude being numbred from P Sourhward unto Z, fhall there give che Zenith; and 90 degr. from Z Sourhward unto F, thall there give the South interfection of the Meridian and Horizon. The middle beeween F and H fhall be \mathbb{G} the Center of the Horizon $\gamma H \leadsto F$, paffing chrough the beginning of $r_{\text {and }} \approx$, unlefs there be fome former errrour.

All Paralless to the Horizon may be found in like fort by their Interfections with the Meridian, and the middle between thofe Interfeetions is always the Center.

The Azimuths may be drawn as the Circles of Longitude were before. For the Circle of the firt Verticle $\gamma \mathrm{Z} \leadsto$, will befound at I (fomewhat near unto B) by the Tangene of the Latitude. And if through I we draw an occule Line parallel to A C, and divide it on each lide from I, in fuch fort as the Tangent is divided on the fide of the Sector, allowing 45 degrees to be equal to I Z, shefe Divifions Thall be the Centers, and the diftance from thele Divifions unto Z, fhall be the Semidiamsters whereon to defcribe the reft of the Azimuths.

Somse Ufes of this Projection.

FOr example of this Projection, let 0 the place of the Sun given be Io degr. of γ : a right Line drawn from P through this place unto the Equator, thall there thew his right Afcenfion $\gamma \mathrm{K}$, and his Declination $K \odot$. Then may we on the Center P and Semidiameter - Pdraw an occult Parallel of Declination, croffing the Horizon in L, M. the Meridian in G and N. So the right Lines P Land P M produced, thall thew the time of the Suns rifing and fetting, r Quthe difference of Afcenfion, R the difference of Defcenfion, r. L the Amplitude of rifing, and $\leadsto \mathrm{M}$ the Amplitude of his fetting, L NM Sheweth the length of the night, $Z \in G$ Theweth his diftance from the Zenith at noon, $\mathrm{H} N$ his depreffion below the Horizon at midnight. And then having the Altitude of the Sun at any time of the day, the Inrerfection of the parallel of Altitude with the parallel of Declination, Theweth the Azimuth, and a right Line drawn from P through this Interfection, giveth the hour of the day.

Of the Projection of the Spheree．

SECT．IV．

AA third way to Projeet the Sphere in Plano，by Circular Limes．

4.

THe Sphere may be Projected in Plano by Circular Lines，after the manner of the old concave Hemifphere，by the help of the Tangent on the fide of the SeEZor．

For let che Circle given reprefent the Plane of the Horizon，let it： be divided into four parts，and crofted at righte Angles with S N the Meridian，and $E V$ the Verticle；fo as S may ftand for che South，N ： for the North，E for the Eait，W the Welt part of the Horizon，and the Cearer Z reprefent alfo the Zenith．Let each quarter of the Ho－ rizon be divided into 90 degrees，and to the whole into 360 degrees， beginning from N ，and fetting to the numbers of $10,20,30$, o\％c． 90 as E， 180 at S， 270 at $\mathrm{W}, 760$ at N ．

The Semidiameters Z N，Z C ，may be divided according to the Tan－ gent of half their Arks：foas the Ark from the Zesith to the Horizon． being $9^{\circ} \mathrm{gr}$ ．and the half Ark 45 gr ．the Semidiamerers are to be divi－ deed in fuch fort as the Tangens of 45 gr ．as was thewed before in the fecond Proje t ion．And if from Z we draw Circles through each of thefe Divifions，they fhall be Parallels of Alcitude．

Then having reipect unto the Alcitude，we may（che Meridian be－ ing before divided ）number if from Z to 压，and there place the In－ terfection of the Meridian and Equator．The Complement of the La－ titude from Z unto P，thall there give che Pole of the World，and 90 further from P ，fhall there give the other in：erfection of the Meridian and Equator．
The middle berween thefe interfections fhall be A the Center of the Equator，paffing through E and W ，unlefs there be fome former er－ sour．The interfections of the Tropicks depend on the Equator．From E 23 degrees． 30 min．farther fhall be wh the incerfection of the Meri－ dian and the Sourhern Tropick．From $\mathbb{E}_{2} 3$ degrees 30 min．nearer thall be ξ^{5} ，the Interfention of the Meridian and the Northern Tropick．The Interfections of the other intermediate Parallels， Gall be given in 1 ke fort，by their degrees of dittance from the Equa－ sor，and the middle between thofe Interfections is always the Center．

The Hour Circles may be here drawn as the Azimuths in the third Projection．For the Center of E P W，the hour of 6 ，will be found

of the Projection of the sphere'.

- at B, (Comewhat near unto N) by the Tangent of the Latitude. And if through B we draw an occult Line parallel unto EW , end divide if on each fide from B, in fuch fort as the Tangent is divided on the fide of the Sector, allowing 45 degrees to be equal to BP, and is degress, for every hour, thofe Divifions thall be the Centers, and the ditrance from the Divifions unto P, fhall be the Semidiameters, whereon to defcribe the reft of the hour Circles.

The

The Ecliptick may be drawn as the Equator. For the Center of that half which hath Southern Declination, thall be given by the Tano gent of the Altitude, which the Sun hath in his entrance into vo. And the Center of the other half by the Tangent of his Altitude, at his entrance into ${ }^{5}$, and it may be divided, as in the former Projection, or elle by Tables calculated to that purpofe.

To thefe Circles chus drawn, if we fhall add the months of the year, and the days of each month, as we may well do, at the Horizon, on either fide, between the Tropicks: this Projection fhall be firted for the moft ufeful Conclufions of the Globe, as by examples following may appear.

Some USes of this Projection.

FOr the day of the month being given, the Parallel that fhooteth on it, doth thew what declination the Sun hath at that time of the year. And where this.Parallel croffeth the Ecliptick, there is the place of she Sun. Or the place of the Sun being firft given, the Parallel which crofleth it, thall at the Horizon thew the day of the month. Either of thefe then being given, or only the parallel of Declination, we may follow it, firft unto the Horizon, there the diftance of the end of the parallel from E or W, theweth she Amplitude; the fame among the hour-circles fheweth the time when the Sun rifech or ferteth. Then having the Altitude of the Sunatany time of the day, the Interfection of the Parallel of Deciination with the Parallel of Altitude Sheweth the hour of the day; and a right Line drawn from Z, through this Interfection to the Horizon, giveth the Azimuth.

Thas in either of thefe Projections, that which is otherwife moft sroublefome, is eafily done by the help of the Tangent Line, and what I have: faid of this Line, the fame may be wrought by Scale and Numbers out of the Table of Tangents.

Note, that if unto any of the et three laft Projettions, there be added an Index eqral to the Semidiameter of the Circle, to move upon the Center of the Projection, and the fiducial edge thereof divided according to the Tangents of half Arks, the Semidiameters need not be divided, and the Infruments will then be fitly accominodated to perform many Conclufions of the Sphere.

of the Projection of the sphere?

 of Dialing may beperformed upon any of them, but efpecially upon this laft, which may be fitted to the Horizon of any place, the manner whereof in this place I thall briefly deliver.

1. For an Horizontal Dial.

If freight Lines be drawn from the Center of the Projection through the interfections of the hour Circles with the outermoft Circle or Horizon, thofe Lines fo drawn thall be the crue hour Lines of an Horizontal Dial in that Latitude for which the Projection was made, for the hour Circles cut the Horizon at thole degrees of diftance.

3. For an Erect direct North or Soxth Dialo

If an Index be divided as the Semidiameter of the Projection $2 W$ is, on both fides, and laid upon the fame Diameter W E!, the hour Lines of the Projection will cut the fame Index in fuch degrees from the Meridian on either fide, as the hour Lines on fuch a North or South Dial ought to have upon the Plane: As,

And there are the true hour diftances for a North or' South Plane in this Laticude of 51 degrees 30 min. for which this Projection was. made.

3. Fora Vertical Declining Dialo

Suppofe an upright Plane to decline from the South Weftward 24 degr. 20 min. Such a Plane is defcribed in the third Book of this Treatife Chap.7. If you lay your Index to 2 g degr. 20 min. counted from E towards S, and there keep it fixed, the hour Lines of the Projeation

of the Progettios of the Sphere?

Projection will cut the Index in thefe degrees from the Meridian, on either fide thereof, at which they are to be drawa upon the Dial Plane.

4. For direet Incliners.

Let the Inclining Plane be projected upon the Scheme, a Ruler laid to the Pole of the inclining Plane, and to the feveral Points- where the hours crofs the Plane, the Ruler will cut the outermolt Ciycle in the degrees that the hour Lines ought to have upon fuch an inclining Planc.

Thus let the Circle W E E , which is the Equinotial Circle, reprefent a Plane inclining to the Horizon, a Ruler laid to she Pole of the World (which is the Pole of the Equinoctial Circle) and thereveral interfections of the hour Circles with this Circle, Thall cur the outermoft Circle in every fifteenth degree, and fuch diftance oughe sach hour have from other upon the Plane.

5. For Declining inclining Planes.

Let a Plane decline from the South Weftward 24 degrees 20 min. and incline to the Horizon Northward 36 degrees, fuch a Plane is repefented in the Diagram of the feventh Chaprer of the third Book of this Treatife, by the Circle B MD. Now a Ruler laid upon the Pole of this Plane, (which is in the Line $Q H, 90$ degrees diftant from M) and the interfeetions of the hour Circles with the Plane, fhall cut the primitive or horizontal Circle in the degrees of diftance that the refpective hour Lines of fuch a declining inclining Plane ought to have upon the Dial Plane. FT

SECT. S. Of Projetting of the Sphere upon Oblique Circles.

IN the four firt Setions of this Chapter, Mr Gunter hach hewed how to Project the Sphere in Plano upon the principal Great Circles of the Sphere; viz. Twice upon the Plane of the Meridian; once upon the Tropick of to, or the Equinoctial, (parallel thereso) and laftly upon the Horizon.

Tothefe Projections I think it will not be impertinent (but very beneficial and fatisfattory to the Reader) to thew how the Sphere may be Projected in Plano upon any Oblique Circle, as upon any Plane whatfoever and howfoever fituate, for all or moft Diall Planes are O b lique Circles, and are Horizons in fome part of the World or other. As for Example, A Dial Plane declining from the South Weftward 24 degrees 20 min . and inclining Northward 36 degrees (fuch is the Diall Plane in the tenth Chapter of the third Book of this Treatife of Dialling) will in fome place or other be an Horizontal Plane: And by projecting of the Circles of the Sphere in their true politions upon this Oblique Plane, you fhall not only difcover in what Longitude and Latitude chis will be an Horizon, but will alfo delineate out unto you the places of the Hour-lines proper for this declining inclining Plane, in a quite different manner and form than that which Mr Gunter hath hewed how to make the Diall in the forementioned tenth Chapter of the third Book, by drawing the Plane upon the Horizontal Projection for this Latitude. And feeing the difference of the two ways of working are fo various, and the variety that will appear in the placing of the Circles of the Sphere in their true pofitions upon fuch an Oblique Plane cannot but be both beneficial and delightful, I thall here infert the manner how the fame may be eftected, not ouly upon this, but upon any other Oblique Plane whatfoever.

To proceed then, Let the Circle HX O D, reprefent a Dial Plane declining from the South Weftward 24 degrees 20 min. and inclining Northward 36 degrees.
I. Draw the Diameter H O, and crofs it at right Angles with the Line CFreeting in the Center Q.
2. Take the half Tangent of 36 degrees, the Planes inclination, and fet it from Q to Z, fo thall Z be the Zenith of the Place.
3. Take the half Tangent of 54 degrees, the Complement of the Planes inclination, and fet that from Q to B, fo thall B be the Point through which the Horizon of the place muft pafs.
4. Take the Tangent of 36 degrees she Plains Inclination, and fet it from Q to C. Or take the Secant of 36 degrees, and fer it from B to C, fo fhall C be the Center of the Horizon H BO.
5. Take the Tangent of 54 degrees, thie Complement of the Inclination, and fet it from Q to F.
6. Take 24 degrées 20 min. out of your Line of Chords and fet that diftance from H to c, from D to d, and from O to c.

of the Projetion of the spherce:

7. A Ruler laid from Z so c, d, and c, will give the Points W, S and E, for the Welt South and Ean Poinss thereof.
8. Draw F G perpendicular to $Q F$, or parallel to HO , and extend it as far as you thall lee requifite.
9. Draw a Line through the Points E and W extending it till it crofs the Line $F G$ lalt drawn, at G, fo thall G be the Center of the Meridian of the place reprefented by P Z S.
io. Lay a Ruler from W to Z and it will cut the Circle in A, from which Point a fer 38 degrees 30 min . the Co -latitude to b, and a Ruler laid from W to b will give the Point P in the Meridian for she Pole of the World.
10. Ser 90 degrees of your Chords from b to f, and from f to g. A Ruler laid from W to f gives E in the Meridian Circle, for the Equinoctial Point, and from W to g gives M for the South Pole, and a right Line drawn through $P Q$ and M fhall be the Axis of the World.
11. Through she Points $\mathbb{E} E$ draw she Equinoctial Circle, to find the Center whereof,
12. Divide W E into swo equal parts in R, and raife the Perpendicular R T, drawing is forth till it meet with $\mathbf{Q} P$ being extended, here reprefented by the two Lines RT and QV, whofe meeting fhall be she Censer of the Equinotial, which QT exsended would be equal to the Secsnt of the height of the Pole above the Plane:. Or if from T you draw a Line shrough C it will interfeat QV in the Center of the Equinodial alfo.
13. Divide $M P$ in two equall parts in D, and draw $D G$ at right Angles to $\mathrm{P} M$, and extend D G infinitely.
14. Upon P, at the diftance P D (or any ortier) defcribe the Semicircle L D N, and laying a Ruler from P to G the Center of the Meridian, it will cur the Semicircle L D N in L, at which Point L begin oo divide LDN into twelve equal parts, and a Ruler lid fromP. through tach of thofe equal parts thall give the Tangents of 15, 30, 45, *'c. upon the Tangent $G D$ and fhall be the Centers of the feveral Meridiant, G being the Center of twelve a clock, or the Meridian of the Place.
15. From the Center Q fhrough the Points where the feveral Meridians do cur the Primitive Circle draw right Linet, and thofe Lines frall be the true hour Lines of a South Plane declining Weftward 34 degrecs 30 mix. and inclining Northward 36 degrees in the Latitude af 51 degreses 30 win.

A brief Synopfis of this Oblique Projection.

HXOD , the decliving inclining Plain.
$\mathrm{QZ}=\frac{1}{2}$ Tang. $36 \mathrm{~d} .=$ Plains inclination.
$\mathrm{QB}=\frac{1}{2}$ Tang. $54 \dot{a}_{0}=\mathrm{C}^{\circ}$
Plains inclination.
$\mathrm{QC}=$ Tang. $36 d$ Or BC $=\mathrm{Se}_{-}$ cant. of $36 d=$ Plains inclin.and is the Center of the Horizon.
$Q F=$ Tan. $54 d .=$ Co-Plainsin $\mathrm{QF}=$ Tan. $54 d_{0}=$ Co-Plainsinc. $\mathrm{Hc}=\mathrm{Dd}=\mathrm{Oe}=24 \mathrm{~d} .20$
to the Plains Declination.
A Ruler laid from Z to c, d, e , will give W, S and E in the Horizon : $\mathrm{GF} \perp$ to QF or $\|$ to HO .
E W extended, gives G the Center of the Meridian.
A Ruler laid from W to Z gives a. $\mathrm{ab}=$ Chord $38 \mathrm{~d} .30 \mathrm{~m} .=$ Co-Lat. $W \mathrm{~Wb}$ gives P for the Pole of thejworld $\mathrm{bf}=\mathrm{fg}=$ Chord 90 deg.
A Ruler laid from W to f gives \nVdash the Equinoct. W g, gives M the South Pole, and PQM is the Axis of the World.
Through W E E, draw the Equinoctial Circle.
$W R=R E=\frac{1}{2}$ Tang. WE
$R T \perp$ to W E. Or, draw RT through the Center of the Horizon, and its interfection with QV will be the Center of the Equinoctial.
QV and R T extended, and interfeeting, gives the Center of the Equinoctial $=$ Sec. of the Poles height above the Plain
Divide MP in $\mathbf{2}$ 二 parts in D and draw D G infinitely
Upon P, at any diftance, defrribe the Semicircle L D N, lay a Ruler from P to G, it will cut L. D N in L , at L begin to divide LD N into $12=$ parts. A Ruler laid from P to thote $=$ parts, will give the Tangents of $15,30,45$, erc. upon $G D$, and be the Centers of the Meridians, G being the Center of 12.
Lines drawn from Q through the interfections of the Meridians with the Primitive Circle (reprefenting the declining inclining Plain) Mall be the Hour-Lines.

of the Projetition of the Spherefes

And from this Scheme may further be found that;
F. The Elevarion of ehe Meridian H A is

Hegfic minis
2. The difference of Meridians $Q P$ is $69 \quad 54$
3. The height of the Stile P A is

14 4
4. The diftance of the Subtile and Meridian $A X$ is
$\$ 7 \quad 26$

Note, In like manner might be inferted in this Projection, the Tropichs and other Parallels of the Sens place or Declination; The Axio musths, Almicanthar's, the Ecliptick), and otber (either fmall ow great) Circles : as io inffanced in the Scheme by the Tropick of Cancer, which is thercon defcribed; bet of this Obligue Projection I bave faid enowgh ist his place o

CHAP.IV.

Of the Refolution of right-lined Triasgles:

IN all Triangles there being fix parts, viz. three Angles, and three fides, any three of them being given, the reft may be found by the Sector.

As may appear by the Prop. following, wherein for our practife we may ufe there Triangles CEA, CEB, CED, all which are Recangled in E. And A GF Rectangled in G. All the reft confift of Oblique Angles.

Ang.	Gr.	M.	S.	Lino	Parts.	
E	90	0	0	A	A	75
G	90	0	0	A	F	100
A	16	15	36	F	G	28
D	36	52	12	C	E	21
B	36	52	12	C	D	35
B	143	7	48	B	B	35
$A F B$	73	44	12	A	G	96
$A C E$	73	44	12	A	9	72
$A C B$	20	36	36	A	B	44
$B C$	53	7	48	B	D	28
$E C D$	53	7	48	A	D	28
$B C D$	106	15	36	B	E	56
$A C D$	126	52	12	E	D	100

In a Rectangled Triangle.

Let the Section be opened in the Line of Eines to a right Angle (as before was thewed Cap.2, Prop.7.) then take out the fides of the Triangle, and lay them, one on one Line, the other on the other Line, fo as hey meet in the Center, and mark how far they extend. For the Line taken
taken from the terms of their extenfion, thall be the Bafe required, viz the fide oppofite to the right Angle.

Oi add the fquares of the two fides (as in Prop 4. Superfic. Land the fide of the compound Square fhall be the ${ }^{*}$ Bafe.

As if the Lines A E, C E, fhould be the fides about the right Angle, and it were required to find the Bafe

* Note that I call the longeft fide of the Triangle the Baje. fubrending che right Angle.

Firf, life the Line of Lines to a right Angle by applying the whole Line of ro from 6 in the one Line, to 8 in the other. Then if the greater of the two Lines given be lefs than the Livie of Lines, I rake the greater of them AE, and transfer it with the Compafies into one of the Lines of Lines, and find, that, in my Sector (which is 14 Inches long, and fo, the Line of Lines, almoft 7 Inches) it reacheth from the Center to 518 .

Again, I take the leffer Line C E, and transfer it into the other Line of Lines, and find, that it reacheth from the Center unto 151, wherefore I take the diftance from 15.1 unto 518 , and fuch is the length of the Bafe A Crequired.

If either of the Lines given be too large for the Sector, then I may meafure them by Feet or Inches, as fuppofe I. find the length of AE to be about 720, and of CE 210. Then in the Line of Lines (being fer, one Perpendicular to the other, as before) I extend the Compaffes from 210 unto 7^{20}; and meafuring this extens in the Line of Lines, find it to be 7.50 parts, wherefore I prick down 750 parts in the Line $A \cdot C$, from the fame Scale by which I meafured A E, and C E. So, this Line A. C fhall bethe Bafe required.

In working by the Line of Superficies, Ineed no opening of the Sector. Fer, raking the Line C E with my Corapaffes, and meafuring it in the Line of Superficies upon my Sector, I find it near 13 parts.

Then taking the Line A E, I find it to be about 269. Thefe cwo beingadded together make 292: and this extent is the length of the Bafe AC required.

> 2.T० find the Bafe, by baving the Angles, and one of the fides given.

Take the fide given, and turn it into the parallel Sine of his oppofite: Angle; fo the parallel Radius fhall be the Bafe.

As if the Line AE were the fide of a Rectangle Triangle oppolite:

Of the Refolution of right:lined Triangles?

oppofite to an Angle of 73 gr . 45, and it were required to find the Bafe:

Firft, I take the fide A E with my Compaffes, and fet it over in the Sines of 73 gr .45 . So, the Parallel Radius taken from between 90 and 90 , will give she Bafe A Crequired:

If the fide given be fuch as cannot well be fitted over in the Sines of his oppofite Angle, I may meafure it by feet or inches, and fuppofe I find the length of AE to be 720 , then would I take 720 parts out of the Line of Lines, and make it a Parallel Sine of 73 gr .45 . So, the Parallel Radius taken from between 90 and 90 , and meafured in the Line of Lines will be found to be about 750 parts: Wherefore, I prick down 750 in the Line AC, by the fame Scale, whereby I meafured AE: and this Line AC Thall be the Bafe required.

3. Tofind a fide by baving the Bafe and the otber fide given.

Let the Sector be opened in the Lines of Lines to a right Angle, and the fide given laid on one of shofe Lines from the Center : then take the Bafe with a pair of Compaffes, and ferting one foot in the serm of the given fide, curn the other to the other Line of the Sector, and it Shall there fhew the fide required.

Or take the Square of the fide out of the Square of the bafe (as in Prop. 4. Superfic.) and the fide of the remaining Square thall be the fide required.

Thus having A C for the Bafe, and C E, for the fide of a Rectangle Triangle, the other fide will be found to be $A E$.

Or, if A C, being meafured, be 750 , and $C E, 210$, the other fide A E will be found to be $7 \mathbf{2 0}$.

Tof find a fode baving the Bafe, and the Angles given:
Take the Bafe given, and make it a Parallel Radius, fo the paraliel Sines of she Angles, fhall be the oppofite fides required.

Thus in the Rectangle A E C, if A C be made a Parallel Radius, the Parallel Sine of 73 gr .45 , will give the Gide A E; and the Paralle! Sine of 16 gr .15 . will give the other fide C E.

of the Refolution of rightolined Triangles.

5. To find a fode by baving the other fide and the Angles given.

Take the fide given, and turnit into his Parallel Sine of his oppofite Angle: fo the Parallel Sine of the Complement thall be the fiderequired.
Thus in the Rectangle D E C, if CE be made a Parallel Sine of 53 gr .8 m . the parallel Sine of 36 gr .52 m . will give the fide E D. and the Parallel Sine of 90 gr . will give the Bafe C D.
6. To find the Angles by baving the Bafe and one of the fides given.

Firft, take out the Bafe given, and laying it on both fides of the Sector, fo as they may meet in the Center, and mark how far it ex-. sendeth. Then take out the lateralRadius, and to it open the Sector in terms of the Bafe. This done, take out the fide given, and place it alfo on the fame Lines of the Sector from the Center. For the Parallel taken in the terms of this fide, thall be the Sine of his oppofite Angle.

Or take the bafe given, and make it a Parallel Radius; then take the fide given, and carry it parallel to the Bafe, till it ftay in like Sines :fo they fall give the quantity of the oppofite Angle.

Thus in the Rectangle A E C, having the Bafe AC, and the fide A E, you may find the Angle C A E, to be $16 . \mathrm{gr}^{2} 15 \mathrm{~m}$.

7. To find the Angles by baving both the fides given.

Take out the greater fide, and lay it on both fides of the Sector, fo. as they meet in the Center, and mark how far it extendeth. Then take the other fide, and to it open the Sector in the terms of the greater fide; fo the Parallel Radius fhall be the Tangent of the leffer Angle. The third Angle is always known by the Complement:

Thus in the Rectangle DEC, having the fides CE, and ED, you may find the leffer Angle E CD to be 36 gr .52 m , and therefore the other Angle E D C to be $53 \mathrm{d}$.8 m .
8. The Radim being given, to find the Tangent and Sccant of any: Ark.

of the Refolution of rigbt-lined Triangles?

9. The Tangent of any Ark leing given, to find the Secant thereof, and the Radius.
10. The Secant of any Ark being given, to find the Tangent tbereof, and the Radius.

The Tangent, and the Secant, together with the Radius of every Ark, do make a right Angle Triangle; whofe fides are the Radius and Tangent, and the Bafe always the Secant; and the Angles always known by reafon of the given Arks. As in the Rectangle AEC, if on the Center A, and Semidiamerer AE, you defcribe a Circle, then make A.E, to be the Radius, and E C, a Tangent of 16.15 and A C a Secant of 16 gr .15 m .

If you defrite a Circie on the Center C, and Semidiameter $C E$, . then is C E the Radius and E A, a Tangent of 73 gr .45 m . and C A a Secant of 73.45 .

Wherefore the Solution is the fame with thofe before.
In any right-lined Triangle whatfoever,
I. To find a fide by knowing the other two fides, and'the Angle contained by them.

Let the Sector be opened in the Lines of Lines to the Angle given as I hewed before, Cap. 2. Prop. 7. Then take out the fides of the Triangle, and laying them the one on the one Line the other on the other, fo asthey meet in the Center, mark how far they extend. For the Line taken between the terms of their Extenfion, fhall be the third fide required.

As if A C and A D were two fides of a right lined Triangle containing an Angle of 16 gr .16 m . and it were required, to find the third fide fubrending this Angle.

Firft, Ifer the Lines to an Angle of 16.16 m . by applying the Sine of 8 gr .8 m . over in the Points of 50 and 50 , in the Line of Lines. That done, I take the longer Line AD, and transfer it with my Compafles into one of the Lines of Lines, and find it to reach from the Cenrer to 720 ,

Again, I take the lefler Line A C, and transfer it into the other Line of Lines, where is reacheth from the Center to 540 , wherefore, I take the diftance from 540 to 720 , and fuch is the length of the third fide C D required.

Or (if the Lines be given in meafure) A D 100, and AC 75. I ex tend the Compaffes from 100 to 75 , and meafuring this extent in the Line of Lines, find to be 35 . Whereupon I take 35 parts out of the Scale, by which A C, and A D were meafurer, and prick theas down in the Line C D. So, this Line C D thall be the third fide required.

12.To find a fide by baving the other two fides, and one of the adjacent Angles, So it be known which of the other Angles is Acute or Oblique.

Let the Sector be opened in the Line of Lines to the Angle given, and the adjacent fide laid on one of thofe Lines from the Center; then take the other fide with a pair of Compaffes, and fetting one foot in the term of the former given fide, curn the other to the other Line of the Sector which here reprefenteth the fide required, and it fhall crofs ir in two placts; but with which of them is the term of the fide required, muft be judged by the Angie.

As if in the Triangle following, the fide A C being given, and the fide CD and the Angle C A D $16 \mathrm{gr.I} 6 \mathrm{~m}$. it were tequired to find the fide $A D$.

Firt, I open the Sector in the Line of Lines to an Angle of 16 gr . 16 m . and laying the adjacent fide from the Center A, find where it extendeth in C. Then I take the other fide C D with the Compaffes, and fetting one foot in C , and surning the other to the other Line of the Sector, I find that it doth crofs it both in \mathbf{B} and D .

Or, (if the Lines be given in meafure) A C 75 , and CD 35 ; I may take 35 our of she Line of Lises, and fetting one foot in 75 , I fhall find the other foot to crofs the orher Line of the Sector, both at 44 (anfwerable to A B) and at 100 (anfwerable to A D.)

So that it is uncertaia whecher the fide required be AB or AD, only it may be judged by the Angle. For if the inward Angle where they crofs be Obrufe, the fide required is the lefler; if it be Acute, it is the greater.

13. To find a fade by baving the Angles, axd one of the other fades given.

Take the fide given, and turn it into the Parallel Sine of his oppoGite Angle; to the Parallel Sines of the other Angle Chall be the oppofite fides required.

of the Refolution of right-lined Triangles.

As if in the Triangle ABC , having the fide AD , and knowing the Angle C A B to be $16 \mathrm{gr}$.16 m . and the Angle A B C o be 143 $d \cdot g .8 \mathrm{~m}$. it were required to find the other two fides, $A C$, and $B C$.

The three Angle; of a right-lined Triangle, are always equal co 180 gr . wherefore Iadd 16 gr . 16 m . unto 143 gr .8 gg . and by the remainder to 180 gr . find the third Angle A C B oppofite to the known fide A B, co be 20 gr .36 m . Then I take the fide A B, and make it a Parallel Sine of 20 gr .36 m .

Si, his Parallel Sme or 16 dggr . 16 m . will be the the fide BC ; and the Parallel Sine of 143 degr .8 m . will be che fide A C.

Or if mesturing the lide A B,I find it to be 44 ; I may take 44 parts, either out of the Line of Lines, or ot of any other Scale of equal parts, and make it a Parallel Sine of 20 gr .36 m . So his Parallel Sine of 16 gr .16 m . meafured in the fame Scale, will give 35 for the length of the lide BC : and the Parallel Sine of 36 gr .52 m . will give 75 , for the length of the other fide A C.

When the Angle comes to be above 90 gr . the Sine of 80 gr . doth ftand for. a Sine of 100 gr . and the Sine of 70 gr . for a Sine of 110 gr . sud fo the reft ; for thofe, which are their Complements to 180 gr .

14. To find the proportion of the fides ly having the three Angles.

Take che lateralSines of the Angles, and meafure them in the Lire of Lines. For the numbers belonging to thofe Lines do give the proportion of the fides. $\quad 12>6$

Thus, in the two equi-angle Triangles A E C, A GF, if you take the lateral Sine of 90 gr . For the right Ang'e at E and G , and meafure it in the Line of Lines,y on thall find it to be 100. Then take the lateral Sine of $16 . \mathrm{gr} .16 \mathrm{~m}$. for the common Angle at A, you thall find it to be 28. Take the lateral Sine of 73 gr .44 m . For the third Angle at C and F, you thall find it to be 96 . Suich therefore is the proportion of: the fides.

As 100: 96. $28:$: So are $75: 7.2 \mathrm{I}$.
15. To find an Angle, by knowing the Three fades.

Let the ewo containing fides be laid on the Lines of the Sector, from the Center, one on one line, and the other on the other; and lee the third lide, which is oppofire to the Angle required, be firted over in their terms, fo hall the Secfor beopened in thofe Lines to the quantity of the Angle required.

The

The quantity of this Angle is found as in Cap.2. Prop 8. Thus having the three fides of the Triangle A C D, to find the Angle at A, I take the two containing fides A D, A C, and transfer them with my Compaffes into the Line of Lines: where I find the one to reach from the Center, to 72 ; the other, to 54.

Then I take C D, (the lide oppofite to the Angle at A) and fer that over between 72 and 54 .

Or if the three fides be given in meafure A D $103 ; \mathrm{A} \mathrm{C}_{75} ; \mathrm{CD} 35:$ 1 might take 35 for the fide C D out of the Line of Lines, and fer thaz over from 100 to 75 . This done I take the diftance between 50 and 90 and meafuring it in the Line of Sines I find it to be about 8 gr .8 m. the double whereof is 16 gr .16 the Angle required.

> 16. To find an Angle, by baving two fides, and one adjacent Angle.

Firft take out the fide oppofite to the Angle given, and laying ic on both fides of the Sector, fo as they meet in the Center, markhow far is extendeth; then take out the lateral Sine of the Aagie, and co it open the Sector in the terms of the firt fide: this done taike out the other fide given, and place it alfo on the fame Lines of the Sector from the Center, for the Parallels taken in the cerms of this fide; Chall be the Sine of the Angle oppofise to the fecond fide.

Or take out the lide oppofire to the Angle given, and make it a Pa:rallel Sine of that Angle : then take the orter fide given and carry it Parallel to the former, till it fay in like Sines: fo they hall give the quantity of the Angle oppofite to the fecond fide.
Thus in the Triangle A C D, knowing two fides A C, C D with the Angle C A D oppofite to the fide C D, you may find the Angle A D C oppofite to the other known fide $A C$, co be about 36 gr .52 m .
> 17. To find an eAngle by baving two fades, and the Angle contained by them.

Firft find the third fide by the II Propo and then the Angles inay be found by the 15 or 16 Prop.

For obfervation of Angles, the Sector may have fights fer on the movable foot: fo shat by looking through them, the edges of the Sector may be applied to the fides of the Angle.

For meafuring of the fide of lefler Triangles, any Scale may fufice, either of feer, or inches, or leffer parts. But for greater Triingles, efpecially for plotting of grounds. I hold it fis toufe a chain of four Perches in lenget, each Perch divided into 25 , and the whole Chain an hundred Links, wherein, if the whole Chain be (according to $16 \frac{3}{2}$ foot in a Perch) 66 foor, (that is 792 inches) each feveral Link will be feven inches and $\frac{9}{1} \frac{5}{0}-0$.
If (according to 18 in the Perch) the whole Chain be 72 feet inlengeh (that is, 864 inches) shen each feveral Link will be eight inches and $\frac{64}{10}=$.

For fo the length being multiplied into the breadch, the five laft Figures give the content in Roods and Perches by this Table ; the other Figures cowards the left hand do fhew the number of Acres directly.

As in a long Square, where the length is 24 Chains $\frac{1}{2}$ the breaddh 13 Chains $\frac{1}{2}$ the ufual way is, to refolve the Chains into Perches: So the lengeh is 97 Perches, and the breadth 54 Perches. Thefe multiplied one into the other make 5238 fquare Perches, and thofe (divided by 160) give 3^{2} Agres, 2 Roods, and 38 Perches for the content required.

But, reckoning by Chains and Links, the lengeh is 24 Chains 25 Links, the breadth 13 Chains 50 Links. Thefe multiplied one imo the other make 32.73750 (quare Links. Then, cutsing off the Give laft Figures, I find 32 Acres 73.750 lin. fuch as an 100000 do make an Acre, Ot which 70000
 are equal to two Roods 32 Perches : and the reft 375° equal to 6 Perches more (as appeareth by this Table.) So, the whole content is 32 Acres, 2 Roods, 38 Perclies; as before.

CHAP.

CHAP. V.

Of the Refolution of Spherical Triangles.

FOr our practice in Spherical Triangles, let A be the Equinoatial Point, A B an Ark of the Ecliprick, reprefenting the Longitude of the Sun inthe beginning of \Varangle, BC an Ark of the Suns Declination from the Equator, and $A C$ an Ark of the Equator reprefenting the: right Afcention.

Let $B D$ be an Ark of the Horizon, reprefenting the Amplitude of the Suns rifing from the Eaft, and B E an Ark of the Horizon for his fetting from the Weft: fo DC fhall be the difference of Afcenfion, and C E the difference of Defcenfion; AD the Oblique Afcenfion, and A E the Oblique Defcenfion of the fame place of the Sun in our Latitude a: $O x f$ ord of 51 gr .45 m . whofe Complement 38 gr . 15 m : is the Angle at E and D. The Triangles A CB, D C B, EC B, are Rectangled in C : the orher ADB, AEB, confift every way of Oblique Angles.
Or, to fit an Example nearer to the Latitude of London. Let Z PS re ${ }^{7}$. prefent the Zenith, Pole, and Sun, Z P being 38 gr .30 mo the Complemens:
ment of the Latitude, PS 70 gr , the Complement of the Declination, and ZS 40 gr . the Complement of the Suns Altitude. The Angle at Z fhall thew the Azimuth, and the Angle at P, the Hour of the Day from the Meridian. Then if from Z to P S we let down a Perpendicular Z R, we fhalf reduce the Ojlique Triangle into two Rectangle Triangles Z RP, Z R S. Or if from S to Z P we let down a Perpendicu-

lar S M, we fhall reduce the fame Z P S into two other Triangles, S M Z, S M P, Rectangled at M : whatfoever is faid of any of thefe Triangles, the fame holderh for all other Triangles in the like cafes.

For the Refolution of each of thefe, there be feveral ways. I only chufe thofe which are fitteft for the Sector, wherein if that be remembred which before is thewed in the general ufe of the Seltor concerning Lateral and Parallel entrance, it may fuffice only to fet down the Propofition of the three parts given, to the fourth required, and fo hew firft by the Sines alone.

1. Tofind a fide, by hnowing the Bife, and the Angle oppufte to th: required fide.

As the Radius
is to the Sine of the Bafe:
So the Sine of the oppofite Angle to the Sine of the fide required.

* As in the Rectangle A C B;having the Bafe A B, *In ReitangledTrithe place of the Sun 30 gr . from the Equino Ctial angles, the fide.oppoo Poinr, and the Angle B A Cof $23 \mathrm{gr} .30 \hat{m}$ the grea- fite to the Reitangle teft Declination, if it were required to find the fide is called the Bafe. B C the Declination of the Sun.

Take either the lateral Sine of 20 gr .30 m . and make it a Parallel Radius; fo the Parallel Sine of 30 gr . taken and meafured in the fide of the Sector, fhall give the fide required $I \mathrm{gr} .30 \mathrm{~m}$. Or take the Sine of 30 gr . and make it a Parallel Radius; to the Parallel Sine of 23 gr .30 m . raken and meafured in the lateral Sines, fhall be 11 gr . 30 m . as before.

So in the Triangle $Z P$ S , having $Z P 38 \mathrm{gr} .30 \mathrm{~m}$, and the Angle P $3!\mathrm{gr} .34 \mathrm{~m}$. given, we fhall find the Perpendicular Z R to be 19 gr . a m. or having PS 70 gr . and the faid Angle P 31 gr .34 migiven, we may find the Perpendicular $S M$ to be $29 . \mathrm{gr} .28 \mathrm{~m}$.
2. To find the fide by knowing the Bafe and the other fide.

As the Sine of the Complement of the fide given is to the Radius:
So is the Sine of the Complement of the Bare to the Sine of the Complement of the fide required.

So in the Rectangle A C B, having A B 30 gr . and BCil gr .30 m given, the fide $A C$ will be found 27 gr .54 m .
Or in the Rectangle Z R P, having Z P 38 gr .30 m . and Z R $29 . \mathrm{gr}^{\circ}$ 7 m . given, the fide $R P$ will be found 34 gr .7 m .

3. To find a fide, by knowing the two Oblique Angles.

As the Sine of either Angle
to the Sine of the Complement of the other Angle:
So is the Radius
to the Sine of the Complement of the fide oppolite to the fecond Angle.

So in the Rectangle $A C B$ having C A B for the firt Angle 23 gr . 30 m . and $A C B$, for the fecond 69 gr .22 m . the fide $A C$ will be found $27 . \mathrm{gr} .54 \mathrm{~m}$. Or making $A B C$ the firt Angle, and $C A B$ the fecond, the fide B C will be found I gr .30 m .

> 4. Toffind the Bafe, by knowing both the fides.

As the Radius
to the Sine of the Complement of the one fide :
So the Sine of the Complement of the other fide, to the Sine of the Complement of the Bafe required.

So in the Rectangle A C B having A C 27 gr .54 m . and BC II gr: 30 m . the Bafe A B will be found 30 gr .

5: To find the Bafe by knowing the one fide, and the Angle oppofite to that fide.

As the Sine of the Angle given,
to the Sine of the fide given :
So is the Radius
to the Sine of the Bafe required.
So in the Rectangle B CD, knowing the Latitude and the Declination, we may find the Amplitude; as having BC the fide of the Declination 11 gr .30 m . and B D C the Angle of the Complement of the Latitude 38 gr .15 m . the Bafe B D, which is the Amplitude, will be found so be 18 gr .47 m .
6. To find an Angle, by the other Obligue Angle, and the fide oppofire to the inguired Angle.

Asthe Radius,
tothe Sine of the Complement of the fide:
So the Sine of the Angle given, to the Sine of the Complement of the Angle required.

So in the Rectangle A C B, having the Angle B A C $23 \mathrm{gr}: 30 \mathrm{mr}$. and the fide A C 27 gr .54 m . the Angle A B C will be found 69 gr . 21 m
7. To find an Angle, by the other Obligne Angle, and the fade oppofite to the Anglegiven.

As the Sine of the Complement of the fide
to the Sine of the Complement of the Angle given:
So is the Radius, to the Sine of the Angle required.

So in the Rectangle A C B, having B A C $23 \mathrm{gr} .3^{\circ} \mathrm{m}$: and B C II gr: 30 m .the Angle A B C will be found 69 gr .21 m .
8. To find an Angle, by the Bafe, and the fide oppofite to the ingaired Angle.

As the Sine of the Bafe is to the Radius :
So the Sine of the fide tothe Sine of the Argle required.

So in the Rectangle BCD, having B D 18 gr .47 m . and BC II gr. 30 m . the Angle B D C will be found 38 gr .15 m .

Thefe eight Propofitions have been wrought by the Sines alone; thofe which follow require joynt help of the Tangent.
And forafmuch as the Tangene could not well be extended beyond 63 gr .30 m . I fhall fet down two ways for the refolution of each Propolition; fo that if she one will not hold, the other may.
9. To find a fide, by baving the otber fole, and the Angle oppofite to the ingaired fid:-
3. As the Radius to the Sine of the fide given:
So the Tangent of the Angle, to the Tangent of the lide required.
2. As the Sine of the fide given, is to the Radius:
Sothe Tangent of the Complement of the Angle to the Tangent of the Complement of the fide required:

So in the Rectangle AC B, having the fide A C 27 gr .54 m and the Angle B A C 23 gr .30 m . the fide B C will be found to be 11 gr .30 m .
10. Te find a fde, by baving the owber- fide, and the Angle next the inquired jide.

As the Tangent of the Angle,
to the Tangent of the fide given :
So is the Radius
to the Sine of the fide required.
3. As the Tangent of the Complememt of the fide, to the Taingent of the Complement of the Angle:
So is the Radius to the Sine of the fide required.

This and the like, where the Tangent fiandeth in the firft place, are beft wrought by Parallel entrance. And fo in the Rectangle B. C $D_{\text {, }}$, having B C the fide of Declination 11 gr .30 m , and B D C the Angle of the Complement of the Latitude 38 gr . 15 m . the fide $D \mathrm{C}_{2}$ which is the Afcenfional difference, will be found 14 gr .57 m :

By the Alcenfional difference is given the time of the Suns rifing and fetting, and length of the day: allowing an hour for each 15 gr : and four minutes of time for each feveral degree. As in the example, she difference becween the Suns Afcenfion in a right Sphere, which is always.
always at fix of the clock, and his Afcenfion in our Latitude being 14 gr .57 m . it theweth that the Sun rifeth very near an hour before fix, becaufe of the Northern Declination; or after fix, if the Sun be declining to the Southward.
11. To find a fite byknowing the Bafe, and the Angle adjacent next to the inquired fide.
r. As the Radius,

To the Sine of the Complement of the Angle :
So the Tangent of the Bafe,
to the Tangent of the fide required,
2. As the Sine of the Complement of the Angle, is to the Radias:
So is the Tangent of the Complement of the Bafe, to the Tangent of the Complement of the Gide required.
So in the Rectangle $A C B$, knowing the place of the Sun from the next Equinotial Point, and she Angle of his greateft Declination, we may find his right Afcenfion : viz, she Bafe A B 30 gr. and the Angle B AC 23 gr .30 m .beinggiven, the right Afcenfion A C will be found 27 gr .54 m.

12. To find the Bafe by knowing the Oblique Angles.

As the Tangent of the one Angle,
to the Tangens of the Complement of the other Angle:
So is the Radius, to the Sine of the Complement of the Bafe.

So in the Rectangle A C B, having B AC 23 gr .30 m . and ABC 69 gr .21 m . the Bafe A B will be fonnd $3^{\circ} \mathrm{gr}$.
13. To find the Bafe, by ose of the fides, and the Angle adjacent next that fadeo
I. As the Radius,
is to the Sine of the Complement of the Angle:

So the Tangent of the Complement of the fide, to the Tangent of the Complement of the Bare.
2. As the Sine of the Complement of she Angle, is to the Radius:
So the Tangent of the fide given, to the Tangent of the Bale required.

So in the Refrangle A C B, having A C 27 gr .54 m . and B. A C 23 gr .30 m . the Bafe $A B$ will be found 30 gr .0 m .
14. To find an Angle, byknowing both the fides.
I. Asthe Radius, is to the Sine of the fide next-the inquired Angle : So the Tangent of the Complement of the oppolite fide, to the Tangent of the Complement of the Angle required.
2. As the Sine of the fide next the inquired Ang'e, is to the Radius:
So the Tangent of the oppofite fide, to the Tangent of the Angle required.

So in the Rectangle A C B,having A C 27 gr .54 m . and B C 11 gr , 30 m . the Angle at A will be found 23 gr .30 m . and the Angle at B $69 . g^{2} 21 \mathrm{~m}$.
15. To find the Angle, by the Bafe, and the Fide adjacent to the required Angle.
7 , As the Tangent of the Complement of the fide, to the Tangent of the Complemens of the Bafe: So is che Radius, to the Sine of she Complement of the Angle required.
2. As the Tangent of the Bafer
to the Tangent of the fide:
So is the Radius,
so the fign of the Complemens of the Angle required.

of the Refolution of spherical Triangles.

So in the Rectangle BCD, having the Bafe B D 16 gr .47 m . and the fide BC a gr. 30 m , the Angle D B C berween thein will be found 53 gr .15 m .
16. To find an Angle, by knawing the other Oblique Angle, and the bafe.
r. As the Radius,
to the Sine of the Complement of the Bafe:
So the Tangent of the Angle given,
To the Tangent of the Complement of the Angle required.
2. As the Sine of the Complement of the Bafe, is to the Radius:
So the Tangent of the Complement of the Angle given, to the Tangent of the Angle required.
So in the Rectangle A C B, having the Angle at A 23 gr .30 m 。 and the Bafe A: B 30 gr . the Angle A B C will be found 69 gr .12 m .

Thefe fixteen Cafes are sll that can fall our in a Rectangle Triangle : shofe which follow do hold

In any Spherical Triangle whatfoever.
17. To find a fide, oppofite to an eAngle given, by knowing one fide, and $t w o$ Angles, whereof one is oppofite to the given fide, the otber to the: fide regsired.

Asthe Sine of the Angle oppofite to the fide given, is to the Sine of the lide given :
So the Sine of the Angle oppofite to the fide required, to the Sine of the fide required.

So in the Triangle A B E, having the place of the Sun, the Latitude? and the greateft Declination, we may find the Amplitude. Ashaving. A B 30 gr : B A E 23 gr .30 m . and A B E 38 gr . 15 m , the fide B-E which is the Amplitude, will be found 18 gr .47 m .

of the Refolution of spherical Triangles.

18. To find an Angle oppofite to a fide given, by baving one Angle anid two fides, the one oppofte to the given Angle, the other to the $A_{n-~}^{\text {- }}$ gle required.

As the Sine of the fide oppofite to the Angle given, is to the Sine of that Angle given:
So the Sine of the fide oppofite to the Angle required, to the Sine of the Angle required.

So in the Triangle Z PS, having the Azimuth, and Latitude, and Declination, we may find the hour of the day. As having P Z Sis 30 gr . 3 m. P S 70 gr . and Z S 40 gr . the Angle Z P S, which theweth the hour from the Meridisn, thall be found 31 gr .34 m .

> 19. To find an Angle by knowing the three fdes.

This Propofition is molt ureful, but molt difficuls of all others: as in Arithmetick, fo by the Sector, yee may it be performed feveral way 5.

1. According to Regiomontanus and others,

As the Sine of the leffer fide; next the Angle required, to the difference of the verfed Sines of the Baif, and difference of So is the Radius, to a fourch proportional.

Then as the Sine of the greater fide next the Angle required, is ro that fourth proportional :
S_{0} is the Radius, to the verfed Sine of the Angle required:

So in the Triangle $Z P S$, having the fide $P S$, the Complement of the Declination 70 gr . om. the fide $Z P$ the Complement of the Latitude 38 gr .30 m . and the Bafe ZS the Complement of the Atritude 40 gr . the Angle of the bour of the day Z P S will be found 31 gr . 34 m . which is $2 h .6 \mathrm{~m}$. from the Meridian.

For the Bafe being 40 gr .0 m . and the difference of the fides 38 gr . 30 m . and 70 gr .0 m . being 31 gr .30 m , the diference of their veried

Sines will be the fame with the diftance between the right Sine of 50 gr . and 58 gr .30 m . This difference I take our, and make it a Parallel Sine of the leffer fide 38 gr .30 m . Fo the Parallel Radius will be the fourth proportional. Then coming to the fecond operation, I make this fourch proportional a Parallel Sine of the greater fide of 70 gr . - m.and take ourthis Parallel Radius. For this meafured from 90 gr . toward the Center, will be the verfed Sine of 31 gr .34 m .

In the like fort in the fame Triangle Z P S, having the fame Complements given, the Angle P Z S which is the Azimuth from the North part of the Meridian, will be found 13.0 gr .3 m . For here the Bafe oppofite to the Angle required being 70 gr . and the difference of et e fides 38 gr .30 m . and 40 gr . being 1 gr .30 m . the difference of their verfed Sines will be the fame with the diftance between the right Lines of 20 gr . and 88 gr .30 m . This difference I take and make ita Parallei Sine of the lefler lide 38 gr .30 m . fo the Parallel Radius will be the fourth proportional. Then coming to the fecond operation, I. make this fourth proportional a Parallel Sine of the greater fide 40 gr . and take out chis Parallel Radius; for this meafured from 90 gr . beyond the Center, in the Lines of Sines, Atretched forth at their full length, will be the verfed Sine of 130 gr .3 m .
2. I may find an Angle by knowing three fides, by that which I have elfewhere demonftrated upon Barth. Pitifcus, and that at one operation. in this manner.

At the Sine of the greater fide, is to the Secant of the Complement of the other fide :
So the differerence of Sines of the Complement of the Bare, and the Ark compounded of the leffer fide with the
Complement of the greater, to the verfed Sine of the Angle required.

So in the fame Triangle $Z P S$, having the fame Complements given ${ }_{D}$. the Angle at P, which fheweth the hour from the Meridian, will be found as before, 3 I gr .34 m .

For the fides being 38 gr .30 m , and 70 gr .0 m . I rake the Secane of the Complement of 38 gr .30 m . and make it a Parallel Sine of 70 gr . then keeping the Sector at this Angle, I confider that the Complement of 70 gr . being 20 gr . added unto 38 gr .30 m . the coma pounded fide (which is here the MeridianAltitude) will be 58 gr .

Of the Refolution of Spherical Triangles.

30 m . and that the Bafe being 40 gr . the difference of Sines of the compounded fide, and the Complement of the Bafe will be (as before) the diftance between the Sines of 50 gr and 58 gr .30 m . Wherefore Itakc out this difference, and lay it on both the Lines of Sines from the Center : fo the Parallel taken in the terms of this difference, and meafured from 90 gr . towards the Center, doth give the verfed Sine of $31 \mathrm{gr}, 34 \mathrm{~m}$.

Ttis example of finding the hour of the day might otherwife have been pro pofed in thefe terms,

Asthe Sine of the Complement of the Declination, is to the Secant of the Latitude:
So the differerence berween the Sine of the Altitude propofed, and the Sine of the Meridian Altitude, to the verfed Sine of the hour from the Meridian :

Then the Latitude being 51 gr .30 m . the Declination 20 gr . Northward, and the Altitude 50 gr . the work would be the fame as before.

The other Angles PZ S, PS Z, may be found in the fame fort; but having the fides and one Angle, it will be fooner done by that which we Thewed before in the 18 Prop.
20. To find a fide, by knowing the three Angles.

If for the greater Angle, we take his Complement ro 180 gr , the Angles Chall be turned into fides, and the fides into Angles, and the operation fhall be the fame, as in the former Prop.

As in the Triangle ZPS, having the Angle Z P S 3 I gr .34 m . Z S P 30 gr .28 m ond PZS 130 gr .3 m . I would take the greater Angle of $130 \mathrm{gr}, 3 \mathrm{~m}$. out of 180 gr . and there remains 49 gr .57 m . Then as I had a Triangle of three known fides, one of 31 gr .34 m . another of 30 gr .20 m , and a third of 49 gr .57 m . I would feek che Angle oppolite to one of thefe fides, by the laft Prop. So the Angle which is thus found, would be the fide, which is here required.
21. To find a fide, by baving the other two fides, and the Angle comprehended.

This Propofition being the converfe of the nineteenth, may be wrought
wrought accordingly : but she beft way both for it and thofe which follow, is to refolve them into two Rectangles, by leting down a Perpendicular, as was Chewed in the firft Prop.

So in the Triangle Z P S, baving Z P the Complement of the Latitude, and P S the Complement of the Declination, with Z PS the Angle of the hour from che Meridian, we may find Z S che Complement of the Altitude of the Sun.
For having let down the Perpendicular Z R, by the firft Prop. we have two Triangles, Z R P, Z R S, both rectangled at R. Then may we find the fide P R, either by the fecond, or tenth, or eleventh Prop. which taken out of PS, leaveth the fide RS: with this RS and ZR we may find the Bafe $\mathrm{Z} S$ by the fourth Prop.

Or having let down the Perpendicular S M, we have two Rectangle Triangles $S \cdot M Z, S M P$. Then may we find M P, from which if we rake $Z \mathrm{P}$, there remaineth MZ : but with MZ and $S M$, we may find the Bare Z S.
> 22. To find a Fide, by baving the other two fides, and one of the Angles next the inquired fide.

So in the Triangle Z P S, having Z P, the Complement of the Laticude, and PS the Complement of the Declination, with P Z S the Angle of the Azimuth, we may find Z S the Complement of the Altitude of the Sun.

For having Z P , and the Angle at Z , we may to S Z produced, let down a Perpendicular P.V. Then we have two Rectangle Triangles PVZ,PVS, wherein if we find the fides $V Z, V S$, and take the one out of the other, there will remain the fide required ZS.
23. To find a fide, by having one fide, and the two Angles next the inguired fide.
So in the Triangle A B D, having AB the place of the San, and B A D the Angle of the greateft Declination, and A D B the Angle of the Equator with the Horizon, we may find AD the Oblique Afcention.
For having let down $B C$ the Perpendicular of Declination,we have two Rectangled Triangles, ACB,DCB. Then may we find A C the 0

98- Of the Refolution of Spherical Triangles.
right Afcenfion, and DC the afcenfioral difference; and comparing she one with the orther, there remainech A D.

24 To find a fide, by biving two Angles, and the fide inclofed by
So in the Triangle Z P S, having the Angles at Z and P, with the fide intercepted $Z P$, we may find the fide PS. For having lee down the Perpendicular $P \vee$, we have two Rectangles $P \vee Z, P \vee S$, Then may we find the Angle V P Z, eirher by the feventh, or fitreenth, or fixreenth Prop. which added to ZPS, maketh the Angle VPS, with chis V PS, and PV, we may find the Bafe PS, according to the $\left.{ }^{3}\right)^{2}$ Prop.
25. To find an Angle by having the other two Angles and the fide inclofed by them.

So in the Triangle ZPS, having she Angles at Z and P, with the fide intercepted Z P, we may find the other Angle Z S P. For having let down the Perpendicular Z R, we have two Rectangles Z R P, Z R S. Then may we find the Angle P Z R by the fixteenth Prop. and that compared with PZ S, leavech the Angle R Z S : with this R Z S, and Z R, we may find the Angle required Z S R, according to the fixth Propofition.
26. To find an Angle,by baving the other two Angles, and one of the fides next the inquired Angle.

So in the Triangle $A B D$, having the Angles at A and D, with thi fide A B, we may find the Angle A B D. For having let down thi Perpendicular BC, we have swo Rectangles, A C B, DCB. Thet may we find the Angles A B C, D B C, and rake D B C out of A BC for fo there remaineth the Angle required A B D.
27.To fond an Angle, by knowing tro jades, and the Angle contained by theim.

So in the Triangle Z PS, having the fides Z P, P S, with the Angl comprehended $Z P S$, we may find the Angle PZS. For having le down the Perpendicular SM, we have two Retangles SMZ, SMF

Then may we find the fide $M P$, and raking $Z P$ out of M, there r maineth $M Z$: with this $M Z$ and the Perpendicular $M S$, we may find the Angle M Z S, by the fourteenth Prop. This Angle M Z S, taken ous of 180 gr , shere remainech P Z S.
28. To find an Angle, by knoming the two fdes next it and one of the other Angles.

So in the Triangle $Z P S$, having the fides $Z P$, and $P S$, with the Angle P Z S, we may find the Angle Z P S; For having ler down the Perpendicular PV, we have two Rectangles P V Z, P V S. Then may we find the Angles VP Z, V P S : and taking VP Z ous of VPS, shere remaineth Z P S, which was required.

Thefe 28 Cafes are all that can fall out in any Spherical Triangle: if any do not prefently underftand them, let them once more cead over the ufe of the Globes, and they Shall foon become eatie unto them.

CHAP. VI.

Of the vje of the Meridian Line in Navigationo

THe Meridian Line is here fet on the fide of the Sector Atretched forth at full length, on the fame Plane with the Line of Lines and Solid!, and is divided unequally toward 87 gr . (whereof 70 gr . are about one half) in fuch fort as the Meridian in the Chart of Mercators Projection. The life of it may be,

1. To divide a Sea-chart according to Mercators Projection.

If a degree of the Equator on the Sea-chart, be equal to the hundred part of the Line of Lines in the Sector, the degrees of the Meridian upon the Settor, Thall give the like degrees upon the Sea-chart: if otherwife they be unequal, then may the Meridians of the Seachart be divided in fuch fort as the Line of Meridians is divided on the Sectior, by that which we fhewed before in the 8 Prop. of the Line of Lines.

But to avoid error, I have here fer down a Table, whereby the Meridian Line may be divided out of the degrees of the Equator fuppofing
each degree in the Equator, to be fubdivided into a thoufand parts. By which Table, and chie ufual Table of Sines, Tangenes, and Secants, the Proportions following may be alfo refolved Arithmetically. For the manner of divifion, lee the Equator be drawn, and divided, and croffed with Parallel Meridians, as in the commonSea-chart: then look into the Table, and lec the diftance between the Equator and 40 gr . in the Merdian, from the Equator, be equal to 43 gr .7 II parts of the Equator, as in the Tabie: let 50 gr . in the Meritian trom the Equator, be equal to 57 gr .909 parts of the Equator, and fo in the rett.

The making of this Table is, by addition of Secants. For the ParalIels of Latitudes being lefs than the Equator or Meridian in fuch proportion as the Radius is to the Secant of the Parallel. For example, the Parallel of 60 degrees of Latitude is lefs than the Equator (and confequently, each degree of this Parallel of 60 degrees lefs than a degree of the Equator, or Meridian) in fuch proportion as 100000 the Radius, hach unto 200000 the Secant of 60 degrees.
A Table for the Divifion of the Meridian Line. Ior

		of	L		105
M\|Gr.Par. $\|M\|$ Gr.Par. $\left.\left\|\frac{M}{\text { Gr. Par. }}\right\| M \right\rvert\,$ Gr. Par. \mid M \mid Gr. Par.					
60	75.45 I - 04	81.74966	88.72509	96.57572	105.579
	75.656	81.970	88.971	96.854	105.904
	75.853	82.191	89.219	97.135	106.230
	76.057	82.413	89.467	97.418	106.558
	76.261	82.635	89.716	97.701	106.888
	76.464	82.860	89.967	$\underline{97.986}$	107.220
	76.667	83.084	90.218	98.272	107.513
61	76.871	83.313	90.470	98.560	107.888
	77.076	83.536	90.723	98.849	108.226
	77.28 r	83.763	90.978	99.1 39	108.665
	77.48764	83.99067	91.23270	99.43 I 72	108.906
-	77.694	84.219	91.489	99.724	109.249
	77.901	84.448	91.746	100.018	109.594
	78.109	84.678	92.005	100.314	109.941
	78.367	84.9091	92.264	100.612	110.290
	78.526	85.141	92.525	100.910	110.641
$\stackrel{62}{1}$	78.736	85.374	92.787	101.21I	110.994
	78.947	85.607	93.050	101.513	NII. 349
	79.158	85.842	93.3 I4	101.816	III. 707
	79.370	86.077	93.579	102.12I	II 2.066
	79.58365	86.31368	93.846 -	102.427	112.428
	79.796	86.550	94.213 ${ }^{-1}$	102.735	11.12 .792
	80.010	86.788	94.382	103.044	1.13 .158
	80.225	87.027	94.652	103.356	I1 3.526
	80.44	87.267	94.923	103.668	I 13.897
	80.657	87.508	95.195	103.983	114.270
	80.874	87.749	95.408		11.4.645
63	81.091	87.992	95.743	104.616	1.15 .023
	81.310	88.235	96.019	104.936	115.403
	81.529	88.480	96.296	105.257	II 5.786
	81.74966	88.725169	96.575 72	105.5797	116.171

106 A Table for the Divifion of the Meridian Line.

If it be a particular Charr, I would first draw the Line A B ferving for the firth Meridian, and crops it with two Perpendiculars $B C$ and $A D$, the one st the upper end, the other at the lower end of the Chart, which a may ferve for che extreme Parallels of Latitude that you are so mike ute of.

Then conliteringat what Latitude the Chare is rob begin and end, and thar chis Chat intended for the Latitude of the fe parts, is to begin at 50 gr . and fo end ar 55 gr . I look into the Table, and find chat 50 gr . of Latitude mut be drawn $57 \mathrm{~g} \% .909$ parts; and 55 gr of Lsrirude at 66 g . 134 part from the Equator; and that che Meridian diftance between the Parallel of $50 . \mathrm{gr}$. and 55 gr . of Latitude mut be equal to 8 gr .225 parts of the Equator. Whereupon I take the Line AB out of the Meridian Line, and diminifh it in foch proportion as 8. 225 hath unto 1000 per 3 Prop. Line and with that extent of the Compaffes, I divide she two extreme Parallels of Latitude into equal degrees, and through each degree draw Meridian Lines parallel so the frt Meridian, noting them with $1,2,3,4$, fr c. and then, I fabdivide either one or all of thole degrees into ten parts, and (if I may) each tenth part into sen parts more; but howfoever, I fuppofe each degree. to be fubdivided into 1000 parts.

The Meridians being drawn, I come to the Parallels of Latitude, beginning at 50 gr .

And finding in the Table, that che diftance between the Equator and 50 gr . in the Meridian should be equal to 57 gr .909 parts in the Equator and his Parallels, I may fuppofe the lowest Parallel to be 57 gr . from the Eq atop: fo the diftance between this loweft Parallel and the Parallel of 50 gr . will be only 909 parts. Wherefore I take there 909 odd parts, out of the degrees that I divided before, and prick them down into the two uttermolt Meridians from the loweft Parallel upwards, and there draw the Parallel of 50 gr . of Latirude.

In like manner, because I find by the Table that the diftance between the Equator and 51 gr . in the Meridian is 59 gr .88 I parts of the Equator, I abate she former 57 gr . and there remain 2 gr .48 t parts for the diftance between the lowell Parallel, and this Parallel of 51 : wherefore I take chef 2 degrees 48 I parts out of the Line before divided, and prick them down in the two uttermolt Meridians (as before) from the lowell Parallel upward, and there draw the Parallel of 5^{I} degree of Latitude. G

The Use of the Meridian Line.

If any defire to have his Chart agree with his Sector; he may make each degree of Longitude equal to the tenth part of the Line of Lines, and divide the Meridian of his Chatt out of the Sector: fo thall each degree of the Chart be ten times as large as the like degree on the Sectior, and the work be eafie from the one to the other.

Or he may divide the Meridian of his Chart by the fide of a Protractor, fuch as is commonly uled by Surveyors of Land, and is here reprefented by A CD E, wherein the outward part of the Semicircle A BC is divided equally inso 180 gr . The inward part equally into 16 Rumbs, and each Rumb fubdivided into 4.

The Lines C D, DE, E A, divided equally according to the Line of Lines upon the SeCZor, or the Parallels upon the Chart. Onely the Diaineter A C would be divided unequally, by letting down occule perpendicular Lines upon it from each Degree in the Semicircle, which being done, the intermediate part between the Rumbs and the Diamerer may be all cut forth: And the back fide of the long Square may be filled with 6 Lines of Chords, or Scales of feveral parts in the Inch.
So may the Meridian be divided by the parts of the Side ED, the Angles of each Rumb may readily be pricked down by the Degrees in the Semicircle, and the Line of Chords and the other Scales may ferve to do the like with more variety.

2. To find how many Leagues anfwer to one Degree of Longitude in every Several Latitude.

In failing by the Compafs, the Courfe holds fometime upon a Great Circle, fometime upon a Parallel to the Equator ; but moft commonly upon crooked Lines, winding towards one of the Poles, which Linesare well known by the Name of Rumbs.
If the Courfe hold upon a Grear Circle, it is either North or South ander fome Meridian, or Eaft or Weft under the Equator. And in here Cafes, every Degree requires an allowance of twenty Leagues; every twenty Leagues will make a Degree difference in the failing: fo that here needs no further Precept than the Rule of Proportion in the Chapter of Lines.
But if the Courfe hold Eaft or Weft, or any of the Parallels to the Equator,

As the Radius,
is to twenty Leagues, the Meafure of one Degree at the Equator:
So the Sine of the Complement of the Latitude,
to the CWeafure of Leagwes anfwering to one Degree in that Latitude.

112

Gr.	1	$1, e a g$.
0	0	20°
18	12	19
25	15	18
31	48	17
36	52	16
41	25	15
45	34	14
49	28	13
53	8	12
56	38	11
60	0	10
63	15	9
66	25	8
69	39	7
72	32	6
75	31	5
78	28	4
81	23	3
84	15	2
87	8	1

The Ufe of the Meridian-line.

Wherefore I take 20 Leagues out of the Line of Lines, and make it'a parallel Radius, by fitting it over in the Sines of 90 and $90:$ fo his parallel Sine taken out of the Complement of the Latitude, and meafured in the Line of Lines, Chall fhew the number of Leagues required.

Thus in the Latitude of 18 gr .12 m . we thall find 19 Leagues anfwering to one Degree of Longitude, and 18 Leagues in the Latitude of 25 gr .15 m . as in this Table.

This may be done more readily without opening the Sector, by doubling the Sine of the Complement of the Latitude, as may appear in the fame Example.

It may allo be done by the Line of Meridians, either upon the Sector, or upon the Chart: For if we open a pair of Compaffes to the quantity of one Degree of Longitude in the Equator, or one of his Parallels, and meafure it in the-Meridian line, fetting one Foot as much above the Latitude given, as the other falleth be. neath it, fo that the Latitude may be in the middle between the Feer of the Compaffes, the number of Leagues intercepted thall be that which was required.

But if the Courfe hold upon any of the Rumbs, between a Parallel of the Equator and the Meridian, we are to confider (befides the Equator of the World to which wetend, which mult be al--ways known),
I. The difference of Longitude, at leaft in general.
2. The difference of Latirude, and that in particular.
3. The Rumb whereon the Courfe holds.
4. The diftance upon the Ramb, which is the diftance which we are here to confider, and is always fomewhar greater than the like diftance upon a greater Circle. And for thefe, firft; I hew in general this third Propofition.

3. To find hoso many Leagues do anfwer to oore Degree of Latitude in every jeveral. Rumb.

The Seamans Compafs is commonly divided into 32 Points; the half, into 16 ; the quarter, into 8; which have their names of $N N 6 \varepsilon$, $N N E$, G6. according to thofe parts of the Wordd to which they point. Anfwerable to thele Points, are the Rumbs upon their Chart; each quarter divided into 8, each Rumb if gro 15 m . diftant one from the othe: The firft Rumb being that which is $1 \mathbf{~ g r}$. I 5 m , diftant from the Meridian; the fecond, 22 gr .30 m . the third, 33 gr .45 m . and fo the reft. And (if they have need of fmaller parts) they fubdivide each Rumb into quarters, allowing 2 gr .48 m . to the firlt quarter, $s g r .37$ to the half Rumb, \&c. as in the Table following.

As the Sine of the Complement of the Rumb from the Meridian,
is $t 020$ Leagues, the Meafure of one Degree of the Meridian:
So is the Radius,
to the Leagues anfwering to one Degree upon the Rumbs.
As if in failing $N E \in N$,from 50 gr. of North Laticude, it were required how many Leagues the Ship thould run before it could come to 51 gr . of Latitude, becaufe this is the third Rumb, and the Inclination thereof 33 gr .45 m . I would take 20 Leagues, etc.
Wherefore I take 20 Leagues out of the Line of Lines, and make it a parallcl Sine of 56 gr : 15 m . the Complement of the Rumb from the Meridian ; fo his parallel Radius taken and meafured in the Line of Lines, thall thew me 24 for the number of Leagues required.

And

114

The Use of the Meridian-line.

And thus in the firft Rumb from the Meridian we Chall find 20 Leagues 39 parts anfwering to one Degree of Latitude, and 21 Leagues 65 parts in the fecond Rumb, of c. as in this Table, where we fubdivide each League inroa hundred parts, and fhew befides what Inclination che Rumb hath to the Meridian.

This may be done more readily without opening the Sector, by doubling the Secant of the Rumb, as may appear in the fame Example.

It may allo be done upon the Chart, if firf we draw the Rumb; then we take the diftance upon the Rumb between two Parallels, and meafare it in the Meridian-line, as far above the greater Latitude as beneath the leffer. For the, number of Leagues intercepted fhall be that which was required.

For Example: In the fecond Chart, pag. 113. I firt draw the 8 Rum's, from the Interection of the Meridian with the Parallel of 50 gr . of Latitude, either by that which. I have thewed before in the general Ule of Sines, Cbap. 11. Prop. 10. or by help of the Prorraction laft mentioned: For, laying the Center of the Protractor to the Point of Interfection (which is to be the Center of the Rumbs) and turning the Diameter of the Protragor until ir be parallel to the Meridians of the Chare (which is then done, when the Meridians and Parallels in the Chart fall under like divifions in the Protractor) I may make one prick at 11 gr .15 m . another at 22 gr .30 m . in the outward part of the Semicircle; and fo the reft.

Or, having neither Sector nor Procractor, I would have a Line of Chords fee on the fide of the Ruler which I am to ufe, from which I may take 60 gr . and wich that extent fetting one Foot of the Compaffes in the former Point of Interfection, draw an occulc Ark of a Circle, and therein prick down the former Arks from the Meridian, as in Cbap. 11. Prop. 10. So thefe Arks being pricked down by either of thefe ways, the Right Lines drawn through the Center and thofe pricks, thall be the Rumbs required.

The Rumbs being drawn, I take the diftance between the Parallels of 50 and 51 gr . upon A C, the chird Rumb;
and meafuring it in the Meridian-line, I find the Compaffes to reach from above $\frac{1}{10}$ of a Degree below the Parallel of 50 , but $\frac{3}{10}$ above the Parallel of 51 gr . intercepting $1 \mathrm{gr} \cdot \frac{2}{10}$ or 24 Leagues, fuch as 20 make adegree.

Again, I take the diftance upon the fame Rumb between the Pa rallel of 54 and 55 gr . which I find to be fomewhat longer than the former diftance between the Parallels of 50 and 51 ; but meafuring it in the Meridian Line, according to the Latitude of the Parallel, I find but $1 \mathrm{gr} . \mathrm{T}^{2}$ (or 24 Leagues) as before, for the number of Leagues anfwering to I Degree of Latitude upon this third Rumb.

And by the fame reafon, I may find the number of Leagues anfivering to a Degree of Latitude upon the reft of the Rumbs agreeable to the Table.

This confidered in general, I Thew more particularly in twelve Propofitions following, how of thefe four any two being given, the other two may be found, both by cMercator's Chart, and by this Sectior.

1. By one Latitude, Rumb, and Diffance, to find the Difference of Latitudes.

```
As the Radius,
    to the sine of the Complement of the Rwmb from the cMe- ridian: So: the Diffance upon the Rumb, to the difference of Latitudes:
```

Let the Place given be A, in the Latitude of 50 gr . C in a greater Latitude, but unknown, the diftance upon the Rumb being 6 gr . between them, and the Rumb the third from the Meridian.

Firf, I take 6 gr . from the diftance upon the Rumb, out of the Line of Lines, and make it a Parallel Radius, by putting it over in the Sines of 90 and 90: Then keeping the Sector at this Angle, I cake out the Parallel Sine of 56 gr .15 m . which is the Sine of the Complement of the third Rumb from the Meridian, and meafuring it- in the Line of Lines, I find it to be 5 gr . and fuch is the difference of Latitude required.

$$
Q_{2}
$$

Or, I may take out the Sine of $56 . \mathrm{gr} .15 \mathrm{~m}$. for the Complement of the chird Rumb from the Meridian, and make it a parallel Radius; then keeping the Sector at this Angle, I take 6 gr . for the diftance, either out of the Line of Lines, or any other Sca'e of Equal parts, or elfe out of the Meridian Lise, aind lay it on boch fides of the Seetor from the Center, either on the Line of Lines or Sines: fo the Parallel caken from the Terms of this diftance, and mealured in the fame Scale wherein the diftance was meafured, fhall thew the difference of Latiude to bes gr_{s} as beffore.

But in Chorter diftances; fuch as fall within the compafs of a days failing, this Work will hold much better; as may appear by comparing the Work with the Table following, where the Numbers in the front do fignifie the Leagues; thofe in the fide, the Rumb; and the reft in the middle, the difference of Latitude.

In the Chart let a Meridian A B be drawn through A, and in A with A B make an Angle of the Rumb B A C: Then open the Cornpaffes, according to the Latitude of the Places, to E F the quantity of 6 gr . in the Meridian, transferring them into the Rumb from A to C, and through C draw the Parallel BC, crofing the Merinian A B in B: fo the Degrees in the Meridian from A to B thall Shew the difference of Latitude to be 5 gr .
2. By the Rumb and both Latitudes to find the Difance upon the Rumb.

As the Sine of the Complement of the Rumb from the Meridian, is to the Radius:

> So is the Difference of Latitides, to the Diffance upon the Rumb.

As if the Places, given were A in the Laticude of $50 \mathrm{gr} . \mathrm{C}$ in the Latirude of 55 gr and the Rumb the third from the Mefidian.

Here I may take 5 gr . for the difference of Latitude out of the Line of Lines, and put it over in the Sine of 56 gr .15 m . for the Com-

The vee of the Meridian-line.

Complement of the third Rumb from the Meridian. Then keeping the Sector at this Angle, I take out the Parallel Radiur, and meafaring it in the Line of Lines; I find it to te 6 gr and fuch is che diftance upon the Rumt, which was required.

Or I may take the Lateral Radius, and make it a Parallel Sine of 56 gr . 15 m . the Complement of the Rumb from the Meridian: then keeping the Sector at this Angle, I take 5 g . for the diference of Latitude, either out of the Line of Lines, or out of fome other Scale of equal parts, and lay it on both fides of the Sector from the Center, either on the Line of Liwes or of Sines: fo the Parallel taken from the terms of his difference, and meafured in the fame Scale with the the difference, fhall fhew the diftance upon the Rumb to be 6 gr . or 12 J Leagues.

Or keeping the Sector at this Angle; I may take the difference beaween 50 gr . and 55 gr . out of the Meridian Line, and meafuring it in the Equator, I hall find it to be equal to 8 gr .22 p. of the Equator. Wherefore I take the Parallel between 822 and 822 out of the Line of Lines, and meafuring is in the Line of Lines, 1 hhall find it to be 989 ; which thews that according to this projection, the diftance uponthis third Rumb, anfwerable to the former difference of Latitudes, will be equal to 9 gr .89 p . of the Equator.

Or the Sector remaining at this Angle, I may take the difterence between 50 gr . and 55 gr . out of the Meridian Line, and lay it from the Center on both fides of the Sector, either on the Line of Lines or of Sines: fo the Parallel taken from the terms of this difference, fhall be the very Line of diftance required, she fame with A C or E F upon the Chart; which may ferve for the better pricking down of the diftançe upon the Rumb, withour taking it forth of the Meridiaß Line, as in the former Propofition.

Or if the Rumb fall nearer to the Equator, that the lateral Radius cannot be fitted over in it, this Propofition may be wroughe by Parallel entrance.
For, if 1 firf take out the Sine of $56 . \mathrm{gr} .15 \mathrm{~m}$, and make it a parallel Radius, by fitting it over in the Sines of 90 and 99 , or in the ends of the Line of Lines, and shen take $5: \mathrm{gr}$. for the difference of Latitudes out of the Line of Lines, and carry is parallel to the former, I hall find it to crofs both Lines of Lines in the Points of $6:$ and fo is gives the fame diftance as before.

Or if tac diftance be fmall, it may be found by the former Table.

The Ufe of the Meridian Line.

For the Rumb being found in the fide of the Table, and the difference of Latitude in the fame Line; the top of the Column wherein the difference of Latitude was found, Shall give the namber of Leagues in the diftance required.

Or we may find this difance in the Table of Rumbs in the fifth Prepofition following. For according to the example, look into the Table of the third Rumb for 5 gr . of Laticude, and there we fhall find 6 gr . Io parts under the title of diftence.

So if the difference of Latitude upon the Tame Rumb were 50 gr . the diffance would be 60 gr .13 parts. If the difference of Latitude upon the fame Rumb were only $\frac{1}{2}$ of a degree, the diftance would be only 60 parts, fuch as 100 do makea degree.

In the Chart leta Meridian A B be drawn through A, ard Parallels of Latitudethrough A and C; and then in A, with A B, make an Angle of the Rumb BAC: fo the diftance take from A to C, and meafured in the Meridian Line, according to the Laticude of the places, fhall be found so be 6 gr . or 120 Leagues. And fuch is the diftance sequired.
3. By the diftance and both Latitudes, to find the Rumb.

As the diftance upon the Rumb, to the difference of Latitudes :
So is the Radius, to the Sine of the Complement of the Rumb from the Meridian:

As if the places given were A, in the Latitude of so gr . C in the Latitude of 55 gr . the diftance between them being 6 gr . upon the Rumb. Firf I take 6 gr . for the diftance upon the Rumb, and lay it.on both fides of the Seltor from the Center; then out of the fame Scale Itake 5 gr . for the difference of Latitude, and so it open the Sector in the terms of the former diftance: fo the parallel Radius taken and meafured in she Sines, doth give 56 gr .15 m . the Complement whereof 33 gr .45 m . is the Angle of the Rumbs inclination to the Meridian, which was required.

In the Chart ler a.Meridian A B be drawn through A, and Parallels of Latitude, both through A and C; then open the Compaffes according to the Latitude of the places to EF, che quansity of $6 . \mathrm{gr}$. in the Meridian, and fetting one foot in A , surn the other till it crofs the

Parallel B C in C, and draw the right Line A C: fo the Angle B A C fhall fhew the inclination of the Rumb to the Meridian to be 33 gr . 45 m as before.

Thefechree lat Propofitions depend one on the other, and may be wrought as truly by the Common Sea-Chart as by this of Mercators Projection : and therefore in working them by the Sector, the diftance and the difference of Latitudes may as well or better be taken out of the Line of Lines (which here reprefenteth the Equator) or any other Line of equsi parts, as out of the inlarged degrees in the Meridian Line. But in the Propofitions following, che difference of Longitude muft be taken out of the Equator; the difference of Latitudes and diftance upon the Rumb mult alwaies be taken out of the Meridian Line : which I therefore call the proper difference, and proper diftance.

4. By the Longitude and Latitude of tro places to find the Rumb.

As if the places given were A, in the Latitude of 50 gr . Cin the Latitude of 55 gr . and the difference of Longitude between them were 5 gr .30 m .

In the Chart let Meridians and Parallels be drawn through A and C, and 2 Araight Line for the Rumb from A to C; then by that we fhewed Cap. 2, Propoftion 9. inquire the quancity of the Angle BAC, and it fhall be found to be 33 gr .45 m . which is the third Rumb from the Meridian. Wherefore she proportion holds for the Sector,

As A B the proper difference of Latitude: is to $B C$ the difference of Longitude:
So is A B Radius, to $B C$, the Tangent of the Rumb from the Meridian.

According to this I take the proper difference of Latitude from 50 gr . to 55 gr . out of the Line of Meridians, and lay it on both fides of the Sector from the Center; then I take the difference of Longitude 5 gr . $\frac{\pi}{2}$ out of the Line of Lines, and to it open the Sector in the terms of the former difference of Latitudes, fo the Parallel Ra* diustaken from between 90 and 90 : and meafured in the greater

122

The vere of the Meridian Lineo.

Tangent on the fide of the Sector, doth give 33 gr .45 ms . for the Rumb. required.

But if the Rumb fall nearer to the Equator;
As A D the difference of Longituder, is to D C the proper difference of Latitudes:
So A D che Radius, to D. Cthe Tangent of the Ramb from the Equator.

According to this I take the former difference of Latitudes from 50 gr to 55 gr . out of the Line of Meridians, and to it open the Sector in the rerms of the difference of Longitude reckoned in the Line of Lines from the Center, fo the Parallel Radius taken and meafured in the Tangent, doth give 56 gr .15 m . for the Rumb from the Equator: which is the Complement to the former 33 gr .45 m . and fo both ways it is found to be the third Rumb from the Meridian:

But if this Rumb were to be found in the common Sea-chart, it fould feem to be above 47 gr . which is more than the fourth Rumb from the Meridian.

> 5. By the Rumb and both Latitudes, to find the difference of Longilude.

As if the places given were A, in the Latitude of 50 gr . and C in the Latitude of 55 gr . and the Rumb the third from the Meridian.

In the Chart, let a Meridian be drawn through A, and a Parallel of Latitude through C, then in A, with $A B$, make the Angle of the Rumb from the Meridian B A C, (as was hewed Cap. 2. Prop. Io.) So :he degrees in the Parallel between B and C, fhall be found to be $5 . \mathrm{gr} . \frac{2}{2}$, the difference of Longitude which was required. Wherefore the proportion holds for the Sector,

As A B the Radius, to $B C$ the Tangent of the Rumb from the Meridian: So A B the proper difference of the Latitudes, to B C the difference of Longitude.

According to this we may take the Tangent of the Rumb which is here 33 gr .45 m . from the Meridian, out of the greater Tangent on the fide of the Sector, and putting it over between 90 and 99 , make it a Radius: then keeping the Sector at this Angle, take the proper difference of Latitudes from 50 gr . 1055 gr . out of the Line of Meridiars, and lay it on both fides.of the Sector from the Center: fo the Pdrallel taken from the terms of this difference, and meafured in the Line of Lines, thall fhew the difference of Longicude to be $5 \mathrm{gr} \cdot \frac{\mathrm{I}}{2}$.

As D C the Tangent of the Rumb from the Equator, to A D che Radius:
So C D the proper difference of the Latitudes, to $A D$ the differeace of Longicude.

According to this, we may beft work by Parallel entrance, firt taking 56 gr .15 m . for th: Angle of the Rumb from the Equator, out of the greater Tangent, and make it a Parallel Radius: then take the proper difference of Latitudes out of the Line of Meridians, and carry it Parallel to the former : fo we thall find it to crofs the Line of Lines in $5 \mathrm{gr} \cdot \frac{\mathrm{s}}{2}$. And this is the difference of Longitude required, the fame as betore.

But if this difference were to be found by the common Sea-chart, it Chould feem to be only 3 gr .20 m , which is more than two degrees lefs than the truth. And yet this error would be greater, if either the Latitude be greater, or the Rumb fall nearer she Equator, as may appear by comparing the common Sea-chart with the Table following.

126								
The third Rum'; rom the Meridian.			North-eaft by Nerth , South eaft by South,			North-weft by North, South-weft by South,		
	Long	Di/f.		Long.	Diff.		1 Long	Dift.
	Fr.per	Gr.Par.		Gr.Pa	Gr.Par		ir. P	Gr.Par.
			30	2103	3008		504	7216
	$\bigcirc 06$	120	31	2180	3728		517	7336
	I 33	240	32	2258	3849	62	5318	7456
3	200	361	33	2338	396	63	5463	7577
	267	481	34	12418	4089	64	5612	7697
	334	601	35	2500	4209	65	5768	78 ' 7
6	401	722	36	25821	43 30	66	5929	7937
7	468	842	37	2664	4450	67	6999	8058
8	536	962	38	2748	4570	68	6271	8178
9	603	108^{2}	39	2839	4690	69	6453	8298
0	671	$12: 03$	40	2921	48 II	70	6644	84.19
11	739	$\begin{array}{ll}13 & 23\end{array}$	41	3009	4931	1	6845	8539
12	807	1443	42	3098	5051	72	7055	8659
13	8.76	1564	43	3188	5171	73	7277	8779
1	944	1684	44	3280	5292	74	7512	8900
15	1013	1804	45	3374	5412	75	7762	9020
16	1183	19.24	46	3469	5532	76	8030	91.40
17	1253	2045	47	3567	5652	77	8315	9261
18	12231	2165	48	3666	5773	78	8625	9381
19	1293	2285	49	3767	58.93	79	8960	95 OI
20	I3 64	2405	50	3869	6013	80	9327	9622
21	1435	2526	51	3974	6133	8 r	9732	9742
22	1507	2646	52	4082	6254	82	10185	9862
23.	1580	2766	53	4191	6374	83	10697	9682
24	1653	2886	54	43.03	6494		112.90	IOI 03
25	1726	3007	55	4419	6615		11990	10223
26	1800	3127	56	4537	6745	86	128.45	10343
27	i8 75	3247	57	4658	6855	87	13947	10464
28.	1950	3367	58	4782	6975		15500	10584
29	2026	3.488	59	4911	7096		18158	10704
	2103	3608	601	5042	72161	90.		

The fourth Rusmb, from the Meridian.				North. South			bowe f^{2}, b- meff.	
	Lonq.						Long.	Dift.
	ur.P	r. Par.	ir	Gr.Par	Gr.par.	$\overline{G r}$	Gr.Par.	Gr.Par
		0	30	3147	4242	60	7546	8485
	100	$\pm 4 \mathrm{I}$	31	3263	43841	01	7749	8527
	200	283	32	3381	4525	62	7958	8768
3	300	424	33	3499	4667	63	8175	8909
	400	566	34	3619	4807	64	8399	9051
	501	707.	35	3741	4950	65	- 8631	9192
	601	849	36	3863	5091	66°	88731	9334
7	702	990	37	3988	5233	67	9123	9475
8	803	1131	38	4 Cl 14	5374	68	9385	9617
9	904	1273	39	4242	5515	69.	9658	9758
	1005	1414	40	4371	5665	70	9943	9899
		1556	41	45 03	5798	71	10243	10041
	1209	1697	42	4636	5940	72	10558	Íl 182
	13 II	1838	43	477^{2}	6081	73	10891	10324
	1414	1980	44	4910	6222	74	11243	10465
	1517	2121	45	5050	6364	75	11617	0606
	1621	2263	46	5 ± 93	6505	76	12017	10748
	1735	2404	47	5338	6646	77	124451	10889
	18.30	2545	48	5486	6788	78	129081	$1 \begin{array}{ll}10 & 31\end{array}$
	1936	2687	49	56	6929	79	13410 I	III 72
	2042	2828	50	5791	7071	80	13959 I	11314
	2149	2970	511	5948	$72 \quad 12$	81	145651	1455
	2256	3111	52	6109	7354	82	152421	11596
	2364	3254	53	6273	7495	83	160101	11738
24	2473	3394	54	$644^{\text {I }}$	7637	84	1689 I	879
	2583	3535	55	66 13	7778	85	179 41	21
	2694	3677	56	6790	7920		192211	2162
27	2806	3818	57	6971	8061	87	20871	12304
28	2918	3960	58	7157	8202	88	231951	445
29	30.32	4 I OI	59	7349	8344	89	271711	586
	3147	4243	60	7549	3485	901		

I28

The fifib Ramb from the Meridian.

North eaft and by Eaft. North wift and b) Weft. Sowib-eaft and by Eaft. South-wift and by Wi.ft.

The fixth Rumb from the Meridian:			Eaft Nortb caft, Weft North weft,	Eaft Soutb-caft. Weft South-weft.		
	Long:	Dift.	La Long. 1 Diff.	L		
$\overline{G_{r}}$	Gr. Par.	$\overline{\text { Gr.Par. }}$			rr.	Pr
		0	30			15678
	2	261	$31 \frac{7878}{8100}$		1870	15940
2	483	523	32 81 61 83 62	62	19213	16201
3	725	784	33 84 48 86 23	63	19736	16462
4	965	1045	34 87 37 88 84	64	20277	16724
51	1208	1306	35 90 30 91 46	65	2083^{8}	12985
6	1451	1568	36 93 27 9407	66	21420	17246
7	1694	1829	37 96 27 96 68	67	22025	17508
8	1937	2090	3899319930	68	22657	17769
9	2181	2352	39 IO2 401101 91	69	23315	18030
-	2426	2613	$40 \mid 10553110452$	70	24306	182.92
	2671	2874	411087110714	71	24727	185
12	2917	3136	42 III 93310975	72	25490	I 88
13	3165	3397	43 II 20 II2 36	73	262931	19075
14	3414	3658	$44 \mid 185311497$	74	27143	19337
15	3663	3920	451219211759	75	28046	195.98
16	39 I3	4 I 81	4612536120.20	76	29011	19859
17	4165	4442	471288712281	77	30046	20121
	4418	4703	$48 \mid 13244112543$	78	31162	20382
19	4675	4965	4913609128 こ4	79	32373	20643
20	4929	5226	5011398113065	80	33700	20905
	5187	5487	$5114360 \mid 13327$	8 L	35164	21166
22	5447	5749	$52\|14747\| 13588$		36800	21427
23	5708	6010	531514413846	83	38651	21689
24	5971	6271	541555014110	84	40789	21950
25	6236	6533	551596614372		43313	222 11
26	6504	6794	56116393114633		46405	22473
	6774	7055	571683114895		50388	22734
28	7046	7317	581728015156	88	56000	22995
29	73.20	6578	$5917772^{1} 15417$	89	65608	23250
30	7598	7839	601182 1815678	90		

The feventh Rumb from the Meridian.

Eaft and by North, Weft and by North,

Eaft and by South, Weft and by South.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{}

\hline \multicolumn{9}{|l|}{The eighth Rumb of Eaft and weft, with the Longitude answering to one deg. of diftance, and the diftance belonging to one degree of Longtiude.}

\hline La \& Long. \& Diff. \& \& \& Difor \& \& Long. \& Dift.

\hline $$
\left|\overline{G_{r}}\right|
$$ \& Gr. Par. \& Parts. \& \& Gr.P \& \& Gr \& Gr.P \& Parts.

\hline \& \& 10000 \& 30 \& 2 \& 8660 \& \bigcirc \& 200 \& 5000

\hline \& \& 9998 \& 31 \& \& 8571 \& 61 \& \& 4848

\hline \& 100 \& 9994 \& 32 \& 118 \& 8480 \& 62 \& 13 \& 4694

\hline 3 \& 100 \& 9986 \& 33 \& 19 \& 83.86 \& 63 \& 220 \& 4540

\hline 4 \& 100 \& 9975 \& 34 \& 121 \& 8290 \& 64 \& 228 \& 4383

\hline 5 \& 00 \& 9962 \& 35 \& 122 \& 8191 \& 65 \& 37 \& 4226

\hline 6 \& OI \& 9945 \& 36 \& 124 \& 8090 \& 66 \& 246 \& 4067

\hline 7 \& 101 \& 9925 \& 37 \& 125 \& 7986 \& 67 \& 256 \& 3907

\hline 8 \& OI \& 9902 \& 38 \& 127 \& 7880 \& 68 \& 267 \& 3746

\hline 9 \& 101 \& 9876 \& 39 \& 129 \& 77 71 \& 69 \& 279 \& 3583

\hline 10 \& 102 \& 9848 \& $4{ }^{1}$ \& 131 \& 7660 \& 70 \& 292 \& 3420

\hline II \& 102 \& 9816 \& 41 \& 133 \& 7547 \& 71 \& 3.07 \& 3255

\hline I2 \& 102 \& 9781 \& 42 \& ± 35 \& 7431 \& 72 \& 324 \& 3090

\hline 13. \& 102

103 \& 9743 \& 43 \& 137 \& 7313 \& 73 \& 342 \& 2923

\hline 14. \& 03 \& 9703 \& 44 \& 1.39 \& 7193 \& 74 \& $\begin{array}{ll}3 & 63\end{array}$ \& 2756

\hline 15 \& 103 \& 9659 \& 45 \& 141 \& 7071 \& 75 \& 386 \& 2588

\hline 16 \& 104 \& 9612 \& 46 \& 144 \& 6946 \& 76 \& 413 \& 2419

\hline \& 104 \& 9563 \& 47 \& 147 \& 6820 \& 77 \& 444 \& 2249

\hline 18 \& 105 \& 9510 \& 48 \& 149 \& 6691 \& 78 \& 481 \& 2079

\hline 19 \& 106 \& 9455 \& 49 \& 152 \& 6560 \& 79 \& 524 \& 1908

\hline 20 \& 06 \& 9397 \& 50 \& 155 \& 6428 \& 80 \& 576 \& 1736

\hline 2 \& 107 \& 9335 \& 51 \& 159 \& 6263 \& 8 I \& 639 \& 1564

\hline 22 \& 08 \& 9272 \& 52 \& 162 \& 6156 \& 82 \& 718 \& 1391

\hline 23 \& 109 \& 9205 \& 53 \& 166 \& 6018 \& 83 \& 820 \& 1218

\hline 24 \& 109. \& 9135 \& 54 \& 170 \& 5877 \& 84 \& 957 \& 1045

\hline 25 \& 110 \& 9063 \& 55 \& 174 \& 5735 \& 85 \& II 47 \& 871

\hline 26 \& 111 \& 89, 88 \& 56 \& 179 \& 55.92 \& 86 \& 1433 \& 697

\hline 27 \& 112 \& 8910 \& 57 \& 184 \& 54.46 \& 8 \& 1911 \& 523

\hline 28 \& 113 \& 8829 \& 58 \& 189 \& 5299 \& 88 \& 2865 \& 349

\hline 29 \& 114 \& 8746 \& 59 \& 194 \& 5150 \& 89 \& 5730 \& 74

\hline 301 \& 115 \& 8660 \& 60. \& 200 \& 5000 \& 90 \& \& O

\hline
\end{tabular}

132 The Ufe of the Meridian Line.

There Tables are calculated for each of the Rumbs.
The firlt feven have three Columns, and of then the firft containeth the degrees of Latitude from the Equinoctial to the Pole : the fecond doth give the difference of Longitude; and the third the diftance, both of them belonging to thas Rumb and Latitude.

As in the Table of the third Rumb; at the Latitude of 50 gr . I find under the tille of Longitude 38 gr .69 parts, and under the citle of Diftance 60 gr .13 parts. This fiews that if the courfe held conItantly on the third Rumb from the Equinoctial to the Latisude of 50 gr . the difference of Longitude would be 38 gr .69 parts of 100 , and the diftance upos the Rumb 60 gr . 13 parts. For here I reckon the diftance by degrees, rather than by Leagues or Miles, and fublivided each degree into 100 part,, rather than into 60 minuses, for the more eale in Calculation, and isithal to make the Calculation to agree the better, both with his, and my crofs-jtaff and other Inftruments.

The ufe of thefe Tables, for the finding of the difference of Longitude, is this. Turn to the Table of the Rumb, and there fee what Longitude belongech ro either Latitude, then rake the one Longitade out of the sther, the Remainder will be the difference of Longitude required.

As in the former Example, where the places given were A; in the Latisude of 50 gr . C in the Latitude of 55 gr . and the Rumb the third from the Meridian : I look into the Table of the third Rumb and and there find,

$$
\begin{aligned}
& \text { Latitude } 50 \mathrm{gr} . \\
& \text { Longitude } 38 \mathrm{gr.} 69 \text { parts. } \\
& \text { Latitude } 55 \mathrm{gr} . \\
& \text { Therefore the difference of Longitude } 44 \mathrm{gr} .19 . \\
& \hline \mathrm{gr.} 50 .
\end{aligned}
$$

There is another Ule of thefe Tables, for the defcribing of the Rumbs both on the Globe, and all forts of Charts. For having drawn the Circles of Longitude and Latitude, and finding by the Tables, the the difference of Longitude belonging to each Rumb and Latitude: If we make a prick in the Chart, at every degree of Latitude, accord ing to that difference of Longitude, and draw Lines through thofe Prick;, fo as they make no Angles, the Lines fo drawn thall be the Rumbs required.

The ule of the Eighth Rumb is fomething different frem the reft.

For there being here nochange of Latitude, I have fet ro each Latitude, the difference of Longitude, belonging to one degree of diftance, and clie diftance belonging to one degree of Longitude.

As if two places thall be 20 Leagues, or one degree diftant one from the other, in the latitude of 50 gr . the difference of Longitude. between them will be 1 gr . 55 parts. But if they differ one degree in Longitade, the diftance between them will be only 64 parts, which fall hore of 13 League؟, or at the moft 64 gr .28 parts, fuch as 10000 do make a degree.
6. By the difference of Longitude, Rumb, and one Latitude, to find the other Latitude.

As if the places given were A, in the Latitude of $50 \mathrm{gr} . \mathrm{C}$ in a greater Latitude, but unknown, the difference of Longitude $5 \mathrm{gr} . \frac{1}{2}$, and the Rumb the chird from the Meridian.

In the Chart let A B, DC, Meridians, be drawn through A and C, according to the difference of Longitude, one $5 \mathrm{gr} \cdot \frac{1}{2}$ from the other; and a Parallel of Latitude through A, croffing the Meridian CD in D : then in A, with $A B$, make an Angle of the Rumb B A E: fo the degrees in the Meridian between D and C , Chall be found to be 5 gr . the proper difference of Latitude which was required. Wherttore the proportion holds for the Scter,

> As A D the Radius, to D C the Tangent of the Rumb from the Equator ;
> So Â D the difference of Longitude, to $D C$ the proper difference of Latitude.

According to this, I take 56 gr .15 m . for the Angle of the Rumb from the Equator, out of the greater Tangent, and make is a Parallel Radius. Then I reckon $5 \mathrm{gr} . \frac{\mathrm{t}}{2}$ in the Line of Lines from the Center, for the difference of Longitude. So the Parallel taken from the terms of this difference, and meafured in the Line of Meridians, Thall reach from 50 gr . the Latitude given, to 55 gr . which is the Latisude required.

Or if the Rumb fall nearer to the Meridian,

As B C the Tangent of the Rumb from the Meridians, is to A B the Radius:
So B C the difference of Longisude, to A D the proper difference of Latitude.

According to this we may beft work by Parallel entrance; firt take 35 gr .45 m . for the Angle of the Rumb from the Meridian, out of the grearer Tangent, and make is a Parallel Radius; then take $5 \mathrm{gr} \cdot \frac{1}{2}$ for the difference of Longitude out of the Line of Lines, and carry it Parallel to the former, till the feet of the Compates fay in like Points: fo the Line between the Center and the place of this fay, being taken and meafured in the Line of Meridians from 50 gr . forward, fhall thew the Latitude required to be 55 gr . as in the former vay.

The like may be found by the Tables of Rumbs. For in the Table of the third Ramb, at the Latitude of 50 gr . I find the Longitude of 38 gr .69 p . To this if I add 5 gr .50 p . for the difference of Longi sude given, the compound Longitude will be 44 gr . 19 p . and this anfwers to the Latitude of 55 gr .

But if this difference of Latitude were to be found by the common Sea-chart, it fhould feem to be 8 gr .13 m . and fo the fecond Latitude fhould be 58 gr .13 m . which is above 3 gr . more than the rruth.
7. By one Latitude, Rumb, and diftance, to find the difference of Lone gitwde.

As if the places given were A in the Latitude of $50 \mathrm{gr} . \mathrm{C}$ ina greater Latitude but unknown, the diftance upon the Rumb be 6 gr . between them, and the Rumb the third from the Meridian.

In the Chart, let a Meridian A B, and a Parallel AD, be drawn through A, and in A, with A B, make an Angel B A C, for the Rumb from the Meridian; then open the Compaffes according to the Latirude of the places to $E F$, the quantity of 6 gr . in the Meridian, tranfferring them into the Rumb from A io C, and through C draw another Maridian D C, croffing the Parallel drawn through A in $D_{;}$fo the degrees intercepted in the Parallel from A to D, Thall thew the difference of Longitude required to be about $5 \mathrm{gr} . \frac{1}{2}$. Wherefore the proportion holds for the Sector.

As AC the Radius, dian: is to A D, equal to BC, the Sine of the Rumb from the MeriSo $A C$ ehe proper diftance upon the Rumb, to A D the difference of Longitude.

According to this I rake the Sine of 33 gr .45 mm . for the Angle of the Rumb from the Meridian, and make it a Parallel Radius; then keeping the Sector, at this Angle, I take 6 gr. for the diftance, out of the Meridian Line, according to the eftimated Latitudes of both places, and lay it on both fides of the Sector from the Center: fo the Parallel taken from the cerms of this diftance, and meafured in the Lines of Lines, fhallfhew the difference of Longitude to be about $5 \mathrm{gr} . \frac{1}{2}$.

Inchis and fome of the Prop following, where there is but one Latitude known, there may be fometimes an error of a minute or two, in the eftimation of she proper diftance, yet it may be rectified at a fecond operation.

This Propofition may alfo be wrought by the Tables of Rumbs. For according to the Example, in the Table of the third Rumb, at the Lacisude of 50 gr . I find the Longitude of 38 gr .6 g p . and the diftance of 60 gr .13 p. to this I edd 6 gr . for the diftance given; fo the compound difance will be $66 . g r$. I 3 p. and this anfwers to the Longitude of 44 gr .19 p . then if I take the one Longitude out of the other, the difference will be $5 . g r .50 \mathrm{p}$. s sbefore.

But if this difference were to be found by the common Sea-chart, it fhould feem ro be only $3 . \mathrm{gr} .20 \mathrm{~m}$. which is more chan 2 gr . Lefs than the truth.
8. By one Latitude, Rumbb, and diferenoe of Longitudes, zo find the diffance.

As if the places given were A, in the Latitude of 50 gr . C in a greater Latitude but unknown, the difference of Longitude between them being $5 . \mathrm{gr}_{\mathrm{C}} \frac{.}{2}$, and the Rumb the third from the Meridian.
In the Cliarclet A B, D C, Meridians be drawn through A and C, according to the difference of Longitude, and a Parallel of Latitude through A, croffing the Meridian DC in D; shen in A, with $A B$, make in Angle of the Rumb B AC: fo the diftance on the Rumb
from A to C taken and meafured in the Meridian, according to the eftimated Latitude of the places, fhall be found to be 6 gr . Wherefore the proportion holds for the Seftar.

As A D, equal to B Cy the Sine of the Rumb from the Meridian, is to $A \mathrm{C}$ the Radius:
So $A D$ the difference of Longitudes; to A C the proper diftance upon the Rumb:

According to this, I take the lateral Radius, and make it a Parallel Sine of 33 gr .45 m . which is here the Angle of the Rumb from the Meridian ; then I reckon $\Gamma \mathrm{gr}$. $\frac{1}{2}$ in the Lines of Lines from the Center, for the difference of Longitude: fo the Parallel taken from the terms of this difference, and meafured in the Line of Meridians, according to the Latitudes of the places, Thall there fhew the diftance required to be about 6 gr . which are 120 Leagues.

Or if the Rumb fall nearer to the Meridian, that the lateral Radius cannot be firsed over in his Sine, this Prop. muft be wrought by Parallel entrance, and fo alfo it gives the fame diftance as before.

Orwe may frod this diftance by the Table of Rumbs. For in the Table of the shird Rumb, ar the Latitude of 50 gr . I find the Longitude of $38 \mathrm{gr}: 69 \mathrm{p}$. and the diftance of 60 gr .13 p . To this Longitude here toand, I add 5 gr .50 p . for the difference of Longitude given: fo she compound Longitude will be 44 gr r. 19 p . and shis anfwersto the diftance of $66 \mathrm{gr}_{\mathrm{o}} 15 \mathrm{p}$. Then if 1 , cake the one diftance out of the other, the remainder will be 6 gr .2 p . for the diftance required.

Bur if this diftance were to be meafured on the common Sea-chart, it fhould feem to be almoft 10 gr . or at the leaft 197 Leagues, above 77 Leagues more than the truth.
9. By one Latitude, diftance, and difference of Longitude, to find the
Rumb.

As if the places given were A, in the Latitude of $50 \mathrm{gy:}$ C in a greaser Latitude, but unknown, the difference of Longitude between them being $5 \mathrm{gr} \cdot \frac{3}{2}$, and she diftance 6 gr . upon the Rumb.

In the Chart let A B, D C, Meridians, be drawn through A and C,
and a Parallel of Latitude through A; then open the Compaffes according to the Latitudes of the places, to E F the quantity of $6 \mathrm{gra}^{3}$ iu the Meridian, and fetting the one foot in A , the other foot fhall crofs the other Meridian in C : and if we draw the right Line A C, the Angle B A C fhail thew the inclination of the Rumb to the Meridian, to be about 33 gr .45 ms . Wherefore the proportion holds for the Sector,

> As A C the proper diftance updn the Rumb, is so A D the difference of Longitude :
> So A CRadius, to A D, equal to BC, the Sine of the Rumb from the Meridian.

According to this, I take che proper diftance 6 gr . out of the Line of Meridians, and lay ir on both lides of the Sector from the Center; then I take the difference of Longivude $5 \mathrm{gr} . \frac{2}{2}$ oue of the Line of Lines, and to it open the Sector in the cerms of the former diftance : fo the Parallel Radius caken from between 90 and 90 , and meafured in the Sines, doth give about 33 gr .45 m , for the Rumb required.

But if this Rumb were to be found by the common Sea-chart, it fhould feem to beabove 66 gr . and fo almoft the fixth Rumb from the Meridian.

10. By the Longitade and Latitude of two places, to find their diffance upon the Rumb.

Let the Sector be opened in the Lines of Lines unto a right Angle (as was thewed before Cap. 2. Prop. 7.) then rake out the proper difference of Latitude, and lay it on the one Line, and the difference of Longitude, and lay it on the other line, fo as they may both meet in the Center, marking how far they extend. For the Line taken from the terms of their extenfion, and meafured in the Meridian, according to their Latitudes, fhall thew the diftance required.
So if she places given were A and C, A in the Latitude of 50 gr . C in the Latitude of 55 gr . the proper difference of Latitude fhall be the Line A B, and let BC the difference of Longitude bes gr . $\frac{1}{2}$. we Thall find that A C the diftance upon the Rumb is about 6 gr . which make 120 Leagues:

138

 The Uje of the Meridian Lime.For in the Chart, let an occulc Meridian be drawn through A, and a Parallel of Latitude through C , croffing the former Meridian in B , and a right Line for the Rumb, from a to C , fo have we a Rectangle Triangle A B C , whofe Bafe A C, taken and meafured in the Meridian from E below 50 gr . to F , as much above 55 gr . doth contain the quanrity of 6 gr .

In the lime manner the Sector being opened to a right Angle, in the Lines of Lines; if we take the difference of Latitude out of the Line of Meridians, in his proper place from 50 gr .1055 gr . and place is on one of the fides from the Center, to refemble A B, then reckon the difference of Longitude on the other Perpendicular Line from the Center to 5 gr . $\frac{1}{2}$, inftead of B C, we fhall have the like Rectangle Triangle on the Sector, to that which we had before on the Chare ; and if we take our the Bafe of it, and meafure it in the Line of Meridians frem below 5 gr . to as mach above 55 gr . We fhall find as before, that it containeth about 6 gr . or 120 Leagues.
But if this diftance were to be meafured on the common Sea-chart, it fhould feem to be almoft $7 \mathrm{gr} \cdot \frac{1}{4}$, or 245 Leagues; which is 25 leagues more than the truth.
is. Ry the Latitude of troo places, and the diffance upon the Ramb, to find the difference of Longitude.

Les the Seciter be opened in the Lines of Lines to a right Angle, then take out the proper difference of Latitudes, and lay it on one of the Lines from the Center, then take the proper diftance with a pair of Compafies, and jecting one foot in the terms of the difference, turn the other foot to the other Line of she Sector, and it thall there thew the difference of Longirude required.

So if the place given were A, in the Latitude of 50 gr . C in the la. situde of 55 gr . with 6 gr . of diftance one from another, we thall find their diference of Longitade to be abour $\$ \mathrm{gr} . \frac{1}{2}$.

For in the Chart ler a Meridien A B be drawn for the one, and AC $A D_{2}$ Parallels of Latitude for them both : Then open the Compar. fes according to the Latitude of the places, to EP the quantity of 6 gr . in the Meridians, and ferting one foot in A, having Latitude of 50 gr turn the other to the Parallel of 55 gr , and it thall shere cut off the required difference of Longitude $\mathrm{BC}_{5} \mathrm{gr} . \frac{1}{2}$.

In the fame manner, the Sector being opened to a right Angle, in the Lines of Lines: if we rake the difference of Longitude out of the Line of Meridians in his proper place from 50 gr . unto 55 gr . and place it on one of the Lines from the Center; then take 5 gr . tne diftance up. on the Rumb out of the fame Line of Meridians, according to the Lititudes of the places, and fet the one foot in the term of the former difference, turning the other foor to the other Perpendicular Line, we Thall find that it will crofs it about $s \mathrm{gr} \cdot \frac{1}{2}$ from the Center, which is the difference of Longitude required.

But if this difference of Longitude were to be found by the common Sea-chart, it would feem to be only 3 gr .20 ms , which is more than 2 gr .10 m . lefs than the truth.
> 12. By one Latitude, diffance and difference of Longitudes, to find the dif= ference of Latitudes.

Let the Sector be opened in the Line of Lines to a right Angle, and let the difference of Longitude be reckoned in one of thoie L ines from the Center; then take the proper diftance with a pair of Compaffes, and fetting the one foot in the term of the former difference, turn the other foot to the other Line of the SeCtor, and is Shall thence cut off a Line, equal to the proper difference of L Latitude required.

So if the places given were A and C, A in the Latieude of 50 gr . C in a greater L aritude bur unknown, the difference of L ongitude beeween them 5 gr . $\frac{1}{2}$, and the diftance upon the Rumb 6 gr . or I 20 Leagues, we Thall find the difference of L atitude to be 5 gr .

For in the Cbart, let occult Meridians be drawn through A and C, and a Parallel of L aritude through A, then open the Compaffes according to the eftimated L atitudes of the places to E F the quantity of 6 gr . in the Meridian, and fetting the one foot in A, turn the other to the Meridian drawn through C, and it fhall there cut off the Line D C, which is the difference of L atitude required.

In the fame manner, the Setar being opened to a righe Angle in the Line of Lines, if in the one Line we reckon the difference of Longitude from the Center to $5 \mathrm{gr} \cdot \frac{2}{2}$, then taking 6 gr . for the diftance out of the Line of Meridians, according to the Latitude of the places, we fer the one foot in the cerm of the given difference, and turn the other foot to the orther Perpendicular Line, we fhall find that

140 The Use of the Meridian-line.
it cuts a L ine fromit, which taken and meafured in the Line of Meridians, from $5 \circ \mathrm{gr}$. on forward, doth hew the difference of Latitude to he as before 5 gr .

But if this difference of L atitude were to be found by the common Sea-chart, it would feem to be only. 2 gr .25 m, which is 2 gr . 35 m . lefs than she truth. Such is the differeace between both thefe Cliarts.

THE

 THIRD BOOK

 THIRD BOOK

 OF THE

 OF THE

 S E C T O R,

 S E C T O R,}

Containing the Ufe of the particular Lines.

THe Lines of Lines, of Superficies, of Solids, of Sines, with the lateral Lines of Tangents and Meridians, whereof I hive hereunto fpoken, are thofe which I principally intended; that little room on the Seflor which remainesh, may be filled up with fuch paricular Lines, as each one thall think convenient for his purpofe. I have made choice of fuch as I rhought might be bett prickr on without hindring the fight of the former, viz. Lines of Quadratsere, of Segments, of Infcribed bodies, of Equated bodies, and of Metals.

CHAP. I.

of the Lines of Quadrature.

THe Lines of Q iadrature may be known by the lerter Q, and by their place between the Lines of Sines. Q liznifieth the lide of a 5 quare ; 5 the fide of a Pencagon with five equal fides, 6 of a Hexagon with lix equal lides, and fo $7,8,9$, and ro. Sliands for the Semidiameter of a Circle, and go for a Line equal to 90 gr . in the Circumference. The ufe of them may be :

1. Tomake a fquare equal to a Circle given:
2. To make a Circle equal to a Square given.

If the Circle be firft given, take his Semidiameter; and to it open the Seeter in the Points at S : fo the Parallel taken from between the Points at Q, thall be the fide of the Square required.

If the Square be given, take his fide, and to it open the Sector, in the Points at Q: So the Parallel taken from between the Points at S, fhall be the Semidiameter of the Circle required.

Let the Semidiameter of the Circle given be AB, the fide of the Square equal unto it fhall be found to be $C D$.
3. To reduce a Circle given, or a Square into an equal Pentagon, or other like fided and like angled Figare.

Take the fide of the Figure given, and fit it over in his due Points:

> Of the Lines of Segments?
fo the Parallels taken from between the Points of the other Figures, thall be the fides of thofe Figures : which being made up with Equal Angles, fhall be all equal one to the other.

Let the Semidiameter of the Circle given be A B, the fide of an Hexagon equall to this Circle, fhall by thefe means be found to be GH ; and the fides of an Octagon to be IK. Other Planes not here fee down, may firit be reduced into a Square, by the fixth Prop. Superf. and then into a Circle or other of thefe equal Figures, as before.
> 4. To find a right Line, equal to the Circumference of a Circle, or other part thereof.

Take the Semidiameter of the Circle given, and to it open the SeCtor in the Points at ${ }^{r}$; fo the Parallel taken from betweenthe Points at 90 in this Line, \mathbb{E} the fourth part of the Circumference: which being known, the'other parts may be found out by the fecond and third Prop. of Lines.

Thus if the Semidiameter of the Circle given be A B, the right Line E F fhall be found to be the fourth part of the Circumference. Therefore the double of E F fhall be equal to the Circumference of 180 gr . and the half of E F be the Circumference of 45 gr . and fo in the reft.

CHAP. F.

Of the Lizes of Segments.

THe Lines of Segments which are here placed between the lines of Sines and Superficies and are numbred by $5,6,7,8,9$, 10, do reprefent the Diameter of a Circle, fo divided into a hundred parts, as that a right Line draw through thefe parts, Perpendicular to the Diameter, fhall cat the Circle into two Segmenteg, of which the greater Segment hall have that proportion to the whole Circle, as the parts cut have to 100 . The ufe of them may be,

[^0]2. Tofind a Proportion between a Circle and bis Segments giver:

Let the Sector be opened in the Points of 100 to the Diameter of the Circle given: fo a Parallel taken from the Points proportiona. ble to the great Segment required, thall give the depth of that greater Segment:

Or if the Segments be given, 'let the SeCtor be opened as before; then take the depth of the greater Segment, and carry is Parallel to the Diameter: fo the number of Points wherein they ftay, thall thew the proportion to 100.

A

Asif the Diamerer of the Circle given were B L, the depth of the greater Segaent LO being 75, doth fhew the proportion of the Segment O M L N to the Circle, to be as 75 , to 100 ; viz. three parts of four.

Hence I might fhew, if there were any ufe of it,
2. Te find the fide of a Square, equal to any known Segment of a Circle.

The fide of a Square equal to the whole Circle, may be found by the former Chap. and then having the proportion of the Segment to the Circle, we may diminifh the Square in fuch proportion by that which hath been fhewed Lib.I. Cap.3. Prop. 3.

CHAP. III.

Of the Lines of Infcribed Bodies.

T He Lines of Infcribed Bodies are here placed between the Lines of Lines, and may be known by the letters $\mathrm{D}, \mathrm{S}, \mathrm{I}, \mathrm{C}, \mathrm{O}, \mathrm{T}$, of which D fignifieth the fide of a $D_{\text {odecabedron, I }}$ of an I. \int cof abedron, C of a Cube, O of an OEtahedron, and T of a Tetrabedron, all infcribed into the fame Sphere, whofe Semidiameter is here fignified by the letrer S.
The ufe of thefe Lines may be,

1. The Semidlameter of a Sphere biing given, to find the fades of the five regular Bodiess which mag be ingcribed in the aid Sphere.
2: The fide of any of the five regular Bodics being given, to fnd the Semsi-diameter of a Sphers, that will circums cribe the Said Body.

If the Sphere be firft given, take his Semidiameter, and to it open the Seftor in the Points at S :if any of the other badies be firt given, take the fide of it, and fit it over in his due Points : fo the Parallel taken from between the Points of the other bodies, thall be the fides of thole bodies, and may be infcribed into the fame Sphere.

So if the Semidiamerer of the Sphere be A C, the fide of the Dodecabedron infcribed fhall be D E. CHAP. IV.

of the Lines of Equated bodies.

THe Lines of Equated bodies, are here placed between the Lines of Lines and Solids, noted with thefe lecters D, I, C, S, O, T, of which D ftands for the fide of a Dodecabedron, I for the lide of an Icofabedron, C for the fide of a Cube, S for the Diamerer of a Sphere, O for tie tide of an UCtabedron, and T for the fide of a Tetrabedron, all equal one to the other. The ufe of thele Lines may be,

1. The Diameter of a Sphere being given, to find the fides of the five rcgular bodies, equal to tbat Sphere.
2. The fide of any of the five regular bodies being given, to find the Diameter of a Sphere, and the fides of the other bodies, equal to the fir fo bodygiven.

If the Sphere be firft given, take its Diameter, and to is open the Sector in the Points at S : if any of the other bodies be firt given, take the fide of it, and fis it over in his due Points, fo the Para'lels taken from between the Points of the other bodies, thall be the lides of thofe bodies equal to the firft body given.

Thus in she laft Diagram, if the Diameter of a Sphere given be B C, the fide of the Dodecabedron equal to this Sphere, would be found to be FG.

CHAP. V.
 of the Lines of Metals.

THe Lines of Metals are here joyned with thofe before of Equated bodies, and are noted with shefe Characters, $O, 8,6 ; D ; 8 ; 0,4 ;$ of which © fands for Gold, I for Quickfilver, $\bar{\zeta}$ tor Lead, D for Sil ver, \& for Copper, of for Irons and ψ for Tin. The ule of shem is so give a proportion beween thefe feveral Metals, in their magnitude and weight, according to the experiments of Marinus Gbetaldus, in his book called Promotus Archimedes.

1. In like bodies of feveral Metals, and equal weight, baving the ssagnitude of the one, to find the magnitisde of the ref.

Take the magnitude given out of the Lines of Solids, and to it open the Settor in the Points belonging to the Metal given: fo the Parallels taken from between the Points of the other Metals, and meafured in the Lines of Solids, thall give the magnitude of their bodies.

Thus, having Cubes or Spheres of equal weighr, but feveral Me: tals, we fhall find, that if thofe of Tin contain 10000 D , the orhers of Iron willcontain 9250 , thofe of Copper 8222 , thofe of Silver 7161 , thofe of Lead 6435, thofe full of Quickfilver 5493, and thofe or Gold 3895.
> 2. In like bodies of Ceveral Metals and equal magnitade, bauing the weight of one, to find the weights of the reft.

This Propofition is the converfe of the former, the proportion not direa, but reciprocal, wherefore having two like bodies, take the given weight of the one out of the Lines of Solids, and to it open the Sector in the Points belonging to the Meral of the other body : fo the Parallel taken from the Points belonging to the body given, a nd meafured in the Lines of Solids, fhall give the weight of the body required.

Asif a Cube of Gold weighed 38% and is were required to know the weight of a Cube of Lead having equal magnitude. Firft I take $38 l$, for the weight of the golden Cube out of the Lines of Solids, and put it over in the Points of $\bar{\xi}$ belonging to Lead : fo the Parallel taken from between the Points of \odot ftanding for Gold, and meafured in the Lines of Solids, doth give the weight of the leaden Cube requi-: red to be $13 l$.

Thus if a Sphere of Gold fhall weigh roooo, we thall find that a Sphere of the fame Diameter full of Quickfilver fhall weigh 7143, a Sphere of Lead 6053, a Sphere of Silver 5438 , a Sphere of Copper 4737, a Sphere of Iron 4210 , and a Sphere of Tin 3895.

of the Lines of Metals.

3. Abody being given of one Metal, to make another like unto it of anothey Metal, and equal weight.

Take out one of the fides of the body given, and put it over in the Points belonging to his Metal : fo the Parallel taken from between the Points belonging to the other metal, fhall give the like lide, for the body required. If it be an irregular body, let the other likefides be found out in the fame manner.

Let the body given be a Sphere of Lead containing in Magnitude 16 d , whofe Diamerer is A, to which I amto make a Sphere of Iron, of equal weight: If I take out the Diamerer A, and put it over in the Points of ξ belonging to Lead, the Parallel taken from berween the Points of o ${ }^{\prime \prime}$, ftanding for Iron, thall be B, the Diameter of the Iron Sphere required. And this compared with the other Diameter, in the Lines of Solids, will be found to be 23 d . in magnitude.
4. A body being given of one Metal, to make another like unto it of another Metal, according to a weight given.

Firft, find the fides of a like body of equal weight, then may we either augment or diminifh them according to the proportion given, by that which we fhewed before in the fecond and third Prop. of Solids.

As if the body given were a Sphere of Lead, whole Diameter is A, and it were required to find the Diamerer of a Sphere of Iron, which fhall weigh three times as much as the Sphere of Lead: I take A, and put it over in the Poinis of \bar{B}, his Parallel taken from between the Points of of Thall give me B for the Diameter of an equal Sphere of Iron: if this be augmented in fuch proportion as I unto 3 , it giveth \mathcal{C}_{2} for the Diameter required.

Of the Lines on the edges of the Sector.

HAving fhewed fome ufe of the Lines on the flat fides of the Sector, there remain only thofe on the edges. And here one half of the outward edge is divided into inches, and numbred according to their diftance from the ends of the Setior. As in the Sector of fourteen inches long, where we find I and 13 , it fheweth that divifion to be I inch from the nearer end, and 13 inches from the farther end of the Sector.

The other half containeth a Line of lefler Tangents, to which the Gnomon is Radius; They are here continued to 75 gr . And if there be need to produce them farther, Take 45 d , out of the number of degrees required, and double the remainder: fo the Tangent and Secant of this double remainder being added, Thall make up the Tangent of the degrees required.

As if A B being the Radius, and BC the Tangent Line, it were required to find the Tangent of 75 gr. If we take 45 gr . out of 75 gr . the remainder is 30 gr . and the double 60 gr .whore Tangent is B D, and the Secant is A D : if then we add A D to B D, it maketh BC, the Tangent of 7.5 gr , which was required. In like fort, the Secant ot 6.1 gro.added to the Tangent of 61 gr . giverh

Of the Lines on the edges of the Sector.

giveth the Tangent of 75 gr 530 ms . and the Secant of 62 gr . added to the Tangent of 62 gr . givech the Tangent of 76 gr . and fo in the reft. The ufe of this Line may be,

To obferve the Altitste of the Snn.

- Hold the SeCtor fo as the Tangent B C, maybe Vertical, and the Gnomon B A, parallel to the Horizon ; then turn the Gnomon toward the Sun, fo thas it may caft a fhadow upon the Tangent, and the end of the Shadow thall fhew the Altiunde of the Sun. So if she end of the Gnomon at A, do give a thadow unto H , it theweth that the Altitude is 38 $\mathrm{gr} . \frac{1}{2}$, if unto D , then 60 gr . and fo in the reft.

There is another ufe of this Tangent Line, for the drawing of the hour Lines upon an ordinary Plane, whereof I will fet down thefe Propofitions.

1. To drase the hour Lines upon an Horizontal Plane.
 2. To draw the boar Lines upon a direet Fertical Plane.

Firft draw a right Line A C for the Horizon, and the Equator, and crofs it at the Point A, about the middle of the Line, with A B another right Line, which may ferve for the Meridian, and the hour of 12 ; then take out 15 gr . ous of the Tangents, and prick them down in the Equator on both lides from 12 : fo the one Point fhall ferve for the hour of II, and the other for the hour of I . Again, take out the Tangent of 30 gr , and prick it down in the Equator on both fides from 12 : fo the one of thefe Points fhall ferve for the hour of io, and the other for the hour of 2 . In like manner may you prick down the Tangens of 45 gr . for the hours of 9 and 3 , and the Tangent of 60 gr . forthe hours of 8 and 4 , and the Tangent of 75 gr . for the hours of 7 and 5 .

Or if any pleafe to fer down the parts of an hour, he may allow 7 gr .30 m . for every half hour, and 3 gr .45 m . for every quarter. This done, you are co confider the Latitude of che plice, and the quality of the Plane. So the Secant of the Latitude thall be the Semidiameter in a Vertical Plane, and the Secant of the Complement of the Latitude in an Horizonral Plane.

For exam:'e, about London, the Latitude is $5 \mathrm{tgr}, 30 \mathrm{~m}$. and les the Plane be Vertical. If youtake A V, the Secant ot 51 gr .30 m . out of the Sector, and prick it down in the Meridian Line from A to V , the

152

The Ufe of the leffer Tangent:

Point V fhal be the Center : and if you draw right Lines from V unto II, and 10 , and the reft of the hour Points, they fhall be the hour Lines required.

But if the Plane be Horizontal, then you are to take out A H the Secant of 38 gr .30 m . For the Semidiameter, and prick it down in the Meridian Line from A unto H ; fo the right Lines drawn from the Center Hunto the hour Points, thall be the hour Lines required; only the hour of 6 is wanting, and that mult always be drawn Parallel to the Equator, through the Center V in a Vertical, through the Center $\mathrm{H}_{\text {s }}$ in an Horizontal Plane.

This being done, if you fet the Lines A H, H V, to a right Angle (HAV) the right Line HV the Bafe of this Triangle fhall be the Axis of the flyle for cither Plane.
3. To draw the haur Lines on á Polar Plane.
4. To dram the hour Lines on a Meridian Plane.

Ina Polar Plane the Equator may be alfo the fame with the Horizontal Line, and the Hour Points may be pricked on as before, but the hour Lines muft be drawn Parallel to the Meridian.

In the Meridian Plane, the Equator will cut the Horizontal Line with an Angle equal to the Complement of the Latitude of the place; then may you make choice of the Point A, and there crofs the Equator with a right Line, which may ferve for the hour of $6:$ fo the Tangent of 15 gr . being pricked down in the Equator on both fides from 6, thall ferve for the hours of 5 and 7 ; and the Tangent of 30 gr . for the hours of 8 and 4 , and the Tangent of 45 gr . for the hours of 3 and 9 ; and the Tangent of 60 gr . for the hours of 2 and 10 ; and the Tangent of 75 gr . for the hours of I and 11. And if you draw right Lines through there hour Points, croffing the Equator at right Angles, they fhall be the hour Line required.

The Subftilar will be the fame with the hour of 12 in the Polar Plane, and with the hour of 6 in the Meridian Plane : the Axe's of the Atile may be Parallel to the Subltilar in either Plane according to the diftance of the third hour from she Subitilar:

5. To draw the bost Lines in a Vertical Declining Plane.

Firf, draw A V the Meridian, and A E the Horizontal Line, crofing

55

croffing one the other at right Angles in the point \mathbf{A}. 2. Then take oat A V, the Secant of she Latisude of the pace, which you may fuppofe to be $5^{\mathbf{L}} \mathrm{gr} .30 \mathrm{~ms}$, and prick it down in the Meridian Lime from A unto V.
3.Bectaure is is a declining Plane, and you may fuppofe it to decline 40 gro

154

The UJe of the leffer Tangent.

40 gr . Eaftward, you are to wake an Angle of the Declination upon the Center A, below the Horizontal Line, and so the left hand of the Meridian Line, tecaufe the declination is Eaftward, for otherwife is Thould liave been to the right hand, if the Declination had been Weftward.
4. Take A H, the Secant of the Complement of the Latitude out of the SeEor, and prick it down in the Line of Declination from A unto H_{2} as you did before for the Semidiameter in the Horizontal Plane.
5. Draw a Line at full lengeh through the Point A, which muft be Perpendicular unto A H, and cut the Horizontal Line according to the Angles of Declination, and it will be as the Equator in the Horizontal Plane.
6. Take the hour Points out of the Tangent Line in the Sector and prick them down in this Equator on both fides from the hour of 12 at A.
7. Lay your Ruler, and draw right Lines through the Center H, and each of thefe hour Points: fo bave you all the hour Lines of an Horizontal Plane, only the hour of 6 is wanting, and that may be drawn shrough H Perpendicular to H A.

Lattly, you are to obferve and mark the Interfections, which there hourstines do make with A E ohe Horizontal Line of the Plane: and then if you draw right Lines through the Center V, and each of thefe Interfections, they fhall be the hour Lines required.

The Line H F draw up to the Horizon, and Parallel to the Meridian, will give the Subftilar V F: The Line F G drawn Perpendicular to V F, and equal to $F H$, will give $V G$, the Axis of the ftile.

6. To prickdown the hozr Points another way.

Having drawn a right Line for the Equator as before; and made choice of the Point A, for the hour of I 2 : you may at pleafure cut of two equal Lines A 10 , and A 2. Then upon the diftance between so and 2, make an Equilareral Triangle, and you thall have B for the Center of your Equator, and the Line A B lhall give the diftance from A to 9 , and from A to 3. That done, take out the diftance between o and 3 , and this thall give the diftance from B unto 8 , and from B anto 4 ; again, from 4 to 11 , and from 8 unto 1 , and alfo from 8 to 7. So have you the hour Points, and if you sake out the diftance B 1, B 3 , $B 5$, cicc. You may find she Points not only for the half hours, but alfo for the quarters.

But if it fo fall out, that fome of thefe hour Points fall out of your Plane, you may help your felf by the larger Tangent, both in the Ver.. tical, and Horizontal Planer.

For if at the hour Points of 3 and 9 , in the Scheme of the Horizontal and Vertical Dials, you draw occule Lines Parallel to the Meridian; the diftances D C between the hour Line of 6 , and the hour Points of 3 and 9 , will be equal ro the Semidiameter AV in a Vertical, and AH in a Horizontal Plane, and if they be divided in fuch fort as the Line A C is divided, you hall have the Points of 4 , and 5 , and 7 , and 8 , with their halfs and quarters.

As in the Horizontal Plane, take out the Semidiameter A H, and make it a Parallel Radius by firting it over in the Sines of 90 and 90 : Then take 15 gr . out of the larger Tangent and lay them on the Lines of Sines, where they will reach from the Center unto she Sines of 15 gr .32 mm . therefore take our the Parallel Sine of 15 gr .32 m , and it fhall give the diftance from 6 unto 5, and from 6 unto 7 , in your Ho rizontal Plane. That done, take our 30 gr . out of the larger Tangent, and lay them on the Sines, from the Center anto the Sines of 35 gr . 16 m . and the Parallel Sine of 35 gr .16 m . Thall give you the ditance from 6 unto 4, and from 6 unto 8, in your Horizontal Plane. The like may be done for the half hours and quarters.

So alfo in the Vertical declining Plane. If you firft take out the Secant of the declination of the Plane, and prick it down in the Horizontal Line from A unto E, and through E draw right Lines Parallel to the Meridian, which will cut the former hour Lines of 3 and 9 , or one of them in the Point C; then take out the Semidiameter A V, and and prick it down in thefe Parallels from C unto D, and draw right Lines from A unto C, and from V unto D, the Line V D fhall be the hour of σ, and if you divide thefe Lines A C and D C, in fuch fors as you divided the like Line D C in the Horizohtal Plane, you thall have all the hour Points required.

Or you may find the Point D, in the hour of 6 , without knowledge cither of Hor C. For having prickt down AV in the Meridian Line, and A E in the Horizontal Line, and drawn Parallels to the Meridian through the Points at E,you may take the Tangent of the Latitude out of the Sector, and fit it over in the Sines of 90 and 90 : fo the Parallel Sine of the Declination meafured in the fame Tangene Line, thall there fhew the Complement of the Angle D V A, which the hour Line of 6 maketh with the Meridian; then having the Point D, take ous the Se
midiameter V A, and prick it down in thofe Parallels from D unto C : fo thall you have the Lines D C and $\mathrm{A} C$ io be divided as before.

The like might be ufed for the hour Lines upon all other Planes. But I muft not write all shat may be done by the Sector. It may fuffice that I have wrote fomething of the lle of each Line, and chereby given the ingenuous Reader occafion to think of more.

The Conclufion to the Reader.

IT is well known to many of yoth, that this Seltor was thus contrived, the mof part of this Book written in Latine, many Cuples tranfcribed and dipperjed more than fixteen years fince. I ams at the laft contented to give way that it conse forth in Englith. Not that I tbink it worthy either of my labour, or the prblick view, but partly to Satisfe their importunity, who not underAtanding the Latine, yet were at the charge to bsy the Inftrument, and partly: for my own eafe. For as it is painful for others to tranifcribe my Copy, fo it is tronblefome for me to give fatisfaction berein to all that defire it. If I find this to give you content, it hall incourage me to do the like for my CrofsItaff, and fonse other Inftruments. In the mean time bear with the Printers. farlts, and fo I ref.

Greflam Coll. Maij. 1623.
$E: G$.

FINIS.

THE
 SECTORALTERED; AND
 Other SCALES ADDED:

With the Defcription and Ule thereof.

Invented and written by Mr. Samuel Fofter, , ometime publick Prof effor of Aftronomy, is Grefham Colledge in London.

And now Publifhed by $V V . L$.

> LONDOT,

Printed by Andrew Clark, 1673.

THE

SECTOR ALTERED.

CHAP. I.

Of the Sector in general.

 Monglt the many Writers that have been upon the Sector, Mr. Gunter hath done belt, the Lines of his Infrument being moft in number, ard of the molt formal contrivance, and molt largely Commented upon: yet fome Inconveniences have been found in the Ule of that Inttrument: Partly becaufe his Lines of Tangents, Secants, and Rumbs, or Meridional parts come not from the Center, and fo could not in all cafes with convenience admit of proportional Works; and partly becaufe he had no Line of verfed Sines, (of which inhis Book there is good U(e, and might have been much more) but initead thereof he is compelled to ufe the Line of right Sines, which is bue half of the whole Scale of verfed Sines, and befides the pares of it itand the contrary way, fo that the fitting of the proportional terms whereby to work with balfe the Scale inttead of the whole, and then the application of the parts from one end to the other ${ }_{3}$, will be not a little troublefome.

Mr. Samuel Fofter his

To remedy thefe and other like defects, I have altered the form of the Seftor once more.

1. By diminifhing the number of the old Scaler, for inftead of two of each kind, here is but one.
2. By taking the Meridian Line quite away; and fupplying the life thereof by ocher means.
3. By bringing the Scales of Tangents and Secants to the Center.
4. By adding a Line of the Verfed Sines, and fome other Scales of good ufe.
5. And by changing ehe form of working upon the Inftrument : of all which things I fhall give an account in this following Treatife : but firt it will be requifite to defcribe the order and difpofition of the Lines, how each of them is to be placed.

CHAP. II.

How the feveral Limes are difpojedupos the Scator:

WHereas in other Sectors there ate always two Lines of one kind, upon each Leg one, anfwering to the like Scale upon the other Leg, in this there is but one Line of one kind, from whence it comes to pafs, that one fide or flat of this Sector holds all the Scales that are drawn from the Center, and do fill up both fides of the other, and by this means the other fide is free for other Scales.

Upon one Leg therefore of the firft fide are:
I. A Line of equal parts.
2. A Line of Solids, and between thefe two Scales and the edge, there are inferted two particular Scales more. Namely,
3. Of Infcribed bodies.
4. Of Equated bodies, with a Scale of Metals. So again, upon the other Leg, there are :
5. The Lines of Sines.
6. The Lines of Superficies, and between them two Scales and the edge are inicribed two other particular Scales :as,
7. The Line of Quadrature. And,
8. Segments. All thefe Scales are drawn from the Center, and being meafured from thence, are all of one length : and do lie at fuch

Angles one fromanother, and to the edges of the Secror, will give them convenient diftance. So that this one fide of the Inttrument doth now contain fo many Lines of Scales, coming from the Center, as were before on both fides.

Upon the fecond fide of the Sector are four Scales, two upon one Leg, and two upon the other. As namely upon one Leg,
9. Verfed Sines, witha Zodiack Line annexed to it.
10. A Line of Tangents going up $1063 . \mathrm{gr} .26 \mathrm{~m}$.

12. A Line of Chords going up to 90 gr .

All shefe are drawn from the Center, and all of one length with thofe on the other fide of the Inftrument. The Radius of the Verfed Sines, Tangents, and Secant Lines are jult half of the whole inferibed Lines, and fo will be of very good, ufe in the working of proportions, and in the projecting of the Sphere very commodioas.

The defcriprions of each Scale may be made by thofe Table, and in that manner that Mr. Gunter hath directed.

Between thefe four Scales may be placed other Scales of good ufe, tending towards (chough not running up to) the Center, as a Tangene of three hours of good ufe in Dialling, and other the like Lines.
Of the other Lines infcribed on the edges and /Fare places of the Sector.
If the Sector be made of wood, it will require fome competene thicknefs, fo that the edges will be large enough to receive fome ufeful Scales alfo.

The Sector then being opened, and fo made a ftreight Rular ; the outeredge hath infcribed upon it the three ufual Scales of Logarithmeticall Numbers, Sines and Tangents. The inner edge hath two Scales upon each Leg, one pair of thofe Scales upon one Leg, is to find the mean Diameter, and one of them is divided into 14 equal parts, the other (of che fame length with it) is divided into 20 equal parts, each of them fubdivided decimally. The other pair of Scales upon the other Leg is alfo divided equally, one of them containing four purts, which are to reprefent feet, and the other being of the fame length is divided into 400 parts, reprefenting Inches of the former Feet, and each of shefe reprefentative, both feet and inches are fubdivided decimally. And again, upon the swo flat edges of the Sector thus opened (near the outer edge) are infcribed two peculiar Scales (upon one edge) of equal parts for Wine and Ale meafure.

162

Mr. Samuel Fofter bis

Upon the other flat fide are two Scales more, each equal to the orther, both of a jult foot in length; one is divided inte 12 inches, and each inch fudivided Decimally, the other is divided into 10 equal parts, and esch of them again into 10 . Thefe two Scales ferve for true inch and true foor meafure.

In this manner are the Lines difpofed, now follows,

CHAP. III.

The gexeral ufe of the Sector, and the manmer of working upon it.

THofe works that are performed upon the other Sector when in is hhur, are alfo performed by chis, and in the very fame manner.
But the chief ufe of the Sector is, by having three terms given to find a fourth proportional that the fourth may be to the third as the fecond is to the firtt. And if the fecond and third terms fall out to be the fame, then the proportion is called continual, becaufe the fecond rerm is twice repeated, and fo the next term continued in the fame proportion to it, that the fecond was to the firf.. But if the fecond and third terms be different, then is the proportion called difcontinual, becaufe the proportion that is between the firit and the fecond, though ie be made good again between the third and the fourth, yer it difcontinued between che fecond and the third terms. Now becaufe this kind is moft frequent, and the former may be referred to chis, (if the fecond term being twice repeated, be cakenas two, namely, as the fecond and chird : I I will thew in general

How by three terms given in any kind, to find a fourth.
Firf, Difpofe the three terms given fo, as that when they are of divers kinds, the firft and the third may be of one kind, and the fecond and fourth of another, though this difpolition be not always necelfsry, yet for the working upon the Sector it will for the moft part be convenich:

When the terms are fo ordered there will three things hence follow. The firlt will be to know upon what Scale che Work will be performed, when the terms are not all of one kind, the other two will be Rules.and Directions in what manner to work.

Eirft, Therefore you muft refer each of the two firfterms toits
proper Scale, then comparing the fecond term with the firft, fee which of them is greatelt : For upon that Scale to which the longeft of the two terms belongeth, mult the whole work be performed. Then the two Rules for the manner of working are thefe.

1. If the fecond term be lefs than the firft, you muft then count che firt and the third terms (being both of one kind) laterally upon their proper Scale, and the fecond cerm being taken out of his proper Scale, and put over parallelly in the term of the firf, hall open the Leg of the Sector fo, as the fourth term may be taken parallelly over from the term of the third:and being fo taken, it muft be meafured upon the Scale from whence the fecond term was taken, and fo it fhall receive its juft value.
2. But if the fecond term be greater than the firt, you mult then count the fecond laterally, and in the term of it put over the firft parallelly, each being taken in his proper Scale, and this work Shall open the Legs of the Sector fo, as that the third term being taken out of the fame Scale with the firft, and entred parallelly, fhall ftay in that point of the Scale on which the lecond cerm was counted, and will give the quantity of the fourth term required.

The manner of working then in general, according to the fe two Rules, willle this:
In she firft cafe; where the fecond term is lefs than thefirft, let A D be the firft term, B G the fecond, and $\mathrm{A} B$ the third.

Count A D the firt term, upon his proper Scale, then with your Compaffes take che fecond term, which we fuppofe to be DG, and ferting one foor of that extent in D, the end of the fir ℓ, turn the other foot about, and open or fhut the Sector, till the foot being turned about in the Ark EG, do only touch fome one Line in the other Leg of the Sector, neither going beyond it, nor fhort of it, as here it doth at \mathbb{G}, fo is the Sector opened to 2 true Angle for this Work.

Again, upon the fame Scale A D, whereon the firt term was numbred, count the third term AB; and latty from B, the extremity therenf, take the lealt diflance to the Scale $A G$, as here is expreffed by BF. So hall B F be the length of the fourth term, this Line BF therefore being meatured upon the fame Scale from whence the fecond term D G was taken, fhall give the quantity of the fourth term required.

Or if A B had been the firit term, and BF the fecond, then the Sedor mult have been opened by putcing over B F frim the term B (till the Ark or Motion of the foot of the Compafles, EF, had only touched the Line A F.) And when the Legs of the Sector are fo opes ner', count A D the thirdierm upon the fame Scale whereon the firf term A B was counted, and from the extremity of it, at D, take the Jeaft dittarice from the fame Leg A F, which here will be D G, fo Thall D G (being meafured upon the fame Scale of the fecond term) give the quantity of the fourth term required.

In the fecond cafe, when the fecond term is greater than the firft. Suppore D G be the firf, and A D the fecond, B F the third, take the firft term D G, out of tis proper Scale, and count AD the fecond in his proper Scale, then from D the extremity of the fecond cerm, open the Sector, making D 6 (when it is turned about in EG) only to touch any one Scale in the other Leg of the Sector, as A.G, when the Setor is thus opened, take B F the third term, out of the fame Scale from whence, the firtt term D G was taken (which is his proper Scale) and keeping one foot of the extent always upon the Line A D, remuve it to or from the Center A, till it fand in fome point of the Line A D, fo as the other foot being turned about in the Ark E F, máy juftly touch the Line A G, upon the other Leg, and when you have fo fitted it exactly, obferve the Point in $A D_{1}$ in which the foot of the Compafs reftech, which fuppofe ro be the Point B. So thall A B give the quantity of the fourth term reguired.

Or if B F had been the firlt, A B the fecond, and D G the third, then muft the firf B F, taken out of its proper Scale, have been fet upon B the exrremity of the fecond AB, atd by tithe Line AFG mult have been opened, and this being done, the third term $D G$ being taken from the fame Scale (from whence the firfterm B F was taken) and fitted in till one foot of it tanding upon the Scale A B, the other being surned about in the Ark EG, will only touch the Line A F in G, fo thall the Point D, wherein chen is ftands, give the quansity of $A D$ the fourth serm reguired.

This may ferve for a general view of the manner of working apon thefe fingle Scales; and how one of kind may ferve to perform any work in this Sector, as well as two have done formerly in other Sietors.

As alfo here may be feen the manner of Latersl and Parallel entrance, and finding known and urknown quantities: Is may likewife be here known what is meant by thefe Phrafes.

1. Opening the Sector to any Line, lenget, or difance, namely, to open or fhut any two Scales upon feveral Legs of the Sector, till one foot of that length being fer in fome Point of one Scale, the other foot when it is surned about, may only touch the other Scale, fo as not to go beyond it, nor fall fhort of it.
2. By taking any Line, length, or diftance, namely, from fome Point in one of the two opened Scales, to take the leat from the other Scale.
3. Entring any length or diftance, namely, to carry one foot of a length taken in your Compafs upon one Scale (from or towards the Center) till the other being turned about, may jufly touch the other Scale. Thefe terms are ufed to avoid needlefs circumlocution.

It may farther alfo be obferved, that this way of working is more fpeedy than that upon other Seftors, as by a little practice will quickly be found.

And lafty, the truth of the work will eafily appear, if it be confidered that in every work thus performed, A B F and A D G are two like Rectangles; as in the other Sector the work went upon two like Equicrural Triangles, in both therefore the ground of the work is alike good, both being grounded upon the fimilitude of two plain Triangles.

Now to this general direction for working, I bave added examples in Scevevalkinds, whereby the Rules before given may the better be under f ood, and what Mr. Gunter and others bave publifhed intheir Books, may the more eafily be applied to this Ingtrument.

CHAP. IV.

Examples in feveral kisds.

1. Three nxmbers 52, 39, 44, being given, to find a fourth proportional.

THis is wrought upon the Line of equal parts, and becaufe the firt number is greater than the fecond, therefore I coune the firft number 52 , upon the Line of equal parts, and from the fame Lire I take the fecond term 39, and fer it upon 52, and turning the other foot abour, I open the other Leg of the Seaor, till the fame foor do juftly touch fome one Line on the other leg of the Sector which iffueth from the Center, neither going bey ond it, nor falling fhort of it, fo are thofe two Scales opened fitly to perform the work, then I couns the third term of 44 upon the faid Line of Lines, and from the end of is to the fame Scale on the other Leg, I take the leaft diftance, this being meafured in the Scale of Lines, giveth 18 for the fourth rerm; fo that as 52 is $\mathbf{t 0} 39$, fo 44 to 33.

But if the given numbers had food thus, As 24 to 52 , fo 18 to what? Here becaufe the fecond number is greater than the firf, I cake 24 out of the Line of Lines, and fet one foot of it in 52 , counted upon the fameLine, and I open or thut the other Leg of the Sector, till the other Foot being surned about, will only toach fome one Line on the other Leg of the Sector which iffueth from the Center : When the Sector is thus opened, I take the third number 18 , out of the Line of Lines, and keeping one foot always upon the Line of Lines, I remove is fo long till the other foot being turned about, will only rouch the former Line on the other Leg: Then fhall I find it to ftay upon the Line of Lines, at the number 39, which is the fourth proportional.

In the fame manner all proportions in numbers may be wrought by the Lines of Solids and Superficies. But if you had three Lines given, and were to find a fourth proportional Line, you muft then work upon the Line of Lines only.

alteration of the Sector.

2. Three Sines being given, to find a fourth proportional Sine.

THis is to be wrought upon the Line of Sines only. Let the Sines given be 90,30 , and $23 \frac{1}{2}$; here becaufe the firft term is greater; therefore I mult work by the firft Rule; and fo the fourth term being taken and meafured upon the Line of Sines, will be the Sine of $11 \frac{1}{2} \mathrm{gr}$. required.

But if the Sines were of $36,72,18 \mathrm{gr}$.. then work by the fecond Rule, becaufe the fecond term is greater than the firf, fo Ahall your Compaffes ftand at the laft of your work, at she Sine of 30 gr . Or becaufe all the four terms are of one kind, you may change the places of the fecond and third, thus: $36,18,72$, and fo working accordingly by the firf Rule (becaufe the firft term is greater than the fecond) you thall find the fourth proportional Sine so be $3^{\circ} \mathrm{gr}$: as before.

In this manner yos muft work when all the four terms are of one kind, and fo mrought upon one Scale alone. But if the terms be of fiveral forts, then muft two of the four terms be taken froms one Scale, and two froms anotber. As in the examples following will appear.
3. As the Sine of 60 gr . is to the number. 35 , fo the Sine of 48 to what number?

IN folutions of this kind (becaufe the firft and fecond, and alfo the third and fourth, are counted upon feveral Scales, as here the firft and third are taken upon the Scale of Sines, and the fecond and fourth are taken upon the Scale of equal parts:) You muft firft trie which is greatelt of the firt or fecond terms. As here take the fecond term 35, out of the Scale of equal parts, and meafure it upon the firft term of the Sine of 60 . Now becaufe the Sine of 60 is greater, therefore the lateral work muft be done upon the Scale of Sines, and the fecond and fourth terms mutt be taken in your Compaffes from the Scale of equal parts, which is their proper Scale; wherefore in this example take 35 out ot the Scale of equal parts, and with one foot of that length fer in she Sine of 60 , open the other Leg till that exrent will juft touch fome one Line on the other Leg of the Sector which iflueth from the Center, the Sector being fo opened, take from the Sine of 48 : the leaft diftance, to the former Line on the other Lega, shis.
this diffance meaiured upon the Scale of equal parts, thall give 30 the number required: Therefore as 60 gr . 1035 , 10.48 gr . to 30 :

But if it had been as the Sine 60 is to the number 90 ; Io the Sine of 48 to what? Here if you meafure the number 90 with the Sine of 60 , you fhall find the number 90 to be the longeft extent. So that now the lateral work mult be upon the Line of Lines; I take therefore the Sine of 60 out of the Sines, and fetting one foot of that extent upon the the number 90 in the equal parts, with the other foor turned abour, I open the other Leg, till I fee the fame foot only to touch fome one Line on the other Leg of the Sector, which ifuech from the Center?

Note that what Line foever I begin to work with, I mulf bo jure always to
continue and end with the fame, last that Line on the other Leg, which
lieth next the inner edge of the Seflor, is always wooft convenient.
Then again I take the Sine of 48 , and keeping one foot of that extent continually upon the Line of Lines, I remove the fame till I find the other foot juftly to touch the former Line on the ocher Leg; and then I fee the other foot to ftay upon the Line of Lines on the number $77 \frac{1}{5}$, which is the number fought.

> 4. As the Sine of 60 , is to the Tangent of 55 gr . So the Sine of 50 to the Tangent of what Ark?

FIrf, to know upon what Line to work, I take the Tangent of 55 gr . and fet it to the Sine of 60 gr . and becaufe I fee the Sine of 60 to be the greater, I know that the work muft be done upon the Line of Sines. And by the firt Rule accordingly therefore I take the Tangent of 55 gr . and from the Sine of 60 I open the Sedor to fome one Line on the other Leg of the Sector, which iffuech from the Center according to that exient ; then I take the leaft diftance from the Sine of 50 to the former Line on the other Leg, and meafuring is upon the Tangent, I find it to reach to the Tangent of $51 \frac{1}{2}$, which is the Tangene required.

But if the terms were as the sine of 40 is to the Tangent of $55 \mathrm{gr}^{\circ}$ fo is the Sine of 50 to what? Then meafuring the Tangent of 55 gr . npon the Line of Sines, and finding the firlt term 40 to be lefier, I fee that the work mult be done upon the Line of Tangents: Wherefore I take the firft term the Sine of 40 , and fetting one foot of that
extent upon the Tangent of 55 . by turning the other foot of the Compaffes, I open the other Leg of the Sector, till the other foot do juntly touch fome one Line on the other Leg of the Settor, which iflueth from the Center; then I take the fecond term, the Sine of 50 gr : and fetting one foot of that extent upon the Scale of Tangents, untill the other foot being tarned abour, will juftly rouch the former Line on the other Leg: I find the Compaffes to ftay upon the Tangent of $59 \frac{1}{2} \mathrm{gr}$, which is the Tangent required.

The like may be done upon the Sines and Secants, or Tangents or Secants, when any fuch queftion thall be required. And the like may be done in Tangents and Numbers, or equal parts, by the joynt ufe of thefe two Scales, which is frequent in Menfurations of upright baildings.

5. Having tbree nambers, to find a fourth in duplicated proportion.

THis work is performed by the two Scales of Superficies and Lines joynely ufed. Lei the example be as 32 co 24 : fo 64 to what number in a duplicated proportion? Here the two firft terms are of one kind, and the two latter will therefore be of one kind. Wherefore to know upon what Scale to work, it will be beft ro change the places of the fecond and third terms, that fo the firtt and third may be of one kind, as allo the fecond and fourth. Thus as 32 to 64 , fo 24 to what? Now in this difpofition of terms you mult firtt meafure 32 (taken out of the equal parts) upon the Line of Superficies; and fo doing you Thall find it fall far hort of the number 64, she fecond term; therefore it is evident the work mult be done upon the Line of Superficies, Co that I take 32 from the Line of equal parts, and purting one foot of that extent upon 64 in the Line of Superficies; I thereby open the Sector to fome one Line on the other leg of the Sector, which iffueth from the Center. Then again, I take the third number 24 out of the Line of Lines, and enter it Parallelly between the Superficies and the former Line on the other Leg (in the manner that hath been thewed before) and I find it to ftay at 36 in the Line of Superficies: So that I conclude, as 32 to 64 , fo 64 to 36 in duplicated proportion. That is, fo is she fquare of 64 (namely 8) to the fquare root of 36 (namely. 6) in a fimple proportion.

6. Having two numbers, to find a mean proportional.

THis is performed by the joynt ufe of Superficies and Lines: Lee the Numbers given be 20 and 45. Firlt, I count the firtt number 20 upon the Line of Superficies, then I take the fame number 20 out of the Line of Lines, with this length I open the Sector from the Point 20 in the Line of Superficies, to fome one Line on the other Leg, which Iffueth from the Center; afterwards I count 45 the other given number upon the fame Line of Superficies; and from thence take over the leaft diftance to the former Line on the other Leg, this meafured upon the Line of Lines, gives 30 for a mean proportional beqween 20 and 45 .
7. Having three Numbers given, whereof the two firfe are fuppofed to be in a duplicated proportion, how to find a fourth, unto which the third. Shall be in the fimple proportion of the former; that io, As the Iquare root of the frif to the fquare rost of the fecond.

THis is likewife to be performed by the joynt help of the Lines of Superficies and equal parts. Let the Numbers be, as 29 to 16, fo 40 to what? The two firft eerms are to be counted upon the Line of Superficies,becaufe between them the daplicated proportion is contained; and the orther two mult be taken upon the Line of Lines, becaufe between them is the fimple proportion contained. And to know upon what Line to work, I order the terms fo, as the firlt and third may be of one kind, thus, as 25 to 40, fo 16 to what? Now becaufe 25 upon the Line of Superficies (if two upon that Line betaken for 20 as we do here take it) is greater than 40 upon the Line of Lines, therefore the lateral work maft be done upon the Line of Superficies. So that I rake 40 oat of the Line of Lines, and put over that lengeh from 25 in the Line of Superficies unto the Line of Lines upon the other Leg of the Sector. And the Seator being fo opened, I count the third Number $\mathbf{1} 6$ upon the Line of Superficies, and take over from thence so che fame Line of Lines. This length I meafure upon the Line of Lines (from whence she fecond Term was taken) and it reacheth to 32. So that as 25 to 16 , fuppofed to be in a duplicated proportion one to the other, fo is 40 to 32 in the fimple proportion, whereof that other - duplicared.

8. Having three Nxusbers, to find a forrth in a Triplicated proportion.

THis work is to be done upon the two Scales of equal parts and Solids joyntly taken together. Let an example be, As 55 to 88, ro 125 to what in a triplicated proportion? Here the firt two terms are of one kind, and fo the twolatter are alfo. Therefore (as before) change the places of the fecond and third thas; As 55 is to 125 , fo is 88 to what? The terms then being thus difpofed, you muft meafure 55 (taken out of the Line of equal parts) upon 125 counted in the line of Solids, and you thall find it of greater length than 125 , whereby it is evident, that the work mult be done upon the Line of equal parts. Accordingly therefore, rake 125 our of the Line of Solids, and ferting ore foot of that extent upon the Number 55 counied in the Line of Lines, with the other curned about you mult open the Line of Sines upon the other Leg of the Sector, as the manner is. Which done, fet one foot of your Compafs. upon 88 in the Line of Lines, and from thence take the leaft diftance from the Line of Sines: This diftance being meafured upon the Line of Solids, fheweth 512 , fo that, as 55 to 88 fo is 125 to 512 in a rriplicated proportion. That is, As 55 is to 88, to is the Cubic root of 125 (namely 5) to the Cubic root of 512 (namely 8) in a fimple proportion.

9. How to find two mean proportionals between two Numbers given.

THis is done upon the Line of Solids and equal parts joyned in afe together ; let the two extremes or given Numbers be 512 , and 216, between which there are required two mean proportionals. Firft from the Line of Lines I take. \mathbf{S}^{12}, and with that extent I open the Point 512 (accounted in the Line of Solids) I take over the lealt difance of the Line of Sines, and meafuring the fame upon the Scale of equal parts, I find it to make 384. This laft length 384 I take again, and pat it over from 512 in the Line of Solids to the Line of Sines. And then I take in length from 216 again (counted in the Line of Solids) unto that lame Line of Sines; and meafuring this length upon the Line of equal parts, I fad it to reach 288 , which is the fecond mean proportional, fo chat I conclude, as $5 \mathbf{1 2}$ is to 384 , 10384 to 288 , and 10288 10216.
10. Having three Numbers given, whereof the two fift are fuppofed to be in a triplicate proportion, bow to find a fourtis, unto which the third Shall be in a fimple proportion, that is, as the Cubic root of the firfo to the Cabic root of the fecond.

THis is to be performed by joynt ufe of Solids and equal parts. Suppore the three Numbers given to be $7 \oplus 4,297,98$: and let is required to find a fourth Number, unto which 98 hall bear shat fimple proportion where of 704 to 297 is the triplicated or Cubical proportion. Firft, that I may know upon what Line the lateral work is to be performed, I alter the order of the fecond and third terms, thus, 704, 98, 297: and in this order I compare the firft and fecond terms together ; that is, I take 704 out of the Line of Solids which (in this work) is the proper Scale of it, and meafure it upon the Line of Lines, which is the proper Scale of the fecond Number 98 ; and. thereby I find that 98 is the longer; whereby it appears (by the former directions) that the Lareral work is to be done upon the Line of Lines. Wherefore accordingly I take 704 out of the Line of Solids and fer one foor of that extent upon 98, counted (as the fecond term) upon the Line of Lines, and from it I open the Line of Sines upon the other Leg of the Sector. And when the Sector is chiss opened, I take the third term (297) out of the Line of Solids again, and put the fame over till it fit from the Line of Lines to the Line of Sines; fo at latt I find one foot to ftay upon the foor $73 \frac{1}{2}$ in the Line of Lines. Whence I conclude, that as 704 is 10297 , fuppofed to be in a triplicated proportion one to the other; So is 98 to $73 \frac{1}{2}$, which ewo Numbers do comprehend the fundamental and fimple proportion, whereof shat other is the triplicated.

CHAP. V. of the Scale of chords.

THough the Scale of Sines will perform all the ufes of the Lines of Chords, if every Sine be counted by the double number (as Mr. Ganter hath thewed) yet becaufe miftakes are eafily made by that

numeration;

numeration; therefore it will be more convenient to ufe the Chords themfelves. The ufes are chiefly,

1. To find any Chord, or to fet off any Ark or Angle, upon a Circle, whofe Radius is given.
2. Having a Radius and any Chord or Ark affigned, to find the Ark which the affigned Chord fubtenderh.
3. By having any Chord affigned, to find the Radius according to which the affigned Chord is to be eftimated.
4. The Line of Chords is numbred up to 90 , and will therefore fet off or meajure any Arkwithin $90 . \mathrm{gr}$. But if the Ark be more, it nsujf do it at twice or more times.

LEt the Radius A D be given, and let the Circle D A BE be de-frribed with it; and let it be required to fet off 79 gr . from the Point A.Firf therefore the Sector mult be opened to the Radius D A, fetting one foot of that extent upon 60 in the Line of Chords, and opening the other Leg till the Compaffes being turned about, do only. touch fome one Line on the other Leg of the Sector, which ifueth from the Center: Then from 79 upon the Line of Chords, take the leaft diftance to the former Line on the other Leg, the fame being fet upon the Circle from A cowards B; A B will be an Ark of 79 gr . and A. D.B an Angle of 79 gr .

Suppofe again that upon the fame Circle I hould fet off r 39
 gr. becaufe this exceeds 90 ; therefore I divide it into two leffer Arches; namely 79 and 60: Firft therefore I fet off from A to B 79, and then from B to E 60 gr . more; which rogether do make up 139 gr . and fo thofe Arks that are greater, may be fet off at three or four times.

2. Having

2. Having the Radius D A, and the Chord A B affigned, I wauld know to what number of degrees that (bord answereth.

ITherefore open the Line of Chords, as before, to the Radius A D, and then enter the Chord B A between the Scale of Chords and fome one Line on the other Leg of the Sector, which iffueth from the Center; and I find it to ftay upon 79 degrees: So that A B is a Chord of 79 degrees, being referred to the Radius D A. But if I had the large Chord A E to the fame Radius D A, and would know to what Ark is belongeth; I mult firft defcribe the Circle with the Radius D A, and then infcribe the Chord AE into the Circle; afterwards I divide the Ark A E into any two parts, as at B, then take the Chord A B, and enter it upon the Scale of Chords (the Sector being fer to the Radius A D) and find is to fubcend 79 gr . Again, I take B E and do the fame shing with that Chord, and find it to anfwer to 60 gr . Then laftly I add 79 to 60, the fum is I 39 ; which gives the whole Ark A E anfwering to the Chiord A E, fo if A E had relation to the greater Ark A HE, then you muft work as here you did by the Ark A BE, and when that is found to be 139 take it out of a whole Circle, or 360 , fe fhall you find the greater Ark A H E to be 22 I gr .

3. Let $A B$ be the Cbord of 79 gr. given, and the Radius to which it is eftimated to be fwoch a Cbord required.

BEcaufe the number of degrees is lefs than 90 , therefore the work will be cafie. For if A B be put over in 79 in the Line of Chords, then fhall 60 in the fame Line (rightly taken over) give the Radius A D required.

But if the Chord A E were given, and counted as fubtending the 139 gr . then it will not be fo eafie, for if the Line of Chords be ufed, there will be need of protraction. The better way therefore will be to do it upon the Line of Sines, thus, Take half the Chord A E, namely, A F, and count that as the Sine of half 139 gr . that is, $69 \frac{1}{2} \mathrm{gr}$. fo purting over this lengeth A F in the Sine of $69 \frac{\frac{\pi}{2}}{2} \mathrm{gr}$. you may from 90 take off the Radius required.

Note that if it be required to open any two Lines of the Sector to any number of $g r$. lefs than 90 , or if when the Lines be opened, it be required to know at what Angle they ftand. Then it will be the beft

alteration of the sedoro.

way to ufe the Scale of Sines in this manner. Becaufe every Line hath a Point at the very extremity of i, therefore if you take any Sine out of the Scale of Sines, without the forementioned doubling of the Numbers; and from the extremity of one Line, do enter that Sine according to the leaft diftance from the other Line, then fhall thore two Lines ftand at the Angle required.
Or if from the extremity of one Line, you take the leaft diftance of the other, the fame meafured upon the Line of Sines, fhews the Angle at which thefe two Lines fland. Or for moit of the Lines, if is be needful, you may ufe the way that Mr. Gunter fhews, Lib. 2. C. 2 . Prop.7. Art.8.

CHAP. VI.

Of the Tangents and Secants.

BEfides other ufes of thefe two Scales, they ferve for Projections; and for Dialling to any bignefs greater or fmaller, (of which fee
Mr. Gunters Book, concerning Projections of the Sphere, and of Dialling by the Settor, and other ways by a doubleTangent of 45 . Hereunto thele two Propofitions tend.

1. Having any Line given, aknown Tangent, or Secavt : To find the Radius belonging to it.

SUppofe I would know to what Radius any given Line fhould reprefent a Tangent of 40 gr . I take the Line given, and fer one foot of it in 40, in the Scale of Tangents : And from it I open the Sector to fome one Line on the other Leg which iffueth from the Center, according to the leaft diftance, Then from the Tangent of 45 (which is equal to the Radius) I take the leaft diftance to the former Line on the orher Leg, and thar length is the Radius required.

The fame work is to be done by the Secants, where the Radius is undertood to be at the beginning of the Scalc.

2. Having the Radiu, to find any Tangent or Secant belonging theretoo.

THis is eafie and like the former, if frot the Sector be opened to the Radius, ©or.

COROLLART.

By tbefe two Propoftions a way may be found, how by having a Tangent, to find any Secant, or Sine belonging. to the Same Radius.

FOr firft, you mult find the Radius, and then the Secant, for Sine afterwards. So allo by having the Secant, may be found the Sine or Tangent, or having a Sine, a Tangent or Secant may be found.

And fo to a Radius of any length, you may proportion any Sine, Tangent, or Secant. And note, that for pricking down the hour Points in Dials, the Tangents of $15,30,45$, and 60 , will be of frequent ufe. And if the Tangent or Secant Scales be not far enough extended, Mr. Gunter hath given rules how to enlarge them.

CHAP. VII.

How to fupply the Meridian Lixe or Line of Rumbs, by the Scale of Secaxts.

\author{

1. Aow to make a Sea-Chart, after Mercators Projedion.
}

THis Propofision is the chief, that the Meridian Line upon the Settor doth, concerning Navigation, and therefore Mr. Gunter makes it his firf Propofition. And this is performed by the Line of Secants. Forif it were required to project fuch a Chart as is in his Book. Having drawn his Line A B, and croffed it with the Parallels 5° and sO°, at right Angles, you muft then take the Secant of 5 I gr.from the Seetor opened to the length you defire, according to the leaft diftance, (the manner whereof hath been thewed enough already,) and fet from 50 to 51 , on both fides of the Chart, and draw 5 I and 51 : Again, take the Secant of 52 , from the Sector, and fer it upon the Chare from 51
to 52, and fo draw the Parallel 52,52. And thus you may draw all the relt of the Parallels. Then for the divifions or Meridians of the Line B C, they are all equal to the Raditrs, if therefore you take the Radius, and curnit above and below, you thall make the fpaces or diftances of the Meridians, fuch as in the bottom of his Clarra are figured with $1,2,3,4,5,6$.

Thefe degrees thus fe: on, may be fubdivided into equal parts, which in the graduations above and below ought fo to be, but in the graduation upon the fides of the Chart, they ought as they grow higher, itill to grow greater. Yet the difference is fo fmall, that it cannosproduce any fenfible errour though the divifions be all equal. Divide them therefore equally into 60 minutes, or Englifh miles, or into 20 Leagues, or into 100 parts of degrees, as thall beft be liked of.

If a little more curiofity fhould be ftood upon for the graduations of the Meridian, then inftead of the Secants, $51,52,53$. you may take $50 \frac{1}{2}, 51 \frac{1}{2}, 52 \frac{1}{2}$, always half a gr. lefs than the latitude cha: is to be put in.
2. The ufes of the Sea-Chart, and Pomse other Propofitions that comeern Navigation, are Set down by Mr. Gunter lib. 2. cap. 6. of bis Sector, which may be bere alfo done.

THe manner of working upon the Chart (which is the beft way) his directions will hew, and how to work them upon this Sector, the former directions in this Treatife will be fufficient. So by this means the ufe of the Meridian Line is fully fupplied, becaufe each Degree may be very large, which in the other Sector could not be fo without each part many times repeared, which ching will produce as much erroar as this way by the Secants can do.

CHAP. VIII.

The ufes of the Line of Verfed Sines.?

THe Ule of it is generally as much as the fourth Axiom of Spherical Trigonometrie. Wherefore, I will firft hew how the ewo cafes of that Axiom may be performed by this Line. And afterwards how fome particular Problems of more frequent ufe may be performed.

Aa
I. Having

178

Mr. Samuel Fofter b is

1. Hiving two fides of a Spberical Triangle, and the Angle comprebended, to find the Bafe.

FIrf, find the fum and difference of the twofides or Legs, then count that fum and difference upon the verfed Scale, and with your Compaffes, take their diffance, with this diftance from the end of the verfed Line, open the Seator to fome one Line on the other Leg, which iffueth from the Center afterwards upon the verfed Line, count the Angle given, and fetting one foot in that number, take the leatt diftance from it to the former Line on the other Leg, this length being added to the difference of the Legs upon the verfed Scale, gives the Bafe required.

So if the Legs were 38 gr .30 m . and 95 gr . their fum would be 133 gr .30 m . their difference would be 56 gr .30 mm . And now the diftanice of thefe being taken, and the Sector opened as is prefcribed, fuppofe. ghox the Vertical Angle were 75 gr . from 75 , therefore take the leaft di-. ftance, to the former Line on the other Leg, and fet that diftance on the verfed Scale from the former difference 56 gr . 30 m . numbred shereon, it will fall upon $84 \mathrm{gr}^{\mathrm{r}} 4^{2} \mathrm{~m}$. which is the quantity of the $\mathrm{Ba}_{\mathrm{a}} \mathrm{e}$ of she Triangle.

LEt the rwo places be London and Hierufalem, the Latitude of Lown don is gI gr .30 m . the Latitude of Hierufalem is 32 gr . she diffsrence of Longirude 47 gr . their diftance is required,

The fum of the Complement of the two Latitudes is $96 \mathrm{gr}-30 \mathrm{~m}$. Their difference $19-30$.

Take the diftance beeween 96 gr .30 m . and 19 gr .30 m . with this extent of the Compaffes, open the Sector from the end of the verfed Scale; clie Sector thus relting, take the neareft diftance from the difference of Longitude 47 gr . this diftance being applied to ig gr. 30 m . on the verfed Scale, will reach to $39 \mathrm{gr}$.14 m . the diftance requirst.
2. Having

2. Having the three fides of any Spherical Triangle to find the Vertical Angle.

THat Angle that is required, is called the Vertical Angle; The fide oppofed to it. is called the Bafe; and the other two fides are called the Legs.

1. Find the fum and difference of the two Legs, then count both the fumand difference uponshe Scale of verfed Sines, and with this diftance taken in your Compalfes, from the furtheft end of the verfed Scale, open the Sector to fome Line on the other Leg, which iffueth from the Center, as the manner hath been. Afterward take the diftance from the forenamed difference of the Legs to the Bafe, counted upon the fame Scale, this diftance is to be applied to the two Scales before opened, and now appointed for the work, fo as that the Compals foot be removed upon the verfed Line, till the other being turned about may juft touch the former Lime on the other Leg, and where the foot of the Compafs (with chis condition) thall ftay upon the verfed Line, there Thall you fee the quantity of the Vertical Angle required. Or if after the Sector be opened, you take the diftance, not from the difference, but from the fum of the Legs to the Bafe, that diftance will find the Supplement of the Vettical Angle, which in fome cafes is moft reguired.

So if the two Legs were $38 \frac{1}{2} \mathrm{gr}$. and 95 m.the Bafe 84 gr .42 m , the Vertical Angle will be found to be 75 gr . Or the Supplement will be found to be ios Degrees.

Thefe twa Propofitions thus generally propounded, do (in brief) fer forsh two of the principal ufes of this Scale of Verfed Sines. And to thefe two I will add one more, which is done withous opening the Sector atall.
3. Having a proportios to be wrought in Sines alone, wherein the Radius leads in the proportion, bow to find a fourth praportional Sine upos this Ver ced Scale.

TA ke the fum and difference of the fecond and third Arks; count them upon the Scale and take the difference of them; if you fee this diftance equally remote from 90 upon the Scale on both fides of it, you thall fee both the feet of the Compaffes to ftay upon the fourch

180

 Mr. Samuel Fofter hisproportional Sine requiret. Suppofe the pioportion to fand thus. As the Radius, to the Sine of 60 gr . To the Sine of 40 gr . to what Sine? The fum and difference of the cwo given Arks, 60 and 40 are- 100 and 20. I take the diftance of thefe two counted upon the Scale, and fet it equally diftant on both fides from 90 , and 1 find is so ttay in $33 \frac{3}{6}$ from 90. Wherefore I conclude that as the Radius is in proportion to the Sine of 60 gr . fo the Sine of 40 gr . to the Sine of $33 \frac{5 \mathrm{gr}}{}$.

AAs for the former general Problems, that their wfefulafs may be miore manifeft, I will here add three Propofitions deduced from thems which are of daily use, and by other general Inftruments performed with much difficulty.

The firft fhall be, Toget the Suns Azimuth.
The fecond, To find the hour of the day.
The third, To find the Suns Altitude at any hour.

The firt of there is,

1. Having the Latitude of the place, the degree of the Sun in the Zodiac, and the Swis Altitside above the Horizon, to find the Suns Azimasth either from the North, or from the South.

BEcaufe this Propoftrion is fo very ufeful in many particulars, therefore principally is the Zodiac Line annexed to this verfed Scale, and therefore alfo do I fet it in the firt place.

This falls under the fecond general cafe delivered before; The two Legs of the Triangle are the Complement of the Latitude, and Complement of the Suns Altitude. The Bafe is the Suns place in the $\mathrm{ZO}_{0}=$ diac, taken tronsthe beginning of the Line. The Vertical Angle in thefe Northern Latitudes, is the Azimuth from the North.

Take the Sum and difference of the Complement of the Latitude, and the Complement of the Suns Alcitude, and count this fum and differende upon the verfed Scale, and with your Compaffes take their diatance, with that diftance open the Sector to fome one line on the other Leg, which iffueth from the Center, from the end of the verfed Line. Afterwardstake the diftance from the aforenamed difference; fina

alteration of the Sector.

to the Suns place, and enter it between the former Line on the ofher Leg, and the verfed Scale, and note the Boint of the verfed Scale on which the foor of the Conipafs Atays, the fame Point fhewis the Az:muth from the Northi Or when the Setor is opened; take the diflance from the fum, to che Suns place, the fame entred as before, will give the Azimurh from the South. Note that if the fum do exceed 180 gr , then you are to accourit 170 as 120 s 160 as 200,150 as 210, ơ c.

Example.

IN the Laticude 51 gr. 30 m . The Sunbeing in the begining of Taurus, and the Alcitude 35 gr . The Complement of the Latititude is $38 \cdot \frac{1}{2} \mathrm{gr}$. The Complemenc of the Altitude is 55 gr . The fum of theie two is 93 gr .30 m . their difference is 16 gr .30 m . I take che diftance of thefe two counted upon the verfed Scale, and with it do open the Sector to fome one Line on the other Leg which iflueth from the Cens ter, from the end of the verfed Scale : then I take the diftance from the fum, $93 \frac{1}{2} \mathrm{gr}$. to the Suns place 00 Taurus, and enter it upon the verfed Scale, to the former Line on the other Leg, and find the foot of the Compars to Itay at 60 ago. 42 m , which is the Azimuthrequired.

COROLLAR r_{0}

The Clame things given, To find the Amplitude of the rifing and Jetting of the Sum.

IF you fuppofe the Sun to have no Altitude above the Horizon, and fo the Complement of it to be 90 , and then work by the formez precept, the firt way flews the Amplitude from the North, and the fecond way fhews the Amplitude from the South. And if either of thefe two numbers be numbred from she middle of the Line noted with 90 , you fhall have she Amplitude from the Eaft or Weft. So to: the beginning of Taurm, I fhall find the Amplitude to be 108 gr .41 mp . from the South: 71 gr . 19 m . from the North; and 18 gr .41 m .from. the Eaft or Weff.

A fecond Example is,

The Latitudes of two places, and their diftance being given, to find their Difference of Longitude.

LEt the twoplaces be London and Hierxfalem, the Latitude of London 5 gr g. 30 m . of Hierufalem 32 gr . cheir diftance $39 \mathrm{gr}$.14 km . and their difference of Longitude required.

The fum of the Complements of the two Latitudeq, $96 \mathrm{gr} .-30 \mathrm{~m}$. Their difference $19-30$

Take the diftance between this fum and difference, and open the Sector from the end of the Verfed Scale, then take the diftance from the difference 19 gr .30 m . to the diftance given, viz. 39 gr .14 m . where that fits over from the Verfed Scale, which will be as 47 gr . is the difference of Longitude required. The next shing is,

Having the Latitsde, the Suns place in the $Z_{\text {odiac, }}$ and the Altitude absoe the Horizon, to find the hour from the South.

THis alfo falls under the fecond general cafe before delivered. The two Legs of the Triangle, are the Complement of the Latitude, and the Suns diftance from the elevated Pole : the Baic is the Complement of the Suns Altitude above the Horizon; the Vertical Angle in thefe Northern Latitudes is the hour from the South, or Mid-day,

Firft, Count the number of gre from the beginning of the Scaleto the Suns place, this number compare with the Complement of the Latitude, and find the fum and difference of them. Then upon the Verfed Scale count this funa and difference, and take the diftance of them, and with that diftance open the Seitor, as is prefcribed in the former Propofition. Then take the diftance of the Complement of the Suns Altitude, and the afore-named difference, and entsing it upon the Verfed Scale from fome one Line on the other Leg, which iffueth from the Center, you fhall fiod it to flay upon a number of degrees, which turned into time, gives the hour required. One hour anfwers 1015 gr . one degree makes four minutes of time. Note here

alteration of the sector.

allo, that if the fum do arife to above 180 gr . you are then to accoun ${ }^{\text {® }}$ 170 as 190,160 as 200,150 as 210 , as was before intimated.
Example. From the beginning of the Scale to 00 豸 is $78 \frac{1}{2} \mathrm{gr}$. this I compare with $; 8 \frac{1}{2} \mathrm{gr}$. and I find the fum of them to be 117 gr . and the difference to be 40 gr . then I count theie two numbers upon the Verfed Scale, and take their diftance; with this diftance, I open the Sector from the end of the Verfed Scale, to fome one Line on the other Leg. Agatn, I take the length from 40 gr . (the fore-named difference) 1055 gr . the Complement of the Altitude (which I fuppore to be the fame that was in the former example) and this length I /oloenter upon the Verfed Scale, from the former Line on the other Leg, and find the foot of the Compafies to ftay in 46 gr .48 m . This Ark contains 3 hours and $7 \frac{1}{5} \mathrm{~m}$. of an hour, and fo much is the hour at that time from noon. If the Altitude therefore were obferved in the morning, it mult be 53 m . paft 8 of the clock; if in the after-noon, it is 7 mm . palt 3 a clock.

Or if I had eaken the length from the fore-named fum 117 gr . to 55 gr . the Complemest of the Alritude, and had entered the length, as before, I thould then have found the Supplement of the former, name!y, 133 gr .12 m . which is the hour from mid-night, namely, eighe hours and 53 m . which is the hour of ste day, if the Suns Altitude were maken in the morning, or elfe the Complement of that hour to 12 , namely, 3 hours 7 minutes, is the hour of the day, if the obfervation were made in the afternoon.

1. Corollary.

To find the Semidiurnal and Seminectarnal Arks.

IF you fuppofe the Altitude ro be oo, and fo the Complement of it to nal Ark from then work by this Precept, you fhall find the Semidiurfrom the end of the Line of the Line, and the Seminoturnal Ark turned into hours and minutes, and doubled, nill fhew the length of the day and night.
And if from the degrees of the Semidiurnal Ark, you take 90 ; you Thall have the Afcenfional difference in degrees; or if you take fix hours out of the Semidiarnal hours, you fhall have the fame Afcetfional difference in time.

Mr. Samuel Fofter his

Example. In the fame Laticude, and the 00 gr . of γ, the Semidiurnal Ark will be 104 gr .49 m . Thefe doubled, make the length of the day 209 gi .38 m . Or the fame turned into hours, make 6 hours 59 minutes, and thefe doubled, make the length of the day 13 hours $58 \frac{1}{2}$ minures. The Seminocturnal Ark is 75 gr . II m . or 4 hours $0 \frac{3}{4}$ minutes. Thefe doubled, make the length of the night i50 gr. 22 m . or 10 hours I $\frac{1}{2}$ minures of an hour.

The Afcenlional difference is 14 gr .59 m . or oo hours $59 \frac{1}{4}$ of an hour.

2. COROLLARY.

To find the moment of time, when the Crepuiculum begins and ends.

IF you fuppofe the Sun to be 18 gr . below the Horizon, and fo take from the former difference of the Legs, down to $10 \mathcal{O}$, and enter thas length as before, you thall find what time from the mid-day the two twy-lights begin and end.

Example. In the beginning of Taurus, the morning twyolight begins 139 gr .40 m . before noon, that is 9 hours $18 \frac{1}{2}$. minutes, or at $41 \frac{2}{3}$ minures paft two a clock in the morning, and the evening twylight ends 139 gr .40 m . after-noon, or at $18 \frac{2}{3}$ paft nine a clock at night.

3. COROLLART.

The Suns place being afigned in any Point of the Zodiac, to find bis Altitude at all hours.

THis Problem falls under the firft general Cafe before delivered. The two Legs of the Triangle are the Complement of the Latitude, and the Suns diftance from the Elevared Pole. The Angle inrercepred between them is each hour from the South, whofe Altitudes are required. The Bafe is the Complement of the Alsitude fought for.

Firft, Find the fum and difference of the Complement of the Latisude, and the Suns diftance from the elevated Pole, count both this fura and difference upon the Verfed Scale, and cake the diftance of them, and open the Sector to fome one Line on the other Leg, which
ifliech

Ifueth from the Center : to that diftance, from the end of che verfed Scale. Then count every hour upon the verfed Scale (allowing 15 gr . to an hour) and from thofe hour-points take the leatt diftance to the former Line on the other Leg,thefe diftances being fet from the aforenamed difference of the Legs outword upon the verfed Scale, will give the Complement of the Altitudes to each feverat hour from the Meridian. Or if they be numbered from 90 in the Scale, to the foo of the Compafies neareft to 180 upon the Scale, you thall have she Alcitudes themielves.
Note, that if you go quite through every fifteenth degree, or every of the cwelve hours upon the Scale, you fhall go beyond 90 , and thofe degrees beyond 90 are the profundities of the night-hours, the Sun being in that degree of the Zodiac. And they are alfo Alcitudes of the hours for the Suns being in the oppofite degree of the Zodiac. So that one opening of the Sector will ferve to find the Altitudes of all the hours in any two oppofite Signs or Poin's in the Zodiac. Nore alfo, thot the difference of the Legs is the Complement of the Suns Altitude at 12 a clock at noon, and the fum of them being diminithed by 90 gr . is the depth at mid-night or the mid-day Altitude of the Sun, when he is in the oppofice Sign or degree.

Notelaftly, (25 formerly) that if the fum of the two Legs do amount to above 180, you mult then count 170 for 190, 160 for 200 , iso for 210, © c. as was nored before.

Because this Propoftion is So frequent in wfe for the making of Tables of the Suns Altitude in every Sign, or any Parallel of Declination which Serve for drawing particular inftrumental Dials, as Quadrants, Rings, and Cylinders, and for all other purpoles alfo, I will therefore add one example at large, to make it the more plain.

Example. In our Latitude 51 gr .30 m . the Sun being 00 Taurus, I would know the Suns Altitudes at every hour of she day, and the profundities of the Sun at every hour in the night. The Complement of he Latitude is 38 gr .30 m . and the Suns diftance from the North oole is 78 gr .30 m . the fum of thefe is 117 gr . the difference of them $s 40 \mathrm{gr}$. Firft then, I count thefe two numbers upon the verfed Scale, and rake their diftance, with this diftance I open the Sector to fome pne Line on the other Leg, which ifueth from the Center, from the end of the Verfed Scale, Then I count 15 upon the veried Scale,

M*. Samuel Fofter his

and from thence I take the leaft diftance, to the former Line on the other Leg. One foot of this diftance I fer upon the difference of the Legs (which was 40 degrees.) The other Ifer forward upon the verSed Scale, and where it falls, it thews 4 I gr .48 m . the Complement of the Suns Altitude at I 1 and I a clock, or counting it from 9 , it fhews 48 gr . 12 m . the Alcitude it felf at 1 I and I a clock.

So agrain, I count 30 upon the verfed Scale, and take the leaft diflance to the former Linc on the other Leg, and fet one foot upon the difference of the Legs (viz. 40, gr .) the orher forwards upon the verfed Sale. I find it to tall upon 46 gr .48 m . which is the Complement of the Suns Altitued at 10 and 2 a clock; or counting it from 9θ, it falls upon 43 gr . 12 m . the Altitede it felf, at 10 and 2 a clock, or from 92 gr . it talls upon 43 gr . 12 m . the Altitude it felf.

In the fame manner taking the leaft diftance from 45 gr . to the former Line on the orther Leg, and ferting one foot of that diftance to the difference of the Legs,you hall find the other to fall upon 54 degrees, which is she Complement for the Alitude for 9 and 3 a cluck.

And fo working from 60 , the Compaffes will they the Complement of the Alciende 62 gr .29 m . and the Alcitude it felf 27 gr . 3 Im . for the hour of 8 and 4 .

And at 75 degrees, having with your Compaffes taken the leaft diftarice, and fet it as before to the difference of the Legs, will give 18 gro 18 m . for the Altirude of 7 and s a clock.

Aind at 90 , or 6 a clock, the Altitude will be 9 gr .00 m .
So working fill in the fame manner, from 105 , upon the Veried Scale, you fhall find your Compaffes so reach beyond 9 ?, namely, to 90 gr .06 m . for 5 in the morning, and 7 after noon. From which, if you cake 90 gr . the remainder flews how much the Sun is below the Horizon at's in the morning, and 7 at night; namely, 6 minures. Or it thews how high the Sun will be, when it is in the beginning of Scorpio, the oppofite lign to Tanrus, at 7 in the morning, and at 5 after noon : and doing the like from 120, you fhall find the Compafles 10 thew 98 gr .33 m . from whence taking 90 , there will remain 8 gr . 33 m . for the Suns profundity at \& in the morning, and 8 at night, the Sun being in 00 of Taurus, or 8 gr . 33 m : for the Suns Alcitude at 8 in the morning, and 4 after noon in oo of Scorpio. Ai 135 gr . the prof undity for 3 and 9 , or the Alcitude for 9 and 3 , will be 15 gr .58 m . At 150 , the Protundity for 2 and 10, or the Alcitude for 10 and 2. - will be 21 gr .51 m . At 165 , the Profundity at 1 and II in 00 of Tan-
rus, or the Altitude of II and I in 00 of Scorpio, w 11 be 25 gr .40 m . And laftly, whereas the difference of the Legs was found 40 gr . by what was formerly intimated, the fame 40 degrees, do thew the Complement of the Suns Altitude at 12 a clock, when the Sun is in 00 of Scorpio.

By this appears the manner of refolving this Propofition, and how there Tables may be made to other Signs or Points of the Ecliptick, or Declination from the Equinoctial.

Note alfo that the work may begin with the Winter figns, and end with the Summer, as here it may begin with Scorpio, and end with Tamrus, thus. From the beginning of the Line to the beginning of Scorpio, are 101 gr .30 m . This diftance compared with 38 gr .30 m , makes the fum 140 gr . and the difference 63 , the Complement of this difference is 27 , the Altitude of 12 at noon in the beginning of Scorpio, and the Excefs of 140 above 90 is 50 , which gives the midnighes Profundity at the beginning of Scorpig, or the mid-days Altitude in the beginning of 7 aurss. And if you work for the other hours (as in the laft example was largely thewed) you fhall find the Altituder pointed out by the other foor of the Compaffes, for esch hour in 00 of Scoopio, untill you come towards 90 , and when you come beyond 90 , the Excels Thews the Profundity for the reft of the hours of the night in Scorpio; bur the Alcitudes for the anfwerable hours in the beginning of T aurus. And fo all other Signs.and Parallels of Declination.

Thefe are the particulars in which I intended to exemplifie, becaufe their ufes are more frequens than the others are.

By the like work, having the Declimation and Reclination of any Plane, may be found. Firit, The Poles Altilude above the Plane ; then in proportions in Signs alone may be found, the Planes difference of Longitude, with the departure of the Subfyle from the Vertical Line: and by there the D al may be made, and the Lines placed in a right polition.

So, by the like work, having the difference of Longitude of any $\mathrm{Ci}-$ ty, or remarkable place from yours, and the Latitude of the fame place, you may find in what Pofition a Plane is to be fet in your Horizon, in refpect of Declination and Reclination, or Inclination, chat may reprefene the Horizon of the fame place, and accordingly you may put on the hours that belong to thas Plane or place, with all the other furniture whereby the Politions of the Sun, in refpect of the place, may be reprefented to your view upon the Plane.

And befides thefe, there are many other particulars which may be

188

Mr. Samuel Fofter bis

performed upon thisScale, namely, all that fall under the fore-mentioned tourth Axiom of Spherical Trigonomerry.

CHAP. X.

Of the other Scale son the edges and Jpare places of the sector.

WHen chen the Sector is opened into a ftraight Ruler, then will the divilions of the outer edges of the two Legs, and upon the two flachides, (which in the former ufage of the Sector appeared to be divided or broken) be made up, and become as entire Scales.

1. Thofe on the outer edge are the shree ufual Logarithmetical Lines of Numbers, Sines, and Tangenss. The ufe of thofe are fhewed moft largely by Mr. Gunter in the ufe of the Crofs-ftaff, and therefore I hall need to fay no more of them.
2. The two Scales of Foor and Inch meafure, upon one of the flat fides, will ferve to meafure fmall lengeths, that reach not above one foor, or elfe to make longer Scales of foor or inch meafure, whereby grearer lengehs may be meafured.

And this is all I Thall need to mention of thefe two Scales, the others that remain, require fomewhat more to be faid of shem.

CHAP. XI.

Of the two Sales of wine and Ale meafure. :

It is here fup- $\{$ Wine Gallon contains 23 I $\}$ Cubical pofed that a Ale Gallon contains 2883 Inches.

THefe rwo Scales ferve for the fpeedy gauging of Wine, Ale, or Beer Veffels; and cherefore you muft firlt prepare a Staff of convenient length, whereby to take the Dimenfions of any veffel. And upon the Staff.

For Wine, you muft fet on the length of 4 foor and $\frac{13}{13}$. parts of an inch, which length is to be divided into 30 equal parts, with decimal fubdivifions futable to each part, and continue the fame parts quite through the length of the Staff.

alteration of the sector.

For Ale, fet on the length of 4 foot and two inches juflly, and divide the fame into 25 equal parts, and fub-divide thofe parts decimally into as many fub-divifions as the fe parts will contain.

With thefe Scales you are to meafure the Wine or Ale veffels, thas is, you mult take their Diameters at the bung and head, and meafure the length of them each with his proper Scale.

Then to find the Content in $G_{\text {allons. }}$

Count the length of the Diamerer at the bung, upon the proper Scale (that is, upon the Scale of Wine-meafure apon the Sector, if it be for Wine, or upon she Scale of Ale-meafure, if it be for Ale) and taking the fame in your Compafes, apply it to the Line of Superficies, fetting one foot in the Center of the Sectur, and mark where the other foot falls, and noting the number, write it down twice. In this work the whole Line of Superficies is fuppofed to contain but ren parts only. Again, count the Diameter at the head; upon the proper Scale of the Sector, and apply that length likewife to the Line of Superficies, and note what number it falls upon, end write it under the ewo former, only once : then add thefe three Numbers together, and keep the fum. Afterwads going to the Line of Numbers. Say,

As 2, to the length of the Veffel.
So the former fum, to the content of the Vefielin Gallons.

Example.

Suppofe a Veffel whofe Diameter at the Bung, contained 22^{44} parts of the Scale of Wine meafure : the Diameter ar the head $18{ }^{10}$ of the fame parts; the length of the Veffel 30 parts of fuch a Scale as is formerly prefcribed for Wine meafure, from which thefe meafures here fuppofed are taken.

The firft number of the Bungs meafure I take from the Scale of Wine meafure upon the Sector, and applying it to the Line of Superficies, I find it shen to fall upon $4^{\text {ºㅇ, }}$, which number I fer down twice.

Then again I take the head number from the fame Scale of Wine meafure upon the Sector, and when it is applied to the Line of Superficies it reacheth to (about) 3^{25} which I fet under the two former numbers in right order, as in the Margin
4. 70 .
4. 70
3. 25
32.65 the

190

Mrr. Samuel Fofter bis

the fum of thefe three Numbers is $12 \div 2$. Then upon the line of Numbers I work this proportion;

As 2 is to the fum 12^{62} : fo is the length 30 to 190 near upon. So thar the content of fuch a Velfel is near 190 Wine Gallons. And if it had been computed by Numbers, the content would be about $\frac{1}{2}$, of a Gallon lefs.

If the fame Veflel were meafured by the fore-mentioned Staff made for Ale meafure, the Diameter at the Bung would be 18 of thore parts, th \in Dismerer at the head 15 , the length of the Veffel 24. And the two formerDiameters being taken upon the Scale of Ale meafure upon the Sector, and applied to the Line of Superficies will produce the fame three Numbers as before. Then as 2 tothe fum of them 1265 : fo is 24 the length to abou: 152 , which is the content in Ale Gallons.

CHAP. XII.

How to performs the fame work of Gauging by Feet or Inches.

FOr this purpofe there are two Scales upon the inner edge of one of the Leggs of the Sector, called Feet and Inches, which Scales cannot be true Feet or Inches, as by their length will eafily appear, but forthis work of Gauging (whereunto they are chiefly insended) they are to reprefent Feet and Inches, and accordingly are here called reprefentative Feer, and reprefentative Inches.

Now to take the Dimenfions of a Veffel, namely, the length with the Diameters as head and Bung, you muft have a ftaff divided,

Either into true Feet, and each foot decimally fubdivided :
Or into true Inches, and each Inch decimally again fubdivided.
Thefe Scales may be made from the true Foor and Inch Scales infrribed upon the flat of the Sector, as was intimated before in the renth Chaprer.

Either of there two Scales will perform what is here intended.
With one of there Staves (which yon have moft mind to) you are to meafure the Veffel; and knowing of what Numbers each Dimenfion is, you may caft up the content of the Veffel thus.

To find the content in Gallons.

Count the Number of the Diameter at the Bung, upon the Scale of reprefentative $\left\{\begin{array}{l}\text { Feer, } \\ \text { Inches }\end{array}\right\}$ upon the Sector, and rake that lengeth and fer it upon the Line of Superficies from the Center forwatds, and fee what Number it there falls upon, write that Number ewice. [Remember here again that the Superficial Line in this work is to be efteemed of 10 parts only.] So do alfo with the Diameter as the head. and write that Number under the other two once only. And add thefe three Numbers and keep the fum.
Then look what the Veffels length was in true $\left\{\begin{array}{l}\text { Fett, } \\ \text { Inches, },\end{array}\right\}$ count the fame number upon the Scale of reprefentative $\left\{\begin{array}{l}\text { Feer, } \\ \text { Inches, }\end{array}\right\}$ and when you have taken it off from thence, meafure it,

Either upon the Line of $\left\{\begin{array}{l}\text { Wine } \\ \text { Ale }\end{array}\right\}$ meafure, and fo what Number it reacheth thereon. Then upon the Line of Numbers fay, as 2 is to this laft Number, fo is the fum before found, to the Number of $\left\{\begin{array}{l}\text { Wine } \\ \text { Ale }\end{array}\right\}$ Gallons contained in the Veffel.

Or without mesfuring it uron thofe Lines of Wine or A'e Meafure, you may do in this manner. Find the fum of the three Numbers, as before. Then upon the Line of Numbers lay, as 2 to that fum, fo the Number of the Veffels length in Feet to a 4th. And as I to $\left\{\begin{array}{l}7.48 \mathrm{I} \text { for Wine, } \\ 6.000 \text { for Ale, }\end{array}\right\}$ ro the 4 th Number to the content in $\left\{\begin{array}{l}\text { Wine } \\ \text { Ale }\end{array}\right\}$ Gallons.

If the Veffels length be taken in Inches, then thus: As 2 to the fum, fo the Veffels length in Inches to a 4 th . And again, as 10 to $\left\{\begin{array}{l}6.234 \text { for Wine, } \\ 5.000 \text { for Ale, }\end{array}\right\}$ fo is the 4 th Number to the content in $\left\{\begin{array}{l}\text { Wine } \\ \text { Ale }\end{array}\right\}$ Gallons.

CHAP。

CHAP. XIII.

Of the two Scales upon the inner edge of the other Leg; which are divided the one into 14 , the other into 20 equalparts.

Here two Scales ferve further for Gauging of Veffels by the mean Diameter, and the ufe of them is.

To find fuch a mean Diameter between the Dimaeters of the head and Bung, as hall reduce the Veffel to an equal Cylinder of the fame length with the Veffel.

This way of Gauging is in ufe, and for our common Veffels may ferve as coming fomewhat near the truth.

Having meafured, either in Feet or Inches, the two Diameiers at Head and Bung, take their difference and count it npon the Scale of 20. And taking that lenget from thence, and applying it to the Scale of 14, fee what Number it cuts there. Add that Number to the leffer Diamerer, which is the Diamerer at the Head, and the fum will be the mean Diameter.

To Gauge by the mean Diameter.

You mult firft meafure the Dimenfions of the Veffel with a Scale of Foot or Inch meafure.

Then take the Number of the mean Diameter out of the reprefentative $\left\{\begin{array}{l}\text { Feer, } \\ \text { Inches, }\end{array}\right\}$ and meafure it upon the Line of Superficies (efteeming the faid whole Line but 10) and keep the Number that it falls upon. Then upon the Line of Numbers fay, As i to the Number kept; fo the length in $\left\{\begin{array}{l}\text { Feer, } \\ \text { Inches, }\end{array}\right\}$ to a fourth.

Then if the length be given in Inches, and the former work were alfo for inches, fay, as 8 to $\left\{\begin{array}{l}7.48 \text { for Wine, } \\ 6.00 \text { for Ale, }\end{array}\right\}$ or as $10 \operatorname{co}\left\{\begin{array}{l}9.35 \text { forWine, } \\ 7.50 \text { for Ale, }\end{array}\right.$ fo the former fourth Number to the Number of Gallons in the Veffel.

Or if the lengh were given in foor meafure, and the former work were allo for Feet, fay, As 1 io $\left\{\begin{array}{c}\text { II. } 22 \text { for Wine, } \\ 9.00 \text { for Ale, }\end{array}\right\}$,o the forme: fourth Number to the content in Gallons.
Or elfe take the Veffels length out of the reprefenrative $\left\{\begin{array}{l}\text { Feer, } \\ \text { Inches, }\end{array}\right\}$ and apply them to the $\left\{\begin{array}{l}\text { Wine, } \\ \text { Ale }\end{array}\right\}$ meafure Scales, and obferve what Numbers they there fall upon. Then fay, as $\frac{2}{3}$ to this new lengrh ; fo the Number kept before, to the Number of $\left\{\begin{array}{l}\text { Wine, } \\ \text { Ale }\end{array}\right\}$ gallons in the Veffel.
This laft way is performed by one work upon the Line of Numbers, whereas the other requires two.

CHAP. XIV.

How to meafure Cartridges of Gmupowder to know how many pound are contained in them.
I. If the Cartridge be of a Cylinderical form.

FIrft meafure the Diameter and length of it with a Scale of Decimal Inches. Then count the Diameters length upon the Line of Lines, (counting the whole Line of Lines as 10 reprefentative inches) amd with your Compaffes, take the length of that namber from the Line of Lines, and apply it to the Line of Superficies, (which now in this work muft be fuppofed to contain 100 parts) and note the Number which it reacheth unto. Then upon the Line of Numbers, fay, As $40 \frac{1}{2}$ is to that Number noted, fo the length of the Cylinder, to the Number of the pounds of Gunpowder.

> 2. If the Cartridge be of a Conical forms.

Meafure the Diameter of the Bafe, as before, and the length of the Cone likewife, both with a Scale of Decimal Inches, and count the Diameter upon the Line of Lines, and apply it to the Line of SuperC c
ficies,
ficies, noting the Number thereon, as wàs done before. Then fay, As 12 I $\frac{1}{2}$ to the Number before noted: So the length, to the contentin pounds of powder.

3 If the Cartridge be a refeeted Cone;

Meafure the Diameters of both Bafes, snd the length by a Scale of Decimal Inches: Tinen count the greater Diameter upon the Line of Lines, and meafure it upon the Line of Superficies, noting the Number, as was done in the two former ways. Afterwards, upon the Line of Numbers, fay; As the greater Diameter to the leffer ; So the noted Number to a fecond, and fo that fecond to a third. Add thefe three the firf, fecond and third Númbers together, and keep the fum. Then fay again, As $121 \frac{1}{2}$ is to the faid fum; So is the length, to the content in pounds of powder.
Or you may count both the Diameters upon the Line of Lines, and transfer them both to the Line of Superficies, and note what two Numbers they cur, count the fame two Numbers upon the Line of Numbers, and bifect the diftance berween them, fo thall you find a midele Number, which, with the two former, will make up three Numbers, the fame which were found, the other way. Then (as before) add chefe three Numbers together, and keep the fum, and again fay, As $121 \frac{1}{2}$ is to the faid fum;So is the lengeh to the content in pounds of powder.

The End of Mr. Fofters alteration of the Sector:

Poftcript.

uPon the Scheme of this Sector, as Mr. Fofter hath contrived it, thereare fome other Lines inferted in the fpare places thereof, which do not go up to the Center: As, Firfl, a Line of three hours, with their balves and quarters, which Line is noted at every whole hour with $\$$, and at every balf and quarter, with a little Line thus $\left.\right|_{0}$. The ufe of this Line is chiefly in Dialling, and the manner of ufing it is fufficiently Jbered in other of his works, and it mof excellently and expediciouly performeth that manner of Dialling, which Mr. Gunter teacheh at the end of bis third Book of the Sector.

There are alfoother Scales, as one of Metals, and anotber of Segments of a Circle, the ufes whereof are the fame, as Mr. Gunter bath fbewed at large: and there is alfo added anotber Line by Arr. Fofter, which is alfo called a Line of Segments; that of MIr. Gunter reprefenting the Segments of a Circle; the other of Mr. Fofter, the Segments of a Spbere, and bath like ufe in spheres, as the other bath in Circles.

Vale.

THE

CROSS-STAFF,

 In Three В оокs:The Firt,
Containing its Defription, and the U(fe thereof in taking of Heights and Diftances.

The Second,
Contains the Ufe of the Lines thereon in the Meafuring of all manner of Superficies, and Solids, as Board, Glafs, Land, Timber, Stone, and Gauging of Veffels, as alfo in the famous Art of Navigation.

The Third,
Contains the Ufe of the Lines of Numbers; Sines, and Tangents in Dialling, an Excellent and Compendious Treatise, fully reaching, and amply explaining the Grounds and Reafons thereof from a Projection of the Sphere in Plano. -

To which is added,

An APPENDIX, containing the Defcription and Ufe of a fmall Portable Quadrant, for the more eafie finding the Hour and Azimuth, and other Solart Conclufions of more frequent lufe.

By Edmund Gunter.

$$
L O N D O N,
$$

Printed by A.C. for Francis Eglesfield, and are to be fold as: the Marigold in St Pauls Church-yard. 1673.

$$
\therefore 17.763
$$

230882909830888988

THE

FIRST BOOK

OFTHE

CROSS-STAFF.

CHAP. I.

of the Defoription of the Staff.

He Cruss-Siaff, is an Inftrument well known to our Seamen, and much ufed by the ancient Aitronomers and octiers, ferving Aitronomically for obfervation of the Altitude and Angles of diftance in the Heavens; Geometrically for Perpendicular Heights and Diftances on Land and Sea.

- The Befcription and feveral Ules of it are extane in Print, by Gemma Frifots in Latine, in Englifh by D. Hood. I differ fomething from them both, in the Projection of this Staff, bue fo as their Rules may be applyed unto it, and all their Propofitions be wrought by it; and therefore referring the Reader to their Books, I Thall be brief in the Explanation of that which may be applied from sheirs unto mine, and rocome to the Ule of thole Lines which are of my Addicion, not extant herctofore.

The neceffary pares of this Inftrument are Five; (r.) The Staff; (2.) The Crofs; And (3.) the three Sights. The Staft which I made for my own ufe, is a full Yard in length, that fo it may rerve for meafure.

200

The Defcription of Lines:

The Crofs belonging to is is 26 Inches $\frac{3}{5}$ between the two outward fights, If any would have it in a greaser form, she proportion between the Staff and the Crofs, may be fuch as 360 unto 26%,

The Lines inferibed on the Seaff are of four forts: One of them ferves for Meafure and Protraction: One for obfervation of Angles: One for the Sea-Chart ; and the four other for working of Proportions in feveral kinds.

The Line of Meafure is an Inch Line, and may be known by his equal quarts, the whole Yard being divided equally into 36 Inches, and each Inch fubdivided firft into ren parts, and then each tenth pare into halfs.

The Line for obfervation of Angles may be known by the double Numbers, fet on both fides of the Line, beginning at the fide at 20 , and ending at 90 : on the other fide as 40 , and ending at 180 : and this being divided according to the degrees of a quadrant, I call it the Tangent Line on the Staff.

The next Line is the Meridian of a Sea-chars, according to Mercators Projection from the Equinoctial to 58 gr of Latitude, and may be known by the letter M, and the Numbers $\mathbf{y}, 2,3,4$, unto 58 .

The Lines for working of proportions may be known by their unequal divifions, and the numbers at the end of each Line.

1. The Line of numbers nored with she Eetter N , divided unequally into 1000 parts, and numbred with $1,2,3,4$, unto 10 .
2. The Line of Artificial Tangents is noted with the letter T, divided unequally into 45 degrees, and numbred both ways, for the Tangent and the Complement.
3. The Line of Artificial Sines noted with she letrer S, divided unequally into 90 degrees, and numbred with $1,2,3,4$, unto 90 .
4. The Line of Verfed Sines for more eafie finding the hour and Azimush, noted with V, divided unequally into about 164 gr .50 m . numbred backward with $10,20,30$, unto 164 .

Thus there are feven Lines infcribed on she Staff: there are Five Lines more infcribed on the Crofs.
I. A Tangent Line of 36 gr .3 m . numbred by $5,10,15$, unto 35 ; the midft whereof is at 20 gr . and sherefore I call is she Tangent of 20 ; and this hath refpect unto 20 gr . in the Tangent on the Staff.
2. A Tangent Line of 49 gr .6 m . numbred by $5,10,15$, unto 45 ; the midft whereof is at 30 gr. and hath refpect unto 30 gr . in the Tangeat on the Staff, whereupon I call it the Tangent of 30 .
3. A Line of Inches numbred with $1,2,3$, unto 26 ; each Inch equally fubdivided into ten parts, anfwerable to the Inch Line upon the Staff.
4. A Line of feveral Chords, one anfwerable to a Circle of twelve Inches Semidiameter, numbred with 10, 20, 30, unto 60, another a Semidiamerer of a Circle of fix Inches; and the third to a Semidiameter of a Circle of three Inches, both numbred with 10, 20, 30, unso 90.
5. A continuation of the Meridian Line from 57 gr . of Latitude unto 76 gr . and from 76 to 84 gr .

For the Infcription of there Lines. The firt for meafure is equally divided into Inches, and tenth parts of Inches.

The Tangent on the Stat for oblervation of Angles, with the Tangent of 20 and the Tangent of 30 on the Crofs, may all three be infcribed out of the ordinary Table of Tangents.

The Staff being 36 Inches in length; she Radius for the Tangent on the Sraff will be 13 Inches and 103 parts of 1000 : fo the whole Line will be a Tangent of 70 gr . and muft be numbred by their Complements, and the double of their Complements, the Tangent of 10 gr . being numbred with 80 and 160 .

The Radius for the Tangent of 20 on the Crofs, will be 36 Inches, and the whole Line between the Sights a Tangent of 36 gr .3 m according as it is numbred, The Radius for the Tangent of 30 gr . on the Crofs, will be 22 inches and 695 parts of 1000 : fo the whole Line between the fighes will contain a Tangent of 49 gr .6 m . in fuch fort as they are numbred.

The Meridian Line may be infcribed out of the Table which I fet down for this purpofe in the ufe of the Sector.
The Line of Numbers may be inferibed out of the firt Chiliad of Mr. Briggs Logarithms : and the reft of the Lines of proportion out of my Canon of Artificial Sines and Tangents; and in recompence thereof this Book will ferve as a Comment to explain the ufe of my Canon.

CHAP. II.

The use of the Limes of Inches for perpendicular beights and diftances.

VN taking of lieights' and diftances, the Staft may be held in fuch fort, that it may be even with the diftance, and the Crofs paratiel with the height: and chen if the eye ar the beginning of the Staff fhall fee his marks by the inward fides of the two firtt fights, there will be fach proportion between the diftance and the heighit, as is between the parts intercepred on the Staff and the Crofs. Which may be farther explained in thefe Propofitions.

1. To find an beight at one fation, by knowing the diftance.

Set the middle fight unto the diftance upon the Staff, the height will be found upon the Crofs. For,

As the Segment of the Staff unto the Segment on the Crofs:
So is the diftance given, anto the height.

As if the diffance A Bbeing known to be 256 feet, it were tequired to find the height B C: firf I place the middle fight at 25 inches and 6 parts of 10 ; then holding the Staff level with the diftance, I raile the Crofs Parallel unro the height, in fuch fort, as that my eye may fee from A the beginning of the inches on the Staff by the light E, at the beginning of the inches on the Crofs unto the mark C : which being done; if I find 19 inches and 2 parts of 10 intercepted on the Crofs between the fightsat E and D, I would fay the height B C were 192 feet.

Or if the obfervation were to be made before the diftance were meafured, I would fer the middle fight either unto 10 inches, or 12 or 16, or 20 , or 24 , or fome fuch other number as might bef be divided into feveral parts, and then work by proportion. As if in the former example the middle fight were at 24 on the Staff, and I8 on the Crofs, it fhould feem that the height is $\frac{3}{4}$ of the diftance; and therefore the diftance being 256, the height fhould be 192.
2. Tofind an beight by knowing Yome part of the fame beight.

As if the height from G to C were known to be 48 , and it were required to find the whole height $B C$, either put the chird fight, or fome other running fight upon the Crofs between the eye and the mark G. For then,

As the difference between the fights
unto the whole Segment of the Crofs:
So is the part of the height given, unto the whole height.
If then the difference between the fights at E and F, thall be 45 , and the Segment of the Crofs ED I80, the whole height BC will be found to be 192 .
3. To find an beight at two fations, by knowing the difference of the fwat fations.

As the difference of Segments on the Staff, unto the difierence of tations:
So is the Segment of the Crofs? unto the height.

Dd2: Suppofe

Suppole the firt ftation being at H , the Segment of the Crofs E D were 180, and the Segment of the Staff H D 300: then coming 64 feet nearer unto B, in a dirtet Line unto a fecond fation at A, and making another obfervation, fuppofe the Segment of the crofs ED were 180 as before, and the Segment of the Staff A D 240 ; take 240 out of 300 , the difference of Segments will be 60 parts. And

As 60 parts unto 64 the difference of Itations: So D E 180 unto BC 192 the height required.

In thefe shree Propolitions there is a regard to be had of the height of the eye. For the height meafired, is no more then from the level of the eye upwards.
4. To find a diftance, by knowing the beight.

As the Segment of the Crofs, unto the Segment of the Staff:
So is the height given, unto the diftance.

So the Segment E D being 18, and D A 24, the height C B 192; will thew the diftance A B to be 256 .

5. To find a diftance, by knoxing part of the beight.

As the difference between the fights, unto the Segment of the Staff:
So is the part of the height given, unto the diftance.

And thus the difference between \mathbf{E} and \mathbf{F} being 45, and she Segment D A 240 ; the part of the height G C 48, will give the diftance A B to be 256 :
6. To find a diffance at two fations, by knowing the difference of the fame fations.
As the difference of Segments on the Staff, unto the difference of fations: So

So is the whole Segment, unto the diftance.

And thus the Segment of the Crofs being 180, the Segment of the Staff at the firft ftation 240, at the fecond 300 , the difference of the Segments 60 , and the difference of flations 64 , the diftance AB at the firt ftation will be found so be 256 , and the diftance $H B$ at the f cond flation 320.
7. To find a breadth, by knowing the diftance perpendicular to the breadth.

This is all one with the firft Propofition. For this breadeh is but an height curned fideways; and therefore

As the Segment of the Staff,
unto the Segment of the Crofs;
So is the diftance
unto the breadth.
And thus the Segment of the Staff being 24, and the Segment of of the Crofs 18 , the diftance A B 256 , will give the breadth B C to be 192.
> 8. To find a breadth at two ftations in a Line Perpendicklar to the breadth, by knowing the difference of the Same ftations.

This is alfo the fame with the third Prop. and therefore

As the difference of Segments on the Staff,

 unto the difference of ftations:So the Segment on the Crofs between the two fights; unto the breadth required.

And thus the difference between the flations at A and H being (4;) he difference of Segments on the Staff 60 , the Seg ment of the Crofs 80 , the breadth B C will be found to be 192.
In like manner may we find the breadth G C, for having found the readth BC, the proportion will hold;

As $D E$ is unto $F E$, fo $B C$ unto $G C$. Or otherwife,

 As H a unto $H A$, fo F Eunso GC.Neither is it material whether the two fations be chofen at one end of the breadth propoied, or without it, or within it, if the Line between the fations be Perpendieular unto the breadh; as may appear, if in flead of the ftationsat A and H, we make choice of the like ftations at I and K.

There might be other ways propofed to work thefe Propoftions, by holding the Crols even with the diftance, and she Staff parallel with the height : but thefe would prove more troublefome, and thofe which are delivered are fufficient, and the fame with thofe which others have fet down under the name of the Gacobs Staff.

CHAP. III.

The rre of the Tangent Lines in taking of Angles:

1. To find an Angle by the Taingent on the Staff:

Et the middle fight be always fet to the middle of the Crofs, $n 0-$ ted with 20 and 30 , and then the Crofs drawn nearer the eye, intill the marks may be feen clofe within the fights. For fo if the eye
at A (that end of the Staff which is noted with 90 and 180) beholding the mark K and N between the two firt fighes, C and B , or the marks K and P between the two outward fights, the Crofs being drawn down unto H , fhall fand at 30 and 60 , in the Tangent on the Staff : it Theweth the Angle K A N is 30 gr . the Angle K A P 60 gr . the one double to the ottier; which is the reafon of the double numbers on this Line of the Staff: and this way will ferve for any Angle from 20 gr . toward 90 gr , or from 40 gr . coward 180 gr . But if the Angle be lefs than 20 gr . we mult then make ufe of the Tangent upon the Crofs.

2. To find an Angle by tbe Tangent of 20 upon the Crefs.

Set 20 unto 20, that is, the middle light to the midt of the Crofsat the end of the Staff, noted with 20 , fo the eye at A, beholding the marks L and N, cloce between the two firft fights, C and B, thall fee them in an Angle of 20 gr .

If the marks fhall be nearer together, as are M and N, then draw in the Crofs from C unto E : if they be farther afunder, as are K and N , shen draw out she Crofs from Cunto F ; fo the quantity of the Angle fhall ftill be found in the Crofs in the Tangent of 20 gr . at the end of the Staff : and this will ferve for any Angle from 20 towards 35 gr .

3. To find an Angle by the Tangent of 30 upon the Crofs.

This Tangent of 30 is here put the rather, that the end of the Seaff refting at the eqe, the hand may more eafily remove the Crofs : for it fuppofeth the Radius to be no longer than A H, which is from the eye ais the end of the Staff unto 30 gr . about 22 inches and 7 parts. Wherefore here fet the middle fight unto 30 gr . on the Seaff, and then either draw the Crofs in or our, untill the marks be feen between the two firft fighrs; fo the quantity of the Angle will be found in the Tangent of 30 , which is here reprefented by the Line GH ; and this will ferve for any Angle from o gr. coward 48 gr .

> 4. Toobserve the Altitude of the Sun backward.

Here it is fic to have an horizontal gighe fet to the beginning of the

The wfe of the Tangent Lines.

Staff, and then may you curn your back toward the Sun, and your Crofs toward your eye. If the Altitude be under 45 gr . fee the middle fighe to 30 on the Staff, and look by the middle fight through the Ho rizental unto the Horizon, moving the Crofs upward or downward, untill the upper fight do fhadow the upper half of the horizonta? fight : To the Alcitude will be found in the Tangent of 30 .

If the Altitude Chall be more than 45 gr . fer the middle fight unto the midft of the Crofs, and look by the inward edge of the lower fight through the Horizontal tothe Horizon, moving the middle ligh in or out, untill the upper figlit do fhadow the upper half of the Horizental fight : fo the Altitude will be found in the degrees on the S :aff between 40 and 180.

5. To fet the Staff to any Angle given.

This is the converfe of the former Propofition : For if the middle fight be fet to his place and deg ree, the eye looking clofe by the fights as before, cannot but fee his object in the Angle given.

6. To obferve the Altitude of the Sun avother may.

Set the middle fight to the middle of the Crofs, and hold the Horizontal fight downward, fo as the Crofs may be parallel to the Horizon, then is the Staff Vertical ; and if the outward lighis of the Crofs do fhadow the Horizontal fight : the Complement of the Altitude will be found in the Tangent on the Staff.

7. T'o obferve an Altitude by T bread and Plummet.

Let the middle fight be fer to the midft of the Crofs, and to that end of the Staff which is noted with 90 and 180 ; chen having a Thread and 2 Plummet at the beginning of the Crofs, and turning the Crofs upward, and the Staff towards the Sun, the Thread will fall on the Complement of the Altitude above the Horizon. And this may be applied to other purpoles.

8.To apply the Lines of Inches to the taking of Angless

If the Angles be obferved between the two firlt fights, there will
be fuch proportion between the parts of the Staff and the parts of the Crofs, as between the Radius and the Tangent of the Angle.

As if the parts intercepted on the Stafi were 20 inches, the parts on the Crofs 9 inches. Then by proportion as 20 unto 9, fo 10000 unso 45000 the Tangent of 24 gr .14 m .

Bur if the Angle fhall be obferved between the two outward fighes, the parts being 20 and 9 as before, the Angle will be 48 gr .28 m . double unto the for mer.

In all thefe there is a regard to be had to the Parallax of the eye, and his height above the Horizon in obfervations at Sea; to the Semidiameter of the Sun, his parallax and refraction, as in the ufe of other flaves. And fo this will be as much, or more than that which hath been heretofore performed by the Crols-Staff.

CHAP. IV.

The ufe of the Lines of equal parts joyned with the Lines of chords.

THe Lines of equal parts do ferve alfo for protraction, as may appear by the former Diagrams, but being joyned with the Lines of Chords, which I place upon one fide of the Crofs, they will farther ferve for the protraction and refolution of right Lined Triangles; whereof I will give one example in finding of a diftance at two ftations otherwife than in the Second Chapter.

Let the diftance required be A B, st A the firt ftation, I make choice of a flation Line cowards C, and obferve the Angle B A C by the Tangent Lines, which may be 43 gr .20 m . then having gone an hundred paces rowards C, I make my second fation at D, where fuppofe If find the Angle B D C to be 58 gr . or the Angle B D A to be 112 gr . this being done, I may find the diftance $A B$ in this manner.

1. Idraw a right Line A C, reprefenting the ftation Line:
2. I take 100 out of the Lines of equal parts, and prick them down from A the firft fation unto D the fecond.
3. I open my Compafies to one of the Chords of 60 gr . and fetring one foor in the point A, with the other I defcribe an occult Ark of a Circle interfecting the fation Line in E .
4. I take out of the fame Line of Chords a Chord of $43 \mathrm{gr} .10 \mathrm{~ms} \cdot$ (becture fuch was the Angle as the firft fation) and this I infcribe into that occule Ark from E unto F, which makes the Angle F A D equal to the Angle obferved at the frettitation.

5. I defcribe another like Ark uponthe Center D, and infcribe in ${ }^{-}$ to it a Chord of 53 gr . from C unto G , and draw the right Line D G , which doth meet with the other Line AF in the Point B, and makes the Angle B D C equal to the Angle obferved at the fecond ftation. So the Angles in the Diagram being equal to the Angles in the fiel ${ }^{\prime}$, their fides will be alfo proportional ; and sherefore,
6. I take out the Line $A B$ with my Compaffer, and meafuring it in the fame Line of equal parts, from which I took $A D, I$ find is to be 335 , and fuch is the diftance required.

CHAP. V.

The ufe of the Meridian Line.

THe Meridian Line, noted with the letter M, may ferve for the more eafie divifion of the plain Sea-chart, according to Mer cators Projection, For if you Shall draw parallel Meridians,each degree being half an inch diftant from other, the degree of this Meridian Line on the Staff fhall give the like degrets for the Meridians on the Chart, from the Equinotial toward the Pole: and then if through thefe degrees you draw fraight Lines Perpendicular to the Meridians, they fhall be Parallels of Laticude:

If any defire to have the degrees of his Chart larger than thofe which I have put on the Staff, he may take thefe and increafe them in a double, or treble, or a decuple proportion at his pleafure.
2. This Meridian Line being joyned with the Line of Chords, may ferve for the protraction and refolution of fuch right Line Triangles as concern Laritude, Longicude, Rumb and Diftance inshe practice of Navigation. As may appear by this example.

Suppofe two places given, A in the Latitude of 50 gr . D in the Latitude of $52 \mathrm{gr} . \frac{1}{2}$, the difference of Longitude between them being 6 gr . and let it be required to know, firt, what Rumb leadech from the one place ro the other; fecondly, how many degrees diftant they are afunder.

1. I draw a right Line A E, reprefenting the Parallel of the place
om whence I depart. from whence I depart.
2. It take 6 gr . for the difference of Longitude, either out of the Line of Incties, allowing half an inch for every degree, or out of the beginning of the Meridian Line ; (for there the Meridian degrees differ very litele from the Equinosial degrees) and thefe 6 gr . I prick down in the Parallel from A to E.
3. In A and E, creat wo Perpendicular:, $A M$ and $E D$ reprefenting she Metidians of both places. 0.4 . I take the difference of the Latitude from 50 gr . to 52 gr .30 m .

The ife of the Meridian Line.

out of the Meridian Line, and prick it down in the Meridians from A unto M, and from E to D, and draw the right Line $M D$ for the Parallel of the fecond place, and she right Line A D for the Line of diflance between both places : fo the Angle M A D thall give the Rumb that leadeth from the one place to the other.

क
5. To find the quantities of this Angle M A D,I may either make ure of the ProtraEtor, or elfe of a Line of Chords, and fo I open my Compaffes unto one of the Chords of 60 gr . and ferting one foor in the Point A, with the other I defrribe an occult Ark of a Circle, interfectirg the Meridian in F, and the Line of diftance in G; then I take the Chord of $F G$ with my Compafies, and meafuring it in the fame Line of Chords as before, I find it $56 \mathrm{gr}_{5} \frac{1}{4}$: and fuch is the Inclinatition of the Rumb to the Meridian, which is the firft thing that was re, quired:
6. To find the quantity of the Line of diflance A D, I take it our with my Compafies, and meafuring it in the Meridian Line, fetting one foot beneath the leffer Latitude, and the other foot as much above the greater Latitude, I find about 4 gr . $\frac{1}{2}$ intercepted between both feet: and fuch is the diftance upon the Rumb, which is the fecond thing that was required.

But if this example were protracted according to the common Sea-Chart, where the degrees of the Equinoctial and Meridian are both alike; the Rumb MAD would be found to be above 67 gr .23 m . and A D the diftance upon the Rumb about $6 \mathrm{gr} \cdot \frac{1}{2}$.

Suppofe farther, that having fer forth from A toward D, upon the former Rumb of 56 gr .15 m . NEbE, after the Ship had run 36 Leagues, the wind changing, it ran 50 Leagues mere upon the feventh Rumb of $\mathrm{E} \ell \mathrm{N}$, whofe inclination to the Meridian is 78 gr . 45 m . And let it be required to know what Longitude and Latitude the Ship is in, by pricking down the way thereof upon the Chart.

Havind drawn a blank Chart as before, with Meridians and Parallel, according to the Latitude of the places propofed.

1. I would make an Angle M A D of 56 gr . 15 m. for the Rumb of NE $b E$, which is done after this manner: I open my Compaffes to one of the Chords of 60 gr . and ferting one foot in the Point A, with the other I defcribe an occult Ark of a Circle, interfecting the Meridian in F : then I take $56 \mathrm{gr} .{ }^{1} 5 \mathrm{~m}$. out of the fame Line of Chords, and prick them down from Funto G. fo the righe Line $A G$ thall be che Rumb of NE EE.
2. I would take 36 Leagues out of the Meridian Line, extending my Compaffes from 50 gr . $105 \mathrm{t}, 48 \mathrm{mz}$. or rather from as much below 50 as above $5 t$, and prick them down upon the Rumb from A unto I; fo the Point I flatll reprefent the place wherein the Ship was when the wind changed. And this is in the Lacitude of 51 gr .0 m . and in the Longitude of 2 gr . 2 I m . Eaftward from the Meridian A M.
3. By the fame reafon, I may draw the right Line IK for the Rumb of E $b \mathrm{~N}$, atd prick down the diftance of 50 Leagues from I unso K : fo the Point K fhall reprefent the place whither the ship came, after the ranning of there 50 Leagues: and this is in the Latitude of 51 gr . $30 \mathrm{~m}_{\mathrm{c}}$ and in Longitude 6 gr . I 6 m . Eaftward from the firft Meri-

The ufe of the Meridian Line.

dian AM; and therefore 16 m . Ealtward from the fecond Meridian ED.

But if there two courfes were to be pricked down by the common Sea-Chart, the Point I would fall in the Latitude of $51 \mathrm{gr}, 0 \mathrm{~m}$. and the Poins K in the Latitude of $\mathrm{g}^{1} \mathrm{gr} .30 \mathrm{~m}$. Büt the Longitude of I would be only I gr. 30 m . and the Longisude of K only 3 gr .57 m . more: both thefe do make but 5 gr .27 m . for the difference of Longitude between the firf Meridian A M, and the Point K: whereby it fhould feem that the Point K is yet $33 \mathrm{~m}_{\text {。 }}$ Weftward from the Meridian of the plice to which the Ship was bound.

Such is the difference between both there Charts.:

CHAE

CHAP. VI.

The upe of the Line of Numbers?

THe Line of Numbers here noted with $1,2,3,4 ;$ unto IO, is compleat in thole divifions which are between I and io: the other like divifions at the beginning of the Line do ferve rather toanfwer to the firtt degrees of the two other Lines of Sines and Tangents, than for any receffity, which is the caufe why fome of them are omitted. And here, as in the ufe of other Scales, the figures I, $2,3,4$, that are fet down upon the Line, do fometimes fignifie themfelves alone, fometimes 10,20 , 30,40 , fometimes $100,200,300,400$, and fo forward, as the matter fhall require. The firft figure of every Number is always that which is here fet 1 down, the reft muft be fupplied according to the nature of the queftion.
I. Having two Numbersgiven, to find a third in con: tinual propertion, a fourth, a ffi h, and fo formard.

Extend the Compaffes from the firt Number unto the fecond; then may you turn them from the fecond to the third, and from the third to the fourth, and fo forward.

Let the two numbers given be 2 and 4 , extend the Compaffes from 2 to 4, then may you turn them from 4 to 8, and from 8 to 16 , and from 16 to 32, a 1 d from 32 to 64 , and from 64 to 128.

Or if one foot of the Compaffes being fet to 64, the other fail out of the Line, you may fet it to another 64 nearer the beginning of the Line, and there the other foor will reach to 128 , and from 128 you may tarn them to 256 , and fo forward.

Or if the two firft Numbers given were io and 9 : extend the Compaffes frow 10 at the end of the Line, back unto ρ, then may you turn them from 9 unto $8 . \mathrm{I}$, and from $8, \mathrm{I}$, unto 7,29 . And fo if the two irft Numbers given were I and 9 , she third would be found to be 3 I , the fourth 729 , with the fame extent of the Compaffes.
In the fame manner, if the two firt Numbers were 10 and 12, you nay find the third proportional to be 14,4, the fourth 17,28. And with the fame extent of the Compafles, if the two firlt Numbers were t and 12 , the third would be found to be 144, and the fourth to be 728.
2. Having two extreme Numbers given, to find a mean proportional between them.

Divide the fpace becween the extreme Numbers into two equal parts, and the foot of the Compafles will ftay at the mean proporional. So the extreme Numbers given being 8 and $\mathbf{3 2}^{2}$, the mean beween them will be found to be 16, which may be proved by the ormer Propolition, where it was hewed, that as 8 to 16 , fo are 16 032.

3. To find the Square Root of any Number given.

The fquare Root is always the mean proportionll between 1 and he number given, and therefore to be found by dividing the face beween them into two equal parts; So the Root of 9 is 3 , and the loot of 81 is 9 , and the Root of 144 is 12, and the Root of 1440 lmoft 38.
If you fuppore Pricks under tie Number given, (as in Arithmetical xeraction) and the laft Prick to the left hand hall fall under the laft gure, which will be as oft as there be odd figures, the unity will be eft placed at I in the middle of the Line: fo the Roor and the Square fill both fall forward toward the end of the Line. But if the laft rick fhall fall under the laft figure bue one, which will be as oft as tere be even figures, then the unity may be placed at I in the begining of the Line, and the Square in the fecond length, or rather the nity may be placed at 10 in the end of the Line of the Roor, and the quare will both fall backward toward the middle of the Line, in the :cond length.
4. Having two extreme Numbers given, to find tivo mean Propertionals between thens.

Divide the fpace between the two extreme Numbers given into three equal parts. As if the extreme Numbers given were 8 and 27 , divide the fpace betwe:n them into three equal parts, the fees of the Compaffes will itand in 12 and 18.

5. To find the Cubic Root of a Number given.

The Cubic Roor is always the firf of two mean Proportionals berween I and the Number given, and therefore to be found by dividing the fpace between them into three equal parts.

So the Root of 1728 will be found to be 12 . The Roor of 17280 is almoft 26 : and the Root of 172800 is almolt 56.

If you fuppofe a Prick under the Number given after the manner of Arithmetical extraction, and the laft Prick to the left hand Thall tall under the laft figure, as it doth in 1728 , the unite will be beft placed at I in the middle of the Line, and the Root, the Square, and she Cube will all fall forward toward the end of the Line.

If the laft Prick thall fall under the laft figure but one, as in 17280 the unite may be placed at I in the beginning of the Line, and the Cube in the fecond length, or the unite may be placed at 10 in the end end of the Lire: and the Cube in the firlt length; or if the Cube fall out of the Line, you may help your felf, as in the firlt Propo. fition.

But if the laft Prick mall fall under the latt figure but two, as 172800, then place the unite always $2 t 10$ in the end of the Line: fo the Root, the Square, and the Cube, will all fall backward, and be found in the fecond Length between the middle and end of the Line.

6. To multiply one number l y anotber:

Extend the Compafles from I to the Multiplicator; the fame exsent applied the fame way, thall reach from the Multiplicand to thi Product.

As if the Numbers to be mulsiplied were 25 and 30 : cither extenc

The afe of the Line of Numbers:

the Compaffes from 1 to 25 , and the fame extent will give the diftance from 30 to 750 ; or extend them from I to 30 , and the fame extent hall reach from 25 to 750.
7. To divide one Number by another.

Extend the Compaffes from she Divifor eo I , the fame extent fhall reach from the Dividend to the Quotient.
So if 750 were to be divided by 25 , the Quotient would be found o be 30 .
8. Three Numbers being given, to find a forsth Proportional:

This golden Rule, the molt ufeful of all orhers, is performed with like eare. For extend the Compafies from the firft Number to the fecond, the fame extent fhall give the diftance from the third to the ourth.
As for example, the proportion between the Diameter and the Circumference, is faid to be fuch as 7 to 22: if the Diamerer be 14: now much is the Circumference? Extend the Compaffes from 7 to 22, the fame extens thall give the diftance from 14 to 44 : or extend them from 7 to 14, and she fame extent fhall reach from 22 to 44.
Either of thele ways may be tried on reveral places of this Line; but that place is beft, where the feet of the Compaffes may ftand neareft together.
9. Three Nambers being given, to find a fourth in a duplicated proportion.].

If any have daily wfe of this Propoftion, he may cause another Line of Numbers to be made.

This Propofition concerns queftions of proportion between Lines and Superficies; where if the denomination be of Lines, extend the Compaffes from the firt to the fecond Number of the fame denomiration: fo the fame extent being doubled, fhall give the diftance from he ehird Number unto the fourth.

The Diamerer being 14, the content of the Circle is 154 :the Diamerer being 28, what may the content be? Extend the Compaffes fom 44 to 28, the fame extent doubled will reach from I 94 to 616.

220

 The ufe of the Line of Numbers.For firft, it reacheth from 154 unto 308 ; and turning the Compaffes once more : it reacheth from 308, unto 616 ; and this is the contens required.

But if the firt denomination be of the fuperficial content, extend the Compaffes unto the half of the diftance, berween the firft Number and the fecond of the fame denomination: fo the fame extent fhall give the diftance from the chird to the fourth.

The content of a Circle being 154 , the Diameter is 14 : the content being 616, what may the Diamerer be ? Divide the diftance between 154 , and 6 I 6 into two equal parts, then fet one foot in 14, the otber will reach to 28 , the Diameter required.
10. Three Numbers being given, to find a fowt th in a triplicated proportion.

This Propofition concerneth queftions of proportion between Lines and Solids; where if the firt denomination be of Lines, extend the Compaffes from the firf Number to the fecond of the fame denomination: fo the extent being tripled, fhall give the diftance from the third Number unto the fourth,

Suppofe the Diameter of an Iron Bullet being 4 inches, the weight of it was 9 l. the Diameter being 8 inches, what may the weight be? Exiend the Compaffes from 4 to 8 , the fame extent being tripled, will reach from 9 unto 72 . For firft, it reacheth from 9 unto 18 ; then from 18 unto 36 ; thirdly, from 3^{6} unto 72. And this is the weight required.

But if the firt Denomination thall be of the Solid content, or of the wieight, extend the Compaffes to a thitd part of the diftance beaween the firf Number and the fecond of the fame Denomination; fo the fame extent fhall give the diftance from the third Number unto she fourth.

The weight of a Cube being $72 l$. the fide of it was 8 inches : the weight being $9 l$. what may the fide be? Divide the diffance between 7_{2} and 9 , into three equal parts ; then fet one foot to 8 , the other will reach to 4 , the fide required.

CHAP. VII.

The ufe of the Line of artificial Sines.

THis Line of Sines hath fuch ufe in finding a fourth Proportional, as the ordizary Canon of Sines; and the manner of finding it is: always fuch, as in this example.

As the Sine of 90 gr .
unto the Sine of 30 gro
So the Sine of 20 gr 。 unto a fourth Sine.

Extend the Compaffes from the Sine of 90 gr unto the Sine of $30 \mathrm{~g} \%$ the fame extent will reach from the Sine of 20 gr . unto the Sine of 9 gr .50 m.
Or you may extend shem from the Sine of 90 gr. unto the Sine of 20 gr. the fame extent will reach from the Sine of 30 gr . unto the Sine of 9 gr .50 m . and fuch is the fourth proportional fine required.

In like manner if the queftion propofed were,
As the Sine of 30 gr .
unto the Sine of 52 gr .
So the Sine of $3^{8} \mathrm{gr}$. to a fourth Sine.

Extend the Compaffes in the Line of Sines from 30 gr . unto 52 gr . the fame extent fhall give the diftance from 38 gr . unto 76 gr . Or, extend them from 30 gr . unto $38: \mathrm{gr}$. the fame extent will reach from 52 gr . unto 76 gr . which is the fourth proportional Sine required.

And thus may the reft of all Sinical proportions be wrought two ways. The minutes which are wanting in the firf degree of the Sines may be fupplied by the Line of Numbers, as 1 Thew in the next Chapter.

The ufe of the Line of Artificial Tangents:

CHAP. VIII.

The iffe of the Line of Artificial Tangents.

THis Line of Tangents hath like ufe, but conmonly joyned with the Line of Sines : the manner of working by it, may appear by this example:

As she Tangent of 38 gr .30 m . is the Tangent of 23 gr .30 m .
So is the Sine of 90 gr .
to a fourth Sine.
This Propofition, and fuch others upon two Lines, may be wrought two ways. For extend the Compaffes from the Tangent of 38 gr .30 m . the Tangent of 23 gr .30 m . the fame extent fhall give the diftance from the Sine of 90 gr . to the Sine of 33 gr .8 m . Or elfe extend them from 38 gr .30 m . in the Tangents unto 90 gr , in the Line of Sines; the fame extent from the Tangent of 23 gr .30 m . Thall reach to the Sine of 33 gr .8 m . which is the fourth proportional Sine required.

And this Crofs work in many cafes is the better, in regard the Tangents which fhould pafs on from $40 \mathrm{gr} . \operatorname{to~} 50 \mathrm{gr}$. and fo forward, do curn back at 45 gr . Thefe two Lines of Sines and Tangents, may ferve for the refolution of all Spherical Triangles, according to thofe Canons which I have fet down in the ufe of the Sector. Only two cafes the 19 and 20 will be more eafily refolved by that which followeth in the laft Chapter of this book.

Or if at any time one meet with a Secant, Let him account the Sine of 80 gr . for a Secant of 10 gr : and the Sine of 70 gr . for a Secant of 20 gr . and fo take the Sine of the Complemens initead of the Secant.

As if the Propofition were,
As the Radius
to the Secant of 51 gr .30 .
So the Sine of 23 gr .30 m . to a fourth sine.

Extend the Compaffes from the Radius that is the Sine of 90 gr . to the Sine of 38 gr .30 m . the fame extent will give the dittance from the Sine of 23 gr .30 m . both to the Sine of 14 gr .22 m to the Sine of 39 gr .50 m . But in this cafe, the Sine of 39 gr .50 m . is the fourth required. For the firit number being lefs than the fecond, that is, the Radius lefs than che Secant, the Sine of 23 gr .30 m , which is the third, mult alfo be lefs than the fourth.

If the fourth proportional number fhall at any time fall out of the Line, by reafon of the minutes that are wanting in the firft degree, it may be fupplied by refolving the chird Number given into minutes, and then working by the Line of Numbers.

As if the Propofition were,

As the Sine of 90 gr . tothe Sine of 10 gr .
So the Sine of 5 gr . to a fourth Sine.
Or the Tangent of 5 gr . ro a fourch Tangent.

Extend the Compafies from the Sine of 90 gr . unto the Sine of io gr . the fame extent will reacb from the Sine or Tangent of 5 gr beyond the end of the Seaff. Wherefore I refolve thefe 5 gr . inro 300 m . and find the former extent to reach in the Line of Numbers from 300 m . unto 52 m . and fuch is the fourth proportional required.

If the extent from the Sine of 90 gr , unto the Sine of 10 gr . be too large for the Compaffes, we may ufe the Sine of 5 gr .44 mm . inftead of the Sine of 90 gr .

And fo extending the Compaffes from the Sine of 5 gr .44 mm unto the Sine of 10 gr . We fhall find the fame extent ro reach in the Line of Numbers from 300 unto 52 as before.

And by the fame reafon we may ufe the Tangent of 5 gr .43 m 。 inftead of the Tangenc of 45 gr . as I further thew in the nexi Chaprer.

224 The ufe of the Eine of Sines and Tangents?

CHAP. IX.

The ufe of the Line of Sines and Tangents joyned with the Line of Numbers.

THe Lines of Sines and Tangents have another like ufe joyned with the Line of Numbers, efpecially in the refolution of righe Lined Triangles, where the Angles are meafured by degrees and minutes, and the fides meafured by abfolute Numbers, whereof, I will fet down thefe Propolitions.

1. Having three Angles and one fide, to find the rmo otber fides.

If it be a Rectangle Triangle, wherein one fide abour the right Angle being known, it were required to find the other. This may be - found by the Line of Tangents, and Line of Numbers. For,

As the Tangent of 45 gr.
To the Tangent of the Angle oppolite to the fide required;
So the Number belonging to the fide given,
To the Number belonging to the fide required.

As in the Reciangle ABC, knowing the Angle CAB to be 9 gr . 15 m . and the fide A B to be 135 parts, if it were required to find the other lide $B C$ about the right Angle,

Extend the Compaffes from the Tangent of 45 gr . unto the Tangent of 9 gr .15 m , the fame extent will reach in the Line of Numbers, from 135 unto 22, and fuch is che length of the fide BC. Or in the crofs work, extend the Compaffes from the Tangent of 45 gr . unth 135. in the Line of Numbers, the fame extent will reach from the Tangens of $9 \mathrm{gr}_{\mathrm{i}} 15 \mathrm{~m}$. unto 22 in the Line of Numbers.

If this extent from the Tangent of 45 gr . to 9 gr . 15 mm . or, 135 parts, be too large for the Compaffes, you may ufe the Tangent of 5 gr .

43 m . inftead of the Tangent of 45 gr . becaufe both alike anfwer to 10, ơc. parts in the Line of Numbers.
And then either extend the Compafs from 5 gr .43 m . unto 9 gr . 15 m in the Line of Tangents, the fane extens will reach from 135 unto 22 in the Line of Numbers : or elfe extend them from the Tangent of 5 gr .43 m . Unto 135 in the Line of Numbers, the fame extent will reach from the Tangens of $9 \mathrm{gr}, 15$ unto 22 in the Line of Numbers, as before.

In like manner, in the fame Rectangle ABC, knowing the Angle $A C B$ co be 80 gr .45 m . and the fide $B C$ to be 22 parts, it were required to find the other fide B A. You may ufe the Tangent of 84 gr . 17 m . inftead of the Tangent of 45 gr . and fo the fide B A will be found to be I 35 parts.

Thistholdeth for finding of the fides of Rectangle Triangles, but generally in all Triangles, whether they be right or obrufe Angles, haoing three Angles and one fide, we may find the two other fides by the Line of Sines and Line of Numbers.

As the Sine of an Angle oppofite to the fide given, is to the Nu mber belonging to that fide given;
So the Sine of the Angle oppofite to the fide required,
fo the Number belonging to the fide required.
As in the example of the fourth Chapter of this Book, where nowing the diftance between two ftations at A and D to be 100 paces, he Angle B A C to be 43 gr .20 m . and the Angle B D C to be 58 gr . was required to find the diftance AB.
Firft, having thefe two Angles, I may find the third Angle A B D to e 14 gr .40 m . either by fubftraction or by Complement unto i 80 . Then a the Triangle B A D, I have three Angles, and one fide, whereby I nay find both A B and D B.
I know the Angle A B D oppofite to the meafured fide A D, to be 4 gr .40 m , and the Angle AD B oppofite to the fide required, to be 22 gr . wherefore I extend the Compeffes in the Line of Sines, from 4 gr .40 m . unto 122 gr . or (which is' all one.) to 58 gr . (for after 0 gr . the Sine of 80 gr . is allo the Sine of 100 gr . and the Sine of 70 gr . ie Sine of IIo gr . and fo in the reft) fo thall I find the fame extentio each in the Line of Numbers, from 100 unto 335. And fuch is the diance required between A and B.

In like manner I extend my Compaffes from the Sine of 14 gr . 40 m . to the sine 43 gr .20 m . the fame extent will reach in the Line of Numbers from Io0to 27^{1}. And fuch is the diftance between D and B.

Or in crols work, I may extend the Compaffes from $14 . \mathrm{gr} .40 \mathrm{~m}$. Inthe Sines, unto 100 parts in the Line of Numbers, fo the fame extent will give the diftance from 58 gr . to $3: 35$. parts, and from 43 gr . 20 an 1027 parts.
2. Having two gides given, and one Angle oppofite to either of thefe: Fides, to find the other two Angles and the third jide.

As the fide oppofite to the Angle given,
$:$ is to the Sine of the Angle given:
So the other fide given,
to the Sine of that Angle to which it is oppofite.
So inthe former Triangle, having the two fides, A B 335 paces, and A D 100 paces, and knowing the Angle A D B, which is oppolite.to the fide $A B$, to 122 gr . I may find the Angle $A B$ B D, which is oppofite
to the other fide A D. For if I extend the Compaffes from 335 unto 100 in the Line of Numbers, I fhall find the fame extent to reach in the Line of Sines from 122 gr . to 14 gr .40 mand therefore fuch is the Angle ABD.

Then knowing there two Angles A B D and A D B, I may find the third Angle B A D either by fuberaction or by Complement to I 80 , to be 43 gr .20 m . and having three Angles and two fides, I may well find the third fide D B, by the former Propofition.

This may be done more readily by crofs work. For if I exiend the Compafies from 335 parts, in the Line of Numbers, to the Sine of 122 gr . the fame extent will reach from 100 pars to the Sine of 14 gr . 46 m . and back from 43 gr .20 m . to 271 parts; and fuch is the third lide $D E$.
3. Having two fides and the Angle letween them, to find the two other Angles and the third Side.

If the Angle contained between the two fides be a right Angle, the other two Angles will be found readily by this Canon.

> As the greater fide given, is to the leffer fide:
> So the Tangent of 45 gr .
> to the Tangent of the leffer Angle.

So in the Rectangle triangle, A I B, knowing the fide A I to be 244 , and the fide 1B230: if I extend the Compaffes from 244 to 230 in the Line of Numbers, the fame extent will reach from 45 gr . to about 43 gr .20 m. in the Lise of Tangents; and fuch is the leffer Angle BAI, and the Complement 46 gr .40 m . fhews the greater Angle A B I. The Angles being known, the third fide A B may be found by the firf Propofition.

So likewife in the example of the third Chapter of this Book, concerning taking of Angles by the Line of Inches, where the parts intercepted on the Staff being 20 Inches, and the parts on the Crofs 9 Inches, it was required to find the Angle of the Altitude. For,

I may extend the Compaffes in the Line of Numbers, fron 20 unto 9, the fame extent will reach in the Line of Tangents from 45 gr to 24 gr .14 m .

228
 The we of the Line of sines and Tangents;

Or in crofs work,
I may exrend the Compaffes from 20 parts in the Line of Numbers, to the Targent of 45 gr . the fame extent fhall give the diftance from 9 parts, unto the Tangent of 24 gr .14 m .

And fuch is the Angle of the Alitude required.
If the parts intercepied on the Staff being 20 Inches, and the parts on the Crofs 9 renth parts of an inch, it were required to find the Angle of the Altitude. Here the Angle would be much lefs, and the. 9 would fall our of the Line of Numbers.

To fupply this defect, I ufe the Tangent of 5 gr .43 m . intead of the Tangent of 45 gr . And then if I extend the Compaffes in the Line of Numbers from 20 unto 9, the fame extent will reach in the Line of Tangents from 5 gr .43 m , unto 2 gr .35 m .

Or in Crofs work, if I extend them from 20 parts in the one Line of Numbers, unto the Tangent of 5 gr .43 m . the fame extens will give the diftanee from 9 in the Line of Numbers, unto the Tangent of 2 gr .35 m .

And fuch is this Angle of the Altitude required.
But if it be an oblique Angle that is contained between the two fides. siven, the Triangle may bereduced into two Rectangle Triangles, and then refolved as before.

As in the Triangle A D B, where the fide A B is 335 , and the fide A Dioo, and the Angle B A D 43 gr .20 m . If Ilet down the Perpendicular, D H upon the fide A B, I fhall have two Rectangle Triangles, $\mathrm{AHD}, \mathrm{DHB}$; and in the Rectangle A H D, the Argle as A being 43 gr .20 m . the other Angle A D H will be 45 gr .40 m . and with there Angles and the fide A D, I may find both AH and D H, by the firf Propolition.

Thentaking A H out of AB, there remains H B for the fide of the Rectangle D. H B , and therefore with this fide H B and the other fide H D, I may find both the Angle ar B, and the third fide D B, as in the former part of this Propofition.

Or I may find the Angles reguired, without fetting down any Perpendicular. For,

As the fum of the fides;
is to the difference of the fides:
So the Tangent of the half fum of the oppofite Angles, to the Tangent of half the difference between thofe Angles.

As in the former Triangle $A D B$, the fum of the fides $A B, A D$, is 435, and thie difference between them 235 ; the Angle contained 43 gr .20 m . and therefore the fum of the two oppofite Angies 136 gr .40 m . and the half fum 68 gr .20 m . Hercupon I extend the Compsffes in the Line of Numbers from 435 to 235 , and I find them to reach in the Line of Tangents from 68 gr .20 m . unto 53 gr .40 m . and fuch is the half difference between the oppofite Angles at B and D. This half difference being added to the half fum, doth give 122 gr . for the greater Angle A.D.B: and being fubtracted, it leaverh i 4 gr. 40 m . for the leffer Angle $A: B$ Dithen the three Angles being know the third fide B. D may be found by the firt Propofition.
4. Having the three fides of a rigbt Line Triangle, io find the thres Angles.

Let one of the three fides given be the Bife, but rather the greates Ide, that the Perpendicular may fall within the Triangle ; then gaso ther the fum, and difference of the two other fides, and the propore ion will hold.

As she Bure of the Triangle .
is to the fum of the fides:
Sothe difference of the fides
to a fourth, which being taken forth of the Bafe, the Perpen? dicular fhall fall on the middle of the remainder.

As in the former Triangle A D B, where the Bale A B is 335 , the im of the fides AD and D B 371, and the difference of chem 171 . f I extend the Compaffes in the Line of Numbersfrom 335 unto 37 r, thall find the fame extent to reach from 171 unto 189.4.This fourth Jumber I take out of the Bare 335: 0 . and the remainder is 145.6 ; he half whereof is 72.8; and doch fhew the diftance from A unoo H , bere the Perpendicular fhall fall, from the Angle D, upon the Baie - B, dividing the former Triangle A D B into two right Angle Triagles, DHA and DHB, in which the Angles may be found by the cond Propofition.
And this may fuffice for the right Line Triangles, but for the more afie protraction of thefe Triangles, I will fer down one Propofition ore concerning Chords.

230

 The use of the Line of Sines and Tangents, $\& c$.5. Having the Scmidiameter of a Circle, to find the Chords of every Ark.

As the Sine of the Semiradius of 32 gr .
to the Sine of half the Ark propofed:
So is the Semidiamerer of the Circle given, to the Chord of the fame Ark.

As if in the protracting the former Triangle $A D B$, it were required to find the length of a Chord of 43 gr .20 mm . agreeing so the Semidiameter A E, which is known to be three Inches. The half of 43 gr .20 m . is 21 gr .40 m . Wherefore I extend the Compaffes from the Sine of 30 gr . to the Sine of $21 \mathrm{gr}, 40 \mathrm{~m}$. and I find the fame extent to reach in the Line of Numbers from 3.000 parts to 2.215 . which fhews, that the Semidiameter being three Inches, the Chord of 43 gr .20 m . will be 2 Inches and 215 parts of 100 .

In like manner the Chord of 58 gr . agreeing to the fame Semidiameter, would be found to be 2 inches and 909 parts. For the half of 98 being 29 ; if I extend the Compaffes in the Line of Sines from 30 gr . to 29 gr . the fame extent will reach in the Line of Numbers from 3.000 . unto 2.909.

Or in Crofs work, if I extend the Compafles from the Sine of 30 gr. to 3.000 in the Line of Numbers, I Thall find the fame extent to reach from $21 \mathrm{gr} ; 40 \mathrm{~m}$. to 2.215 parts, and from 29 gr . to 2.909 parts, and from $7 \mathrm{gr} .20 \mathrm{~m} . t 0795$ parts; for the Chord of 14 gr. 40 m . for the third Angle A B D.

CHAP. X.

The rye of the Line of versed Sines.

THis Line of verfed Sines is no neceffary Line. For all Trisngles; both right lined and fpherical may be refolved by the three former Lines of Numbers, Sinesand Tangents; yet I thought good to put it on the Staff for the more eatie finding of an Angle having three fides, or a fide having three Angles of a fpherical Triangle given.
Suppofe the three fidesto be, one of them 100 gr . the other 78 gr . and the third 38 gr .30 m . and lee it be requirea to find the Angle, whofe Bafe is IIO gro

I firft add them together, and from half the fum fubtract the Bafe , noting the difference after this manner.

The Bafe	110 gr	0 mo
The one fide	78	0
The other fide		38
The fum of all three	30	
The half fum	226	30
The difference	113	15

For fo the proportion will hold.
I As the Radius
to the Sine of one of the fides:
So the Sine of the other fide, to a fourth Sine.

2 As this fourth Sine, to the Sine of the half fum :
So the Sine of the difference to a feventh Șine.

232 The ufe of the Line of verfed Sines.

3 The mean proportional between this feventh Sine and the Radius, will thew the Sine of the Complement of half the Angle required.

This done, I come to the Scaff, and extend the Compaffes from the Sine of $90 . \mathrm{gr}$. to the Sine of 78 gr . which is one of the fides; and applying this extent from the Sine of the other fide 38 gr .30 m . I find it to reach to a fourth Sine, about 37 gr .30 m . From this fourth Sine of 37 gr .30 m . I extend the Compafles again, to the Sine of the half fum 113 gr .15 ma . (which is all one with the Sine of 66 gr .45 m .) and this lecond exient will reach from the Sine of the difference 3 gr . 15 m . to the Sine of 4 gr .54 m .
Then to find the mean proportional Sine between this feventh Sine of 4 gr .54 m .and the Sine of 90 gr . I might divide the fpace between stem into two equal parts, and fo I Thould find the Compaffes to ftay at $I 7 \mathrm{gr}$. Whofe Complement is 73 gr . and the double of 73 gr . is 146 gr. the Angle oppofite to 110 gr . which was required.

But becaufe this divifion is fomewhat troublefome I have therefore added this Line of Verfed Sines, that having found the fevensh Sine you might look over againft it, and there find the Angle. And fo in this example having found the feventh Sine to be 4 gr . 54 m . over againft this Sine you fhall find 146 gr , in the Line of Verfed Sines' for the Angle required as before.

CHAP. I.

The ufe of the Line of Numbers in broad mealwre, fuch as Board, Glafs, and the like.

THe ordinary meafure for breadth and length are feet and inches, each foot divided into 12 inches, and every inch into halves and quarters, which being parts of feveral denominations doth breed much trouble both in Arithmetick and the ufe of inftruments.

For the avoiding whereof, where I may prevail I give this counfel, shat fuch as are delighted in meafure would ufe feveral Lines, firt a Line of inch meafure, wherein every inch may be divided into 10 or 100 parts; fecondly, a Line of foot mealure, wherein every foot may be divided into 100 or 1000 parts, both which Lines may be fet on the fame fide of a two foot Ruler, afier this or the like manner.

Then if they be to give the content of any Superficies or Soid in inches, they may meafure the fides of it by the Line of inches and parts of inches; but if they be to give the content in feet, it would be more eafie for them to meafure thofe fides by the foot Line and his parts.

For example, let the length of a Plain be 30 inches, and the breadth. 21 inches and $\frac{6}{15}$ of aninch; this length multiplied into the breadth, would give the contene to be 648 inches : but if Iwere to find the content of the fame Plane in feer, I would meafure the fides of it by the foot Line and his parts; fo the length would prove to be two feet $\frac{50}{10}$, and the breadth one foot $\frac{80}{\circ \circ}$, and the length multiplied by the breadth, curting off the four lait figures, for the four figures of the parts, would give the content to be 4.5000 , which

The ife of the Lise of Numbers in broad meafure. 235 which is 4 foot and 5000 parts of 2 foot, divided into 10000 parts.

21.6	2.50 30.0
948.00	1.80 20000 250

4.5000

Fi The like reafon holdeth for Yards and Ells, and all orher meafures divided into 10.100 or 1000 parts.

This being prefuppofed, the work will be more eafie both by Arithmetick and the line of Numbers, as may appear by thefe Propofitions.

$$
S_{\text {ECT. }} \text { I. }
$$

Of the Mensuration of Oblong Superficies, and Triandles.

1. Having the breadth and length of an Oblong Superffies given in inch: meafure, to find the contens in incbes.

A Sone inch unto the breadth in inches,
A. So the length in inches unto the content in inches.

Suppofe in the Plane A D, the breadth A C to be 30 inches, and the ength A B to be 183 inches; extend the Compaffes from I unto 30 , he fame extent will reach from 183 unto 5490 ; or extend them froma t unto 183 the fame extent will reach from 30 unto 5490 . So both ways the content required is found to be 5490 inches.

As I unto 30: fo are 183 unso 5490.
Hh_{2}
2. Having

The ufe of the Live of Numbers

2. Having the breadth and length of any Oblong Superfcies given in sinches, to find the content in feet.

As 144 inches unto the breadeh in inches:
So the lergth in inches unto the content in feer.
And thus in the former Plane A D, working as before, the content will be found to be 38 . 125 , which is 38 foor and $\frac{1}{2}$ of a foor. As 144 unto 30 , fo are 183 unto 38 . I 25 .
3. Having the length and breadth of any Oblong Superfcies given in foot mea fure, to find the content in feet.

As i foot unto the breadth in foot meafure:
So the length in feet unto the content in feet.
And thus in the former Plane A D, the breadth will be two feet so parts, and the length 15 feet 25 parts; then working as before, the content will be found to be 38 . 125 .

As I unto 2. 50 : fo are 15.25 unto 38. 125.
4. Having the breadth of any Oblong Superficies given in inches, and the length in foot meafure, to find the content in feet.

As 12 inches to the breadth in inches:
So the length in feet to the content in feer.
So alfo in the former Plane, the content will be found to be 38 . 125.

As the 12 unto $30:$ fo are 15.25 unto 38.125 .
5. Having the breadth of an Oblong Superficies given in inches, to find the length of a foot superficial in inch moalure.

As the breadth in inches, unto 144 inches :
So 1 foor unto the lengeh in inch meafure.
So the breadth being 30 inches, the length of a foot will be found to be 4 inches 80 parts, the length of cwo feer 9 inches 60 parts.

As 30 unto 144 : fo are 1 unto 480 .

6. Having

6. Having the lieadth of an Oblong Superficies given in feet, to find the length of a foot superficial in foot mensure.

As the breadth in foot meafure to I foot:
So the number of feer to the length in foot meafure.
So the breadth being 2 feet 50 parts, the length of a foot will be found to be 40 parts, the length of 2 feet 80 parts, and the length of 3 feet I foot 20 pirts,ơc.

$$
\begin{aligned}
& \text { As } 250 \text { unto I : fo are I unto } c, 40 \text {. }
\end{aligned}
$$

7. A four fided Superficies baving any of the two fides Parallels, to find the Area.

Add the two Parallel fides together, and take the half, then fay,
As I
is to the half fum of the two Parallel fides:
So is the breadth (or length)
to the Area,
So in the four fided figure A having one of the parallel fides in length 23.25 toot, and the other, 19.75 foot, the fum of them is 43.00 foot, (the half whereof is 21.50 foot) and the breadth 14.5. the Area or content of this Superficies will be found to be 311.75 oot.
Extend the Compafles from 102 I. 50 (the mean length) the ame extent will reach from 14.5 (the breadth) to 311 . 15 the Area or content.
8. To find the Area or content of a Triangle, the longeft fide and the Pore pendicular being given.

As I

is to the half length of the Bafe :
So is the length of the Perpendicular to the Content or Area.

So the Triangle B, having the Bafe 32 foor, and the Perpendicular 25 foot, the Area will be found to be 400 foor.

Extend the Compaffes from i to 16 , (half, the Bafe) the fame extent will reach from 25 (the Perpendicular) to 400 the Area.

Or, extend the Compafles from I to I 2. 5: (half the length of the Perpendicular) the fame extent will reach from 32 (the whole Bafe) to 400 as before.

Or, extend the Compafles from I to 32, the fame extent will reach from 25 to 800 , the double Area.
9. The fide of an Eguilateral Triangle being given, to find the Area.

Asio00, is 80433.01 ,
So is the Square of the fide of the Triangle, to the Area.

So the fide of an Equilateral Triangle being 17,5 foot, the Area will be found to be 132.61 foor.

Extend the Compaffes from 1000 to 433. or, the fame Extent will reach from 306.25 (she Square of the fide of the Triangle) to I 32. 61, the Area.
10. To find the Area of a four fided figure, whofe fodes are neither equal nor paraliel one to the other, which figures are called Trapezias.
All four fided figures whole fides are neither equal nor parallel, malt be reduced into two Triangles, by drawing a Diagonal Line from any one Angle to its oppofite, upon which Diagonal two Perpendiculars mult be let fall; then,

As I,
is ro half the length of the Diagonal :
So is the length of both the Perpendiculars;
To the Area, or Content.

So in the Trapezia C, the Diagonal is 68 , (she half of it is 34) and the two Perpendiculars are 32 and 19, their Sum is 51 . Then,

Extend the Compafles from I to 34 . (half the Diagonal) the fame extent will reach from 51 (the fum of the Perpendiculars) to 1734 the Area.

Or, extend the Compafes from I to 68 (the Diagonal) the fame extent will reach from 25.5 half the fum of the two Perpendiculars) 10 I 734 as before.
In all other righe lined figures, of hoy many fides, or how irreyular foever, before they can be meafured they mult (by drawing of Sines from Angle to Angle) be reduced into Triangles or Trapezias, and fo be meafured by thefe two laft Precepts.

And here note, That when any irregular figure is thus reduced into Triangles, the number of Triangles will be lefs' by two than the number of the fides of the irregular figure.
11. Hiving the length and breadth of an Oblong Superjicies, to find the fide of a Squarrequal to the Oblong.

Divide the fpace between the length and the breadth into two equal arts, and the foot of the Compafies will ftay at the fide of the thare.
So the length being 18.3 inches, and the breadth 30 inches, the fide f the fquare will be found to be 74 inches, and almoft 10 . parts of 00.

Or the breadth being 2 foot and so parts, the length 15 foot and s parts, the fide of the fquare will be found to be about 6 feet and 7 parts.

As 30 unto 74, $10:$ fo are 74, 10 unto $183,027$. And as 2, 50 unto 6, 174 : (o are 6, 174 unto 15,247 .

The infe of the Line of Numbers

SECT. II.
Of the Menfuration of Regular Polygons.
B
Y Regular Polygons are meant all fuch figures whofe fides and Angles are above four, and are all equal. As the

And the Area of any of thefe Regular Polygons is equal to a Paral lelogram, whofe length fhall be equal to half the Perimerer, and whor breadth equal to a Perpendicular drawn from the Center of the figur to the middle of any of the fides of the Polygon.
x. The Fade and Perpendicular of a Pentagon being given, to find th Area.

As I
is to the Perpendicula (8, as So is half the Perimete (30 To the Area $\begin{array}{r}247.7 \\ \text { (inche }\end{array}$

So in this Pentagon, whet the fide C D (and fo all th reft) contains 12 inches, ar the Perpendicular HZ,8,25 inches, the Area will be four to be 247.74.
Extend the Compafles from 1. to 8. 258, (the Perpendicular) it fame extent will reach from 30 (which is half the length of all the fides) to 247.74 the Area.
2. The Side and Perpendicular of an Octagon (or figkre of 8 fides) being given, to find the Area.

As:
is to the Perpendicular 14.48.
So is the Semi-Perimeter 48.
to 695. 04 she Area.
So a regular Polygon of 8 fides, each fide containing 12 inches and the Perpendicular 1448 inches, the Area thereof will be found to be 695. 04.

Extend the Compaffes from I to 14.48 the Perpendicular, the fame extent will reach from 48 (half the Perimeter) to 695 04. the Area.

And in this nature, may any Regular Polygon, of whas number of fides foever, be meafured.

$$
\begin{gathered}
\text { S е с т. III. } \\
\text { Of the Mensuration of Circlesì }
\end{gathered}
$$

THe Proportion of the Diameter of a Circle to its Circumference as 7 is to 22. but Ladolph Van Cules comes fomewhat nearer, allowing the Diameter to the Circumference to be(near) as 113 to 355° which proportions I fhall ufe in the following Problems.

1. The Diameter of a Circle being given, tofind the Circumference.

As 113 is to 355 :
So is the Diameter to the Circumference.
So the Diameter of a Circle being is inches, the Circumference will be found to be 47.12.

Extend the Compaffes from 113 to 355 . the fame extent will reach from 15 the Diamerer, to 47. 12 inches the Circumference.

The ife of the Line of Numbers

2. The Cucumference of a Circle being given, to find the Diameter.

As 355 is to 33 :
So is the Circumference to the Diameter.
So the Circumference being 47.12. the Diameter will be found to be 15 inches.
Extend the Compaffes from 355 to 113 , the fame extent will reach backwards from 47.12 to 15.
3. The Diameter of a Circle being given, to fint the Area.

A\& 28 isto 22 :
So is the fquare of the Diameter 225 to the Area 176.61.

So the Diameter being 15 inches, the Area will be found to be 176.61.

Extend the Compaffes from 28 backwards to 22, the fame extent applied (the fame way) will reach from 225 (the Square of the Diameter.) to 176.61, the Area.
4. The Area of a (ircle Veing given, to find the Diameter.

As 22
is 1028 :
So is the Area 176.61,
to the Square of the Diameter 225.
So she Area of a Circle being 176.61 inches, the Diameter will be found to be I 5 inches.

Extend the Compaffes from 22 to 28 , the fame extert will reach from 176. 6I to 2247.08 the Square of the Diamerer, the middle way upon the Line between 2247.08 and I, is - 5 , the Diameter.
5. The Circumference of a Circle being given, to find the Area.

As 88

is 10 7:
So is the Square of the Circumference 2220. 29
to the Area ${ }^{176.61 .}$
So the Circumference of a Circle being $47 \cdot 12$, the Area will be found to be 176.61 inches.

Exiend the Compaffes from 88 to 7, the fame extent will reach from 2220. 29 (the fquare of the Circumference) to $176.6 I$ the Area.
6.The Area of aCircle being given, to find the Circmmference.

As 7
is 1088 :
So is the Area 176.61 .
to the Square of the Circumference 2220. 29.
So the Area of a Circle being 176.61, the Circumference will be found to be 47. 12.

Extend the Compaffes from 7 to 88, the fame extent will reach from 176.61, the Area to 2220.29, the Square of the Circumference, the half diftance between I and 2220. 29, is 47. 32 the Circumference.
7. Having the Diameter of a Circle, to find the fide of a Square equal to that Circle.

As 10000 to the Diameter :

So 8862. unto the fide of the Square.
So the Diameter of a Circle being 15 inches, the fide of the fquare will be found about 13 inches and 29 parts.

As 10000 unto 8862 : fo are is unto, 29.

Ii 2
8. Havisg

The use of the Line of Numbers

8. Having the Circumference of a Circle, to find the fide of a Square equal to the Sume Circle.

As 10000 to the Circumference:
So 2821 to the fide of the Square.
So the Circumference of a Circle being 47 inclies 13 parts, the fide of the Square will be abour 13 inches 29 parts.

As 10000 unto 282I: foare 47,13 unto 13,29 .

> SECT. IV.

Of the Menfuration of Land by Perch and Acres.

1. Having the lreadth and length of an Oblong Superficies, given in Perches, to find the content in Perches.

AS I Perch, to the breadeh in Perches: So the length in Perches, to the content in Perches.

So in the former Plane A D, if the breadth A C be 30 Derches, and the length A B I83 Perches, the content will be found to be 5490 Perches.
2. Having the length and treadth of an Ollong Superficies given in $P_{\text {er- }}$ ches, to find the content in Acres.

As 160 , to the breadthim Perches:
So the length in Perches, to the consent in Acres.
So in the former Plane A D, the content will be foand to be 34 Acres, and 31 Centefmes, or parts of 100. As 160 , unto $30:$ So are 183 , unio 34, 31 .

To augment a Superficies in a proportion, To diminifh a Superfagies in a proportiongizen.

3. Having the length and breadth of an Oblong Superfocies given Chaiss, to find the content in Acres.

It being troublefome to divide the content in Perches by $160, \mathrm{w}$ may meafure the length and breadth by chain!, each chain being Perches in length, and divided into 100 links, then will the workb more ealie in Arithmetick. For,

As io to the breath in Chains: So the length in Chains, to the content in A cres.

And thus in the former Plane A D, the breadth AC will be Chains 50 Links, and the length AB 45 Chains 75 Links; then worl ing as before, the content will be found as before, 34 Acres 31 parts
4. Having the Perpendicalar and Bafe of a Triangle given in Perches,
find the content in Acres.

If the Perpendicular go for the breadth, and the Bafe for th lengsh, the Triangle will be the half of the Oblong, as the Triang C E D is the half of the Oblong A D, whofe content was found in it former Propofition. Or without halfing.

As 320 to the Perpendicular :
So the Bafe, to the content in Acres.
So in the Triaggle C E D, the Perpendicular being 30 , and the $B a$ 183, the content will be found so be about i7 Acres and is parts.
5. Having the Perpendicular and Base of a Triangle given in Chains, find the content in Acres.

As 20 to the Perpendicular :

So the Bafe, to the content in Acres.
And fo in the Triangle $C E D$, the Perpendicular EF being 7,5 and the Bafe C D 45, 75, the contene will be found, as before, tol about 17 Acres 15 pars.
6. Having the content of a Smperficies after one kind of Perch, to find the content of the Same Superficies, according to another kind of $P_{t r c h}$.

As the length of the fecond Perch, to the lengrt of the firft Perch :
So the content in Acres to a fourth number ; and that fourth to the content in Acres required.

Suppofe the Plane A D meafured with a chain of 66 feet, or with a Perch of 16 feet and an half, contained 34 Acres 31 parts; and it were demanded how many. Acres it would contain, if it were meafured with achain of 18 foot to the Perch : thefe kind of Propoficions are wrought by the backward Rule of chree, after a duplicate proportion. Wherefore I extend the Compaffes fron 16,5 unto 18,0 , and the fatme extent doth reach backward, firt from 34, $3 I^{\prime}$ to $3 I$, 45 , and then from $3 \mathrm{I}, 45$ to 28,84 , which fhews the content to be 28 Acres 84 parts.
7. Having the plot of a Plane with the content in Acres, to find the Scale by which io wes plotted:

Suppofe the Plane A D, contained 34 Acres 3 I Centefms; if I houle meafure it with a Scale of 10 in the inch, the lengeth $A B$ would be 38 Chains, and about' 12 Centefms, and the breadth A C, 6 Chains and 25 Centefms; and the content would be found by the third PropoGition of this Chaprer, to be about 22 Acres 82 parts, whereas it flould be 34 A cres 31 parts.
Wherefore I divide the diftance between 23, 82 and 34, 31, upon the Line of Numbers, into two equal parts; then fetting one foot of :he Compaffes upon 10 , my fuppofed Scale, I find the other to extend: o 12 , which is the Scale required.
8. Having the length of the Furlong, to find the treadth of the Acre.

As the length in Percher, to 160 :
So I Acre to the breadsh in Perches.
So the length of the Furlong being 40 Percher, the breadth for an Acre:

248 The ufe of the Line of Numbers

Acre will hold found to be 4 Perches. If the length be 50 , the breadth for one Acre mult be 3, 20 , the breadth for two Acres 6,40 . Or if the length be meafured by chains.

As the length in chains unto 10 :
So t Acre to his breadth in chain meafure.
So the length of the Furlong being 12 Chains 50 Links the breadth for one Acre will be found to be 80 Links, the breadth for two Acres I Chain 60 Links.

As 12,50 , unto $10:$ fo 1 unto 0,80 .
Or if the length be meafured by feet meafure :
As the length in feer, unto 43560 :
So I Acre, to his breadth in foot meafure.
So the length of the Furlong being 792 feer, the breadth for one Acre will be found to be 55 feer, the breadeh for two Acres 1 Iotect.

CHAP. III.

The wfe of the Line of Numbers in folid meafure, fach as Stone; Timber, and the like.

SECT. I.
Of the Mensuration of Regular Solids.

I Having the fide of a Square equal to the Bafe of any Solid given inch meafure, to find the lengith of a foot Solid in inch meafure.

THe fide of a Square equal to the Bafe of a Solid, may bi found by dividing the face between the length and breadel
into Ewo equal patts, as in the feventh Propofition of broad meafure.

As the fide of the Square in inches, to 4T, 57 :
So is I foor, to a fourth number;
and that foursh to the lengeh in incher.
So in the Solid A H, the fide of the fquare equal to the Bare E C, being about 25 inches 45 parts, the length of a foot Solid will be found about two inches 67 parts, and she length of two foot Solid 5 inches 34 parts.

As 25,45 , unto $4 \mathrm{I}, 57$: fo 1,00 , unto 1,6 : and fo are $I, 63$; unto 2,67 .
2. Having the gide of a Square equal to the Bafe of any Solid given in foot meafure, to find the length of a foot Solid in foot mea/ure.

As she fide of the Square in feet, unto I:
So is 1 , unto 2 fourth number:
And that fourth, to the length in foor meafure.
So in the Solid A H, the fide of the Square equal to the Bare EC, peing abour 2 foot 120 parts, the length of a foot Solid will be found bout 222 parts of a foot.

As 2, 120, unto 1,000 : fo 1,000 , unto 0,47 .
and fo are 471 , unto 222.
3. Having the breadith and depth of a squared Solidgiven in foot menfure, tofind the length of a foot Solid in foot measure.

As 1 , unto the breadth in foot meafure:
So the depth in feer toa fourth number:
which is the content of the Bare in foot meafure, Then
As this fourth number, unto I:
So I, unto the length in foot meafure.

So in the Solid A H, the breadth being 2 foot 50 parts, the depth I foot 80 parts, the content of the Bare EC will be found 4 foot so parts, and the length of one foor Solid about 222 parts, the length of two foot Solid about 444 psers of 1000.

As 1,00 unto 2, $50:$ fo are 1,80 unto 4,50 .
As 4, 50 unto $1,00:$ fo 1,000 unto $0,222$.

1. Having the treadth and depth of a Squared Solid given in inches, to. find the length of a foot Solid in inch menfure.

As I hath to the breadth in inches:
So the depth in inches to a fourth number ;
Which is the content of the Bafe in inches. Then,
As chis fourth number unto 1728 :
Sin unto the length of a foor in inch meafure.
so in the Solid AH, the breadth A C being 30 incles, and the depth A E 21 inches 60 parts, the content of the Bafe EC will be found to be 648 inches, and the length of a foot Solid about 2 inches 67 parts, the length of two foot Solid 5 inches 34 parts.

As 1 unto 21, 6 : : 30 unto 648.
As 648 unto 1728 : fo I unto 267,
Or as 12 to the breadth in inches:
So the depith in inches to a fourth number.
As this fourth number to 144 :
So I unto the length of a foot Solid in inch meafure.
So in the Solid A H, the breadth being 30 inches, the depth 21 inches 6 parts, the fourth number will be found to be 54 , and the depth of a foos Solid 2 inches 67 parts.

As 12 unto 21,6: 0030 unto 54 .
As 54 unto 144 : : 1 I unto $2,67$.
5. Having the fide of a Square equal to the Bafe of any Solid, and the length thereof given in inch meafure, to find the content thereof in feet.

As 41.57 to the fide of the Square in inches: So the lengeh in inches to a fourth number ; and that fourth to the content in foot meafure.

So in the Solid $A \mathrm{H}$, the length A B being 183 inches, and the fide of the Square equal to the Bate EC about 25 inches 45 parts, the fourth number will be found about I12, and the whole Solid contene about 68 feet 62 parts.

As 41.57 unto 25.45 :fo 183 unto 112 :
and fo are 112 unco 68. 62 .
6. Having the fide of a Square equal to the Bafe of any Soltt, and the length thereof given in foot meafure, to find the content thereof in feet.

As I to the fide of the Square in foot meafure:
So the length in feetro a fourth number ; and that fourth to the content in foot meafure.

So in the former Solid A H, the fide of the fquare equal to the Bafe A E, being about 2 foot is parts, and the length $A B$ is foot 25 parts, the content will be found to be about 68 foot 62 parts.

As i unto 2.12: fo 15.25 unto 32.35 :
and fo are 32.35 unto 68.62.
7. Having the fide of a Square equal to the Bafe of any Solid given in inch meafure, and the length of the Solid given in foot mexajure, to sind the costent thereof in feet.

As 12 to the fide of the Square given in inches: So the length in feet to a fourth number; and that fourth to the eontent in foot msafure.

$$
K k z
$$

248

 The wfe of the Line of NumbersSo in the former Solid A H, the fide of the Square being 25 inches 45 parts, the contene will be found to be about 68 feet 62 parts.

As $: 2$ unte $25.45:$ fo $15 .-25$ unto 32. 35 . and fo are 32.35 unto 68.62 .
8. Having the length, breadth and depth of a \{quared Solld given in inches, to find the consent in inches.

As I unto the breadth in inches:
So the depth in inches unto the Bare in inches: Then,
As I unto the Bare :
So the lengeh in inches unto the Solid content in inches.
So in the Solid A H, whofe breadth A C is 30 inches, depth A E 21 inches, and 6 parts of 10 , and length A B 183, the content of the Bare $E C$ will be found 648 inches, and the whole Solid content about 118584 inches.

As I unto 21. 6: fo are 30 unto 648 :
As I unto 648 : fo are 183 to 118,584
9. Having the length, breadth, and depth of a Squared Solid given in inches, to find the content in fect.

As I to the breadth in inches:
So the depth in inches to the Bafe in inches.
As 1728 to that Bafe :
So the leogth in inches to the content in feet.
Soin the Solid $\mathbf{A} \mathrm{H}_{8}$ the content will be found to be about 68 feet 62 parts.
As I unto 21.6 : fo 30 unto 648 :
As 1728 unvo 648 : fo 183 to 68,62 .
Or as 12 to the breadth in inches:
So the depth in inches to a fourth number.

As 144 to that fourth number:
So the length in inches to the content infeer.
And fo alfo in the fame Solid AH , the content will be found to be bout 68 feet 62 parts.

As 12 unto 216 : 1030 unto 68.62.
As 744 unto 54 : fo 183 unto 68.62.
10. Having the length, breadth, and depth of a Squared Solid given in foot meafure, to frid the content in feet.

As i unto the breadth in foor meafure: So the depth in feet to the Bafe in feet.

As 3 unto that Bafe :
So the length in feet to the content in feet.
And thus in the former Solid A H, the breadth A C will be two foot ;o parts, the depth A E, I foot 80 parts, and the length A B is foot is parts; then working as before, the content of the Bate A F will be ound 4 feet 50 parts, and the whole Solid content about 68 foot 62 arts, which of all others may very éafly be tried by Arithmetick.

ASI unto 2. $50:$ fo 1,80 unto 4.50 .
As I unto 4. 50 : 1015.25 unto 68.62.
11. Having the breadth and depth of a Squared Solid given in inches, and the length in foot meajure, to find the content thereof in feet.

As I unto the breadth in inches:
So the depth in inches unto a fourth number,
which is the content of the Bafe in inches.
As 144 hath anto that fourth number :
So the length in feet to the content in feet.
And fo in the fame Solid A H , the conteny will be found to be abous 8 feer 62 parts.

As i unto 21. 6: © 30 unto 648. As 144 unto 15.25 . fo 648 unto 68, 62.

Or as 144 unto the breadth in inches:
So the depth in inches unto a fourth number: which is the content of the Bare in feer.

As I hath unto that fourth number:
So the length in feet to the content in feet.
And fo in the fame Solid AH, the content will be found to be about 68 feet 62 parts.

As 144 unto 2 I .6 : 1030 unto 4.50.
As I unto 4.50: : 15.25 unto 68.62.
Or as is unto the breadth in inches:
So the depth in inches unto a fourth number.
As it unto this fourth number:
So the length in feet to the content in feet.
And fo alfo in the fame Solid AH, the content will be found to be about 68 feet 62 parts.

As 12 unto 21. $6:$ fo 30 unto 54.
As 12 unto 54 : 1015.25 unto 68.62.
All there varieties (and fuck like not here mentioned) do follow upon the making of the Bare of the Solid to be EC; there would be as many more if any foal begin with the Bare. EH, and fo likewiff if they make the Bare to be FD.

SECT. II.

Of the Menfuration of Cylinders:

1. Having the Diameter of a Cylinder given in inch meafare, to find the length of a foo: Solid in inches.

A Sthe Diameter in inchesunto 46 90:
So is I unto a fourth number :
And that fourth to the length in inches.
So the Diameter of aylinder being is inches, the ourth number, will be abous 3,12 , and the length of a oor Solid 9 inches 78 parts.

As 15 unto 46.90 : fo 1 unto 3.12%. and fo are 3. 127 unto 9. 78.
2. Having the Diameter of a Cylinder given in foot meafure, to find the length of a foot Solid in foot meafure.

As the Dismater in feet unto 1,128 :
So is I unto a fourth number;
and that fourth to the length in foor meafure.
So the Diameter being 1 foot 25 parts; the length of foot Solid will be found about 8.14 parts of 1000 .

As I 25 unto I. 128: fo I. 00 to $0.9027^{\text {: }}$ and fo ate 9027 unte 8148.

3. Having the Circumperence of a Cylinder given in inches, to find the length of a foot Solid in inch meafure.
As the Circumference in inches to $147 \cdot 36$:
So is I to a fourth number;
and that fourth to the length in incher,

So the Circumference being 47 inches I 3 parts, the length of a foot Solid will be found about 9 inches 74 parts.

As 47.13 unto 147.36: fo 1. 00 to 3.13. and fo are 3,13 unto 9.78 .
4. Having the Circumference of a Cylinder given in foot meafare, to find the length of a foot Solid in foot meafure.

As the circumference in feet $0 \mathbf{3 . 5 4 5}$:
So is I to a fourth number;
and that fourth to the length in foot meafure.
Sothe Circumference being 3 foot 927 parts, the length of a foos Solid will be found to be about 8 I 5 parts.

As 3.927 unto 3,545 : fo 1.000 unto 0.90 .3 . and fo are 903 unto 815.
5. Having the fide of a Square equal to the Bafe of a Cylinder, to find the length of a foot Solid:

The fide of a fquare equal to the Circle, may be found by the eightith Propofition of broad meafure, and then this Propofition may be wrought by the firft and fecond Propofition of Solid meafure.
6. Having the Diameter of a Cyliader, and the length given in inches, to find the content in inches.

As I 128 unto the Diameter in inches:
So the length in inches to a fourth number; and that fourth number to the content in inches.

So the Diameter being 15 inches, and the length 105 , the content o. the Cylinder will be found to be about 18555 inches.

As.i. I284 unto 15 : fo are 105 unto 1395.87 : and 10 are 395.87 unto 18555.34.
7. Having the Diameter and length of a Cylinder in foot meafure, to find the content in feet.

As 1, i2 8 to the Diameter in feet:
So the length in feer to a fourth number; and that fourth to the content in fect.

So the Biamerer being if foot 25 parts, and the length 8 foot and 5 parts, the content of the Cylinder will be found about io foot 75 arts.

A 1.128 unte 1. 25 : fo 8.75 unto 9.69 ;
and foare 9.69 unto 10.74.
8. Having the Diamezer of a Cylinder, aed ihe length given in inches, to find the contert in feet.

As 46.90 to the Diameter in inches:
So the length in inches to a foarth number ;
and that fourth so the content in feet.
So the Diamater being 15 inches, and the length 105 , the content ill be found about 10 foot 74 parts.

As 46.906 unto is: 50 105 unto 33.58 :
and fo are 33.58 unto 10.74 .
9. Having the Diameter of a Cylinder, given in inches, and the length in feet; to find the content in feet.

As 3.54 to the Diameter in inches:
So the leaget in feet, to a foursh number;
and that fourth to the content in feet.
So the Diameter being 15 inches, and the lenget 8 foor 75 parts, the ontent will be found about 10 foor 74 parts.

As 13.54 unto 15 : fo 8.75 unto 9.69: and fo are 9.69 unto 10.74 .
10. Having the Circumference and length of a Cylinder given in inebes to find the content in inches.

As 3.545 , to the Circumference in inches:
So the length in inches to a fourth number; and that fourth to the content in inches.

So the Circumference being 47 inches 13 parts, and the length ios inches, the content will be found abour 185.55 incher.

A§ 3.545 unto $47.13: 10105$ unto 1396. and to are 1396 unto 18555^{-}
17. Having the Circumsference and length of a Cylinder given in inche. tof find the content in feet.

As 147.36 to the Circumference in inches:
So the length in inches to a fourth number; and that fourth to the content in feet.

So the Circumference being 47 inches $1 ;$ parts, and the length 105 inches, the content will be found about to foot 74 . partso

As $\times 47.36$ unto $47.13:$ [o 105 unto 33.58 . and fe are 33.58 unto io 74.
12. Having the Circumf rence and length of a Cylinder given in foot mesa fure, to find the content in feet.

As the 3.545 to the Circumference in fees:
So the length in feet to a fourth number;
and that fourth to the content in feet.
So the Circumference being 3 foot 9.27 parts, and the lengeh 8:00 7 Pparts, the content will be found to be 10 foot 74 parts.

As 3.545 unto 3,927 : fo 8.75 unto 9,69 .
and fo are 9,69 unto 10,74 .
13. Having the Circumference of a Gylinder given in inches and the lengh in foot meafure, to find the content in feet.

As 42,54 . to the Circumference in inches:
So the length in feet to a fourth number ; and that fourth to the content in feet.

So the Circumference being 47 iaches i 3 parts, and the lenget 8 pot 75 parts, the content will be found as before 50 foot 74 parts.

As 42,54 unto $47,13:$ fo 8,75 unto 9,69 :
and fo are 9, 69. unto 10.74.

$$
S_{\text {E }} \subset \text { T. III. }
$$

Of the Mensuration of Cones.

1. The Diameter of the Bafe and the length of the fide of a Cone being given, to find the fuper ficial costent thereof.

So is $\frac{1}{2}$ the Diamerer 6 multiplied in 18 the fide,
To the Superficial Content 339:29.
So the Diameter of the Bafe of a right Cone being iz inches, and e fide thereof 18 inches, the Area will be found to be 339.29. For, If you extend the Compafies from 7 to 22 , or from 13 to 355 , the me extent will reach from 108, (which is the half Diameter multipliin the fide) to 339. 29 the Area, or Superficial content.
2. The Diameter and $A x$ is of a right $C_{\theta m e}$ beinggivin, to find the Solid Content.

So is the Square of the Diamerer 144, multiplied by $\frac{1}{3}$ of the Axis
To the Solid Content of the Cone 678.85 .
So the Axis of a Cone being 18 inches, and the Diameter I 2 incher, the Solid content will be found to be 678.85 .

Extend the Compaffes from 28 to 22 . The fame extens will reach from 8.64 ($\frac{1}{3}$ of the Axis multiplied in the Square of the Diameter) to 678.85 the folid content.

> SECT. IV.

of the Menfuration of Spheres:

I. The Diameter of a Sphere being given, to find the Superficial content.

$A$$S_{7}$ is to 22 , or 113 to 355.
So is she Square of the Diameter 144
To the fuperficial content.
Thus a Sphere whofe Diameier is iz inctits, the fuperficial conten thereof will be found to be 45 2.57.

Extend the Compafles from 7 to 22 , the fame extent will reach fron 144 (the fquare of the Diameter) to 452.57 the fuperficial con tent.
2. The Superfcies of a Sphere being given, to find the Axis.

As 22,

$$
\text { Is to } 7:
$$

So is the Superficies To the fquare of the Diameter.

So a Sphere whofe Superficies is 452.57 inches, the Diameter there of will be found to be I2 inches.

Extend the Compafles from 22 to 7 , the fame extent will reach fron 452.57 (the Superficies) to 144, the Square of the Diameter, the $\frac{1}{3}$ diftance between 144 and I is 12 , the Diameter.
3. The Axis of a Sphere leing given, to find the solid content.

As 42 ,
Isto 22 :
So is the Sube of the Diameter
To the Solidity.
So if the Axis of a Sphere be 12 inches, the Solid content thereof will be found to be 590. 62.

Extend the Compaifes trom 42 to 22 , the fame extent will reach from 1728 (the Cube of the Diameter) to 905.14 , the Solid content.
4. The Solidity of a Sphere being given, to find the Axis.

```
As 22,
    Is to 42:
So is the Solidity
    To the Cube of the Diameter, or Axis:
```

So a Sphere whofe Solid content is 905. 14. the length of the Axis will be found to be 12 inches.

Extend the Compaffes from 22 to 42. the fame extent will reach from 905 14, the Solidity, to 1728 the Cube of the Axis.

$$
\begin{gathered}
\text { S с с т. V. } \\
\text { Of the Menfuration of Prif(wes. }
\end{gathered}
$$

A
Prifme is a Solid figure contained under Planes; whereof the two op= pofite are equal, like, and Parallel; but the other are Parallelograms. Euclid. Defini 3 3. Lib. 1 I.

1. To find the Solid content of a Triangular Prifme.

Suppofe a piece of Timber or Stone to be an Equilateral Triangle at the ends, each fide thereof being 2.25 foot, and the lengch of the

258 Of the Menfuration of Prifmes.

piece 17.75 foor, this is called 'a Triangular Prime.
I. Find the consent of the Triangle at the end of the piece (by the renth aforegoing) which will be found to be 2.19. Then fay,

Asis,
Is to the Area of the Bafe:
So is the Length of the Piece
To the content of the Piece in foot meafure.
Extend the Compafles from I to 2.19. (the Content of the Area of the Bafe in feer) the fame extent will reach from 17.75. (the lengrth of the piece infect) to 38.87 , the content of the Piece in Feer.
2. To find the So'it Content of a Regnilar Solid, whofe fides at the end
thereof are equal, and more than 3 . As $4,5,6,7,8$, or $10, \& c$.

Suppofe a Regular Solid, as of Timber or Stone, the Plane at the

Note, The Perpendiculars in the fe Regulay Polygons may be found exalt enough for thefe kinds of Menfurations by taking the leaft dijtance from the Center to one of the fides of the Polygon.

Bafe or end thereof teing a Pentagon, or Figure of 5 equal fides and Angles, each lide being 12 inches, or one foor, and the length of the Solid 14 foor.
I. Find the Content of the Bafe (or Pentagon) at the end, by the r. of the fecond. Settion beforegoing, which will be found to be 1.725 foot, the Perpendicular of the Penragon being 0.69 . parts of a foot: Then fay,

As I ,
Is to the Content of the Bafe infeet 1.725 :
So is the length of the piece 14 foot,
To the Content of the Piece in feet 24.15 .
Exiend the Compeffes from ito I.725, (the Content of the Bafe) the fame extent will reach from 14 foor, the length of the Pieceto 24. 15. the Content of the Riece in feer.

And in the fame manner, if the fide of an Octagon were 12 inches or if footithe Perpendicular would befound co. be i.64, and the lengeti 21 , 5 feet die Solidity would be found to be 103.20 .

Sect. VI.

Of the Menfuration of Pyramides.

APiramide is a Solid figure comprehended under divers Planes, fet apon one Plane, (which is the Bafe of the Pyramide) ant gathered together to one Point. Euclid. Libati. Defin. I2.

The Bafes of Pyramids may be either Triangles, Squares, Pentagons, Hexagons, \&xc.as the Prifmes were; Wherefore to meafure any Pyramis, you mult firft find the Area, or Content of the Bafe, and then fay,

As 1 ,
Is to the Area or content of the Bate 2. 25 :
So is one third part of the height is feer,
To the Solid content 33.75 feer.
Suppore a Pyramis, whofe Bafe is a Square, each fide being 18 inches, or 1.5 feet, and the height of the fame Pyramis were 45 lee,, and it were required to find the Solidity. The Area of the Bafe by the fecond of the fifth Section beforegoing, will be found to be 2.25 feer.

Extend the Compaffes from 1, to 22.25 . (the Content of the Bate) the fame extent will reach from 15 . (one third part of the height) to 33.75. the Solid content of the Pyramid in fees.

And the like of any other.

Sect. VII.

Of the Menfuration of Fruftums or Segments of Ryramids or Cones..

THe Solidity of every Cone or Pyramid is found by mulciplying the Area of the Bafe (of what form foever) into one third pare of the Altitude; Therefore in a Cone whofe Bafe is Circular, and the Diameter of that Circle is in Foot meafire 2.50, its Area will be found by what is delivered in the foregoing Sections to be 4.9 I, and its.Altitude 56.25 foot ; I fay,

Asi,
To the Area of the Bafe: So is one third of the Altitude To the Solid Content.

So the Area of the Bafe of a Cone or Pyramis being 4.91, and the Altitude 56.25, the Solid Content thereof will be found to be 92.06 foor.

Exend the Compaffes from I to 4.91 the Area of the Bafe, the fame extent thall reach from 18. 75 , the third part of the Altitude, to 92, 06. the Solid Consens of the Cone or Pyramis.

But if this Cone or Pyramis were cut off at i8 foot from the Greater end, and then the Leffer Bafes Area fhould be found to be in foot meafure 2.27. what fhall the Solidity of the Fruftum be? And in this nature do moft Timber Trees grow, and to being cut off ought tobe meafured, being cither Squared or Growing; And no greater Error is here commited in the Meafuring of $\mathrm{T} \mathrm{m}_{\mathrm{e}} \mathrm{e}$, it being in this form, than by the vulgar way of meafuring fuct Timber, which is, by finding out the Square in the Middle of the Piece, and raking of that for the erue Square, bit this always makes the Content of the Piece lefs than it is; The Genuine and true way is ehis.

Multiply the Area of the two Baifes together, and from the Product extrait the Square Root, then add this Root, and the two Area's together, which fum multiplied by one third part of the Length of the Fruftum or part fhall give the Solid Content of that piece.

So a Piece of Stone or Timber whofe Area at one end is 4.9I. (as in the former Piece.) and at the Smaller end 2.27, and its length 18 foor; the Solidity by the former Rule will be found to be 63.48 foor. For,

> As I,
> Is to the Greater Bafe:
> So is the Leffer Bare
> To a fourth Number,

Whofe Square Root being Extracted, and added to the two formel Area's, will produce another number. Then fay,

As I ,

Is to this number laft found:
So is one third of the length of the Piece,
To the Solid Content of the Piece.
Therefore extend the Compaffes from 1 t0.4.9I, the greater Bale, he fame extent thall reach from 2.27, the leffer Bafe, to II. I5. A nean Proportional between 1 and 11 . 5 will be found to be 3.34 , which dded to the other two Area's 4. 21 , nd 2.27 , (as is done in the Margin,) ill produce 10.52. which is your orher

Greater Bafe - 4-9I
Leffer Bale - 2-27
Square Roor \}-3-34
of II.15. S- $\frac{3-34}{10-5^{2}}$ umber fought for : Then,
Extend the Compaffes from 1010.52 , the fame wili reach from 6 . the third part of 18 the Length,) to 63.12 . the Solid Concent of the iece which is 63 foor, and half a quarter of a foor.
And now for Proof of this Work to be true, let us find the Solidiry If the upper or leffer pare of the whole Cone which was 56.25 foor ong.
The Leffer Bafe, 18 foot being cut off of the whole Length is found 0 be 2.27 , and 18 being taken from 56.25 the whole length, there ill remain 38.25 , and third part whereof is 12.75 . which multiplied y. 2.27, the Bafe produceth 28.94 for the Solidity of the Leffer Cone ${ }^{1}$ Pyramis, and this being added to 63.12. the Content of the Fruum produceth 92.06. the which is equal to the whole Cone or Pyamis, both the parts equal to the whole, which proveth she Work to ctrie.

CHAP. IV.

The ufe of the Line of Numbers in Gauging of Vefels.

LHe Veflels which are here meafured are fuppofed to be Cylinders, or reduced unto Cylindere, by taking the mean between the Diáleter at the Head and the Diameter at the Bongue, after the ufual anner.

1. Having the Diameter and the length of a V.ffel with the Content there. of, to find the Gauge point.
Extend the Comparies in the Line of Numbers to half the diftance between the Content and the length of the Veffer, the fame extent wil reach from the Diameter to the Gauge point.

I put chis Propofition firf, becaufe thefe kind of meafures are no alike in all places.

Here at London it is faid that a Wine Veffel being 66 inches in length, and 38 inches the Diameter, would contain 324 Gallons, which if it be true, we may divide the fpace between 324 and 66 into two equal parts, and the middle will fall about 146 , and the fame exten which reachech from 324 to 146, will reach from the Diameter 38 unto 17, 15, the Gauge point for a Gallon of Wine or Oyl after Lon: dor meafure.

The like reafon holdeh for the like meafure in all other places.
2. Having the mean Diameter, and the length of a $V e f f e l$, to find the content

Extend the Compaffes from the Gauge-point to the mean Diame - ter, the fame extent being doubled, fhall give the diftance from th length to the content.

So the mean Diamerer of a Wine Veffel being 20 inches, and th length 25 inches, the Content will be found to be 34 Gallons afte. London meafure.

For ex:end the Compalfes from 17.15 unto 20 , the fame extent wil reach from 23 unto 29,15 , and from 29,15 unto 34.

In like manner, if the mean Diameter were 16 inches, and the lengll 23 , the Content will be found to be about $20 \mathrm{G}_{3}$ llons.

For the fame extent which reacheth back from 17,15 unto 16 , wil reach from 23 to 21,45 , and from 21,45 unto 20 .

So that if the mean Diameter flall be 17 inches and is Centefme or parts of 100 , the number of inches in the length of the Veffel will give the number of Gallons contained in the fame Veffel: if thi Diameter fhall be more or lefs than 17, I5, the Content in Gallon will be accordingly more or lefs than the length in inches.

3. Having the Diameter and Content, to find the length.

Extend the Compaffes from the Diameter to the Gauge-point, the ime extent being doubled, fhall give the diftance from the Content to he length of the Veffel.
So the gange-point fanding as before, if the Diameter be 38 inchess nd the Content 324 gallons wine-meafure, the length of the Veffel ill be found abour 66 inches.

4 Having the length of a Veffel, and the Content, to find the Diameter.
Extend the Compaffes to half the diftance between the length and te Content, the fame extens fhall reach from the Gauge-point to the jismeter.
So the length being 66 inches, and the Content 324 Gallons wine cafure, the Gauge-point ftanding as before, the Diameter of the Vef1 will be found to be about 38 inches.

CHAP. V.

antaining fuch Aftronomical Propofitions as are of ordinary ufe ins the practice of Navigation.
J. Tofind the Altitude of the Sunby the padows of a Gnomon Set Perpendicular to the Horizon.
\triangle Sthe parts of the fhadow,
are to the parts of the Gnomon :

So the Tangent of 45 gr .

To the Tangent of the Alsitude.
Extend the Compaffes in the Line of Numbers, from the parts of e fhadow to the parts of the Gnomon; the fame extent will give e diftance from the Tangent of 45 gr . to the Tangent of the Suns litude.
So the Gnomon being 36 , and the fhadow 27 , the Alcitude will be Mm2
found

264 Theufe of the Line of Sines and Tangents,

found to be 36 gr .52 m . Or the Gnomon being 27, and the fhadow 3 the Altitude will be found to be 53 gr .8 m . Or the fhadow being 20 and che Gnomon 9, the Altitude will be found to be 24 gr . 14 m . as it the eighth Propofition of the ufe of the Tangent- line.

If the Gnomon be 22. and the fhadow 135, the Altitude is 9 gr I 5 m as I I hewed before.
2. Having the diftance of the Sum, fron the next Equin Ctial point, to fint bis declination.

As the Radius is in proportion, to the Sine of the Suns greatell declination:
So the S ne of the Sums dithance from the next Equino dial Point, to the Sine of the Declination required.

Extend the Compaffes in the Line of Sines, from $90 \mathrm{gr} . t 023 \mathrm{gr} .30 \mathrm{~m}$ the fane extent will give the diftance from the Suns place unto his De clination.

So the Sun being either in 29 gr . of Taurus, or I gr . of Aquarius, 0 I gr . of Leo, or $29 . \mathrm{gr}$. of Scorpio, that is 59 gr . dittant from the nex Equinotial Point, the Declination will be found about 20 gr .

If the Sunbe fo near the Equino atial Point, that his Declinatio fall to be under 1 gr . it may be found by the Line of Numbers. As i the Sun were in 2 gr .5 m . of Ariesg that is 125 m . from the Equinoti al Poine, the former extent of the Compaffes from the Sine of 90 gr to the sine of 23 gr .30 m . will reach in the Line of Numbers fror $\$ 25$ unto 50 , which fhews the Declination to be about 50 m .
3. Having the Latitude of the place, and the Declination of the Sum, find the time of the Sunsrifing and fetting.

As the Cotangent of the Latitude. to the Tangent of the Suas Declination:
So is the Radius,
co the Sine of the Afcentional difference between the hour of and the time of the Suns.rifing or ferting.

Extend the Compaffes from the Tangent of the Complement o lie Latitude, to the Tangent of the Declination: the fame exter
will reach from the Sine of 90 deg. to the Sine of the Afcentional difference.

Or extend the Compaffes from the Co-tangent of the Latitude to the Sine of 90 gr . the fame extent will reach from the Tangent of the Declination, to the Sine of the Afcentional difference.

So the Latitude being 5 I gr. 30 m . Northward, and the Declination 20 gr . the difference of Afcenfion will be found to be $27 \mathrm{gr}, 14 \mathrm{mo}$. which refolved into hours and minutes, doth give shour and almoit 49 m . for the difference between the Suns rifing or fetting, and the hour of σ, according to the time of the year.
4. Having the Latilude of the place, and the diftance of the Sun, from the next Equinoctial p int, to find his Amplitude.

As the Co-fine of the Latitude, to the Sine of the Suns greatef Declination:
So the Sine of the place of the Sun, to the Sine of the A mplitude.

So the Latitude bein: 5 Ideg .30 m . and the place of the Sun in r deg. of Agtarius, that is 59 deg. diftant from the next Equinoctial point, the Amplitude will be found about 33 deg .20 m . For extend the Compaffes in the Line of Sines, from 38 deg .30 m . the Sine of the Complement of the Latitude unto 23 deg . 30 m . the Sine of the Suns greateft Declination ; the fame extent will reach from 59 deg. unto. 33 deg. 20 m . Or extend them from 38 deg. 30 m . unto 59 deg. the fame extent will reach from 23 gr .30 m . unto 33 gr .20 m , as betore.
5. Having the Latitude of the place, and the Doclination of the Sun, to. find bis Amplitude.

As the Co-fine of the Latitude, is to the Radius :
So the Sine of the Declination, to the Sine of the Amplitude.

Extend the Compafles from the Co- (ine of the Latitude to the fine of 90 gr . the fame extent will reach from the Sine of the Suns Declination to the Sine of the Amplitude.

266 The ufe of the Line of sines and Tangents,

Or extend them from the Tangent of the Latitude to the Sine of the Declination, the fame extent will reach from the Sine of 90 gr . to the Sine of the Amplitude.

So the Latitude being 51 gr .30 m . and the Declination 20 gr . the Amplitude will be found to be 33 gr .20 m .
6. Having the Latitude of the place, and the Declination of the Sun, to find the time when the San comseth lo-be due Eaft or Weft.

As the Tangent of the Latitude, is to the Tangent of the Declination :
So the Radius to the Co-fine of the hour from the Meridian.

Extend the Compaffes from the Tangent of the Latitude the Tangens of the Declination, the fame extent will reach from the Live of 90 gr . to the Sine of the Complement of the hour.

Or extend them from the Tangent of the Latitude to the Sine of 90 gr. the fame extent will reach from the Tangent of the Declination to the Sine of the Complement of the hour.

So the Latitude being 51 gr .30 m and the Declination 20 gr .the Sun will be 73 gr . 10 m . that is 4 hours, and 53 mm . from the Meridian, when the comech so be in the Eaft or Weft.
7. Having the Latitude of the place, and the Declination of the Sun,tofind what Altitude the Sun Gall have, when he cometh to be.dxe Eaft or Wieft.

As the Sine of the Latitude, is to the Sine of the Declination:
So the Radius, to the Sine of the Altitude.

Extend the Compaffes in the Line of Sines from the Latitude to the Sine of the Declination, the fame extent will reach from the Sine of 90 gr . to the Sine of the Altitude.

Or extend them from the Sine of the Latituede to the Sine of $90 . \mathrm{gr}$. the fame extent will reach from the Sine of the Declination to the Sine of the Altitude.

So the Latitude being 5 I gr. 30 m . and the Declination 20 gr . the Altitude will be found about 25 gr .55 m .
8. Having the Latiicde of the place, and the Declination of the Sun, to find what Altitude the Sun fhall bave at the hour of frx.

As the Radius is in proportion, to the Sine of the Suns Declination :
So the Sine of the Latitude, so the Sine of the Altitude.

Extend the Compafies in the Line of Sines, from 90 gr . to the De: clination; the fame extent will reach from the Latitude to the Altitude.

Or extend them from 90 gr , to the Latitude, the fame extent will hold from the Declination to the Alsitude.
So the Latitude being $\mathrm{s}_{1} \mathrm{gr} .30 \mathrm{~m}$. and the Declination of the Sun 20 gr . the Altitude of the Sun will be found to be about 1.5 gr .30 m.
9. Having the Latitude of the place, and the Declination of the Sun, to find what Azimuth the Sun Shall have at the howr of fix.

As the Co-fine of the Latitude, is to the Radius:
So the Co-tangent of the Suns Declination, (ridian. to the Tangent of the Azimuth from the North part of the Me-

Sothe Latitude being 51 gr .30 m . and the Declination 20 gr . the Azimuth will be found to be 77 gr . 14 m . For extend the Compaffes in the Line of Sines, from $3^{8} \mathrm{gr} \cdot 30 \mathrm{~m}$. to 90 gr . the fame extent will reach from the Tangent of 70 gr . to the Tangent of 77 gr .14 m .
10. Having the Latitude of the place, and the Declination of the Swn and the Altitude of the Sun, to find the Azimuth.

Firft, Confider the Declination of the Sun, whether it be toward the North or the South, fo have you his diftance from your Pole : then add this diftance, the Complement of his Altitude, and the Complement of your Latitude, all three together, and from half the fum fub trae the diftance from the Pole, and note the difference.

1. As the Radius is in proportion, to the Co -fine of the Altiture :
So the Co-fine of the Latitude, to a fourth Sine.
2. As this fourth Sine, is to the Sine of the half fum:
So the Sine of the difference, ro a feventh Sine.

Then find a mean propertional between this feventh Sine and che Rao dius, this mean fhall be the Sine of the Complement of half the Azimuth from the North part of the Meridian.

Suppofe the Declination of the Sun being known by the time of the year to be 20 gr . Southward, the Alsitude above the Horizon found by obfervation 12 gr , and the Lacitude Northwards $\mathrm{g}_{\mathrm{I}} \mathrm{gr} .30 \mathrm{~m}$. it were required to find the Azimuth.

The Declination is Southward, and therefore the diftance from the Pole ino gro then turning the Alcitude and Latitude unto their Complements, I add them all three together, and from half the fum fubtract the diftance from the Pole, noting the difference after this manner :

This done, I come to the Staff, and extend the Compafles from the Sine of 90 gr . to the Sine of 78 gr . and find the fame extent to reach from the Sine of 38 gr .30 m . unco 37 gr .3 .0 m . Or if lextend them fro 190 gr. to 38 gr . 30 m . the fame extent do h reach from 78 gr . unto 37 gr .30 m . which is the fourth Sine required.

Thea I extend the Compaffes agair, from this fourth Sine of 37 gr : 30 m . unto the Sine of the half fum I $\mathbf{3} \mathrm{gr}$. I 5 m . that is to the Sine of 66 gr .45 mm . (for after 9) gr . the S niot 80 gr . doth ftand for a Sine
of 100 gr and the Sine of 70 gr . for a Sine of 100 gr . and fo the reft for thofe which are their Complements to 180 gr .) and this fecond ex-rent doth reach from the Sine of the difference 3 gr . 15 m . to the Sine of 4 gr .54 mm . Or if I extend them from the fourth Sine of 37 gr .30 m . to the Sine of the difference 3 gr .15 m . the fame extent will reach from the Sine of the half fum II 3 gr .15 m . unto 4 gr .54 m . which is the feventh Sine required.

Lafty; I divide the face between this feventh Sine of 4 gr .54 m . and the Sine of 90 gr . into two equal parts, and I find the mean proportional fide to fall on 17 gr . whofe Complement is 73 gr . the double of 73 gr . is 146 gr . and fuch is the Azimuch required.
Or having found'the feventh Sine to be 4 gr .54 m . I might look over againft it, in the Line of Verfed Sines, and chere I hould find 146 gr ior the Azimuth from the North part of the Meridian; and the Complement of 146 gr . to a Semicircle being 34 gr . will give the Azimuth from the South part of the Meridian.
But if it were required to find the Azimuth in the fame Latitude of iI gr .30 Northward, with the fame Altitude of 12 gr and like Decliiation of 20 gr . to the Northward, it would be found to be only 72 gr . i2 m . though the manner of work be the fame as before.

Here as the Radius is to the Sine of 78 gr . Fo the Sire of $38 \mathrm{gr}_{0} 30 \mathrm{~m}$. , the Sine of 37 gr .30 m . which is the tourth Sine, and che fame as efore.
Then as this fourth Sine of 37 gr .30 m . is to the Sine of 93 gr .15 m . the Sine of 23 gr .15 m . to the Sine of 40 gr .20 m . which is the feenth Sine.
The half way between the feventh Sine and the Sine of 90 gr . doth Il at 53 gr .34 m . whofe Complement is 36 gr .26 m . and the double f that is $72 \mathrm{gr}_{0} 52 \mathrm{~m}$. the Azimuth required.

Or I may find this fome Az mutli in the Line of Verfed Sines, ove againft the feventh Sine of 40 gr .20 m .
II. Hoving the Latitude of the place, the Declination of the Sun, an the Altitude of the Sun, to ford the bour of the day.

Add the Complement of the Suns A'tisude, and the diftance of th Sun from the Pole, and the Complement of your Latitude, all thre rogether, and from half the fum lubitract the Complement of the Al titude, and nots the difference.
r. As the Radius is in proportion to the Sine of the Suns diftance from the Pole;
So the Sine of the Complement of the Latitude, to a fourth Sire.
2. As this fourth Sine, is to the Sine of the half fum:
So the Sine of the difference to a feventh Sine.

The mean proportional between this feventh sine and the Sine 90 gr . will be the Sine of the Complement of half the hour from th Meridian.

Thus in our Latitude of 51 gr .30 m . the Declination of the Sun b ing 20 gr . Northward, and the Altitude 12 gr . I might find the Sun be $95 \mathrm{grg}^{2} .5^{2 \mathrm{~m}}$. from the Meridian.

Altitude	r.	0	The Complement is		
Diclin. North	20°	\bigcirc	The diff. from the Pole	- 70	
Latiude	51	30	The Complement is	38	30
			fum of all shree	第86	30
			half fum difference	$\begin{aligned} & 93 \\ & 15 \end{aligned}$	15 15

Here as the Rarlius, is to the Sine of 70 gr .
So the Sine of 38 gr .30 m . to the Since of $35 \mathrm{gr}, 48 \mathrm{~m}$.

As this Sine of 15 gr .48 m . is to the Sine of 93 gr .15 m . So the Sine of 15 gr .15 m . to the Sine of 26 gr .40 m .
The balf way berween this feventh Sine of 26 gr .40 mm . and the Sine f 90 gr . doth fall at 42 gr .4 m . whofe Complement is 47 g .56 m . and he double of that, $9.5 \mathrm{gr}^{2} .5^{2} \mathrm{~m}$. which converted into hours, doth give hours and almoft 24 m . from the Meridian.
Ot I might find thefe $95 \mathrm{gr}^{2} 5^{2} \mathrm{~mm}$. in the Line of Verfed Sines, over gainf the leventh Sine of 26 gr .40 m .
12. Having the Azimuth, the Suns Altitude, and the Declination, to find the hour of the day.

As the Co fine of the Declination, is to the Sine of the Azimuth:
So the Co-fine of the Altizude, to the Sine of the hour.

Thus the Declination being 20 gr . Southward, the Altitude 12 gr . nd the Azimuth found by the tenth Propofition 146 gr . I might find he time to be 35 gr .36 m . that is 2 hours 22 m . from the Meridian.
13. Having the Bour of the day, the Suns Altitude, and the Declination, tofind the Azimuth.
As the Co-fine of the Altitude, is to the Sine of the hour :
So the Co-fine of the Declination, to the Sine of the Azimuth.
Sothe Altitude of the Sun being 12 gr . and the Declination 20 gr : outhward, and the Angle of the hour 35 gr .36 m . I thould find the 1zimuth to be 34 gr . And fo it is if it be reckoned from the South; ut I46 gr if it be taken from the North part of the Meridian.
14. Having the diftance of the Sim from the next Equinotial point, to find his right Afcenfon.
As the Radius,
to the Co-line of the greatelt Declination:
So the Tangens of the diftance,
To the Tangent of the right Alcenfion.

272 The ufe of the Lines of Sises and Tangents,

So the Sun being in the firlt degree of Aquarius, that is 59 gr . diAtant from the next Equinoctial point, and the greatel Declination $23 . \mathrm{gr} .30 \mathrm{~m}$: the right Afcenfion will be found to be 56 gr .50 m . Thort of the beginning of Aries, and therefore 303 gr .14 m .
15. Having the Declination of the Sur, to find bis right eAfcenfon.

As the Tangent of the greatelt Declination, is to the Tangent of the Declination given:
So the Radius
to the Sine of the right Afcenfion.
So the greateft Declination being 23 gr .30 m . and the Declination of the Sun given 20 gr . the right Afcention will be found about $56 \mathrm{gr}_{0} 50 \mathrm{~m}$.
16. Having the Longitude and Latitude of a Star, to find the right AGcen: foon of that Star.
17. To fird the Declination of that Star.

The ftars have little or no alteration in their Latitude, in their Longirude they move forward, about $I \mathrm{gr} .25 \mathrm{~m}$. in an hundred years. Thefe being known,

As the Radius,
(point:
to the Sine of the Stars Longitude from the next Equinoctial So the Co-tangent of the flars Latitude, so the Tangent of a fourth Ark.

Compare this fourth Ark, with the Ark of diflance between the Poles of the world and of the Ecliptick. If the Longitude and Latisude of the Star be both alike, as when the Longitude falleth to be among the Northern Signs, eAries, Taurus, Gemini, Cancer, Leo, Virgo, and the Latitude is North from the Ecliptick: or the Longitude among the Southern figns, Lilva, Scorpio, Sagitarius, Capricorn, Aquarius, $P i f$ ces, and the Latitude Southward, then thall the difference between shis fourth Ark and the diftance of Poles, be your fifth Ark.

Bur if the Longitude and Latitude fhall be unlike, as the Longitude in © Northern fign, and the Latitude South, or the Longitude in a to the diftance of both Poles, the fum of both Thall be your fifth Ark. And,

As the Sine of the fourth Ark, to the Sine of the fifth Ark:
So the Tangent of the ftars Longitude; (noctial point.) to the Tangent of the fars right Afcenfion, from the next Equi-

As the Co-fine of the fourth Ark, to the Co-fine of the fifth Ark :
So the Sine of the fars Latitude, to the Sine of the ftars Declination:

Then for proof of the work, if there be no former error, the proz portion will hold.

As the Co-fine of the Latitude, tothe Co -fine of the right Afcenfion :
So the Co-fine of the Declination, tothe Co-fine of the Longitude.

For example, Take the upper of the two former ftars in the fquare of the little bear, which fea-men call the Former G ward. This in the year 1655 , was in 7 deg. 53 m . of Lee, and fo his Longitude from the beginning of Libra 52 deg .7 m . Bus his Latitude is ftill the fame 72 gr . II m . Northwards. Wherefore,

As the Sine of 90 gr .
is to the Sine of $5^{2} \mathrm{gr} .22 \mathrm{~m}$.
So is the Co-tangent of 72 gr .5 I m .
to the Tangent of 13 gr .44 m .
Which is the fourth Ark. Then becaufe the Longitude and Latitude re both Northward, the difference between this fourth Ark and 23 gr. 3I m. the diftance of both Poles will give you 9 gr .47 m , for the fifth Ark. And,

As the Sine of 13 gr .44 m .
to the Sine of 9 gr .47 m .
So the Tangent of 52 gr .22 m .
to the Tangent of 42 gr .56 m .
Which is the right Afcenfion of this far, from the beginningof $L i$. Ura, but 222 gr .56 m . from the beginning of Aries.

As the Co-fine of 13 gr .44 m .
to the Co-fine of 9 gr .47 m .
So the Sine of 72 gr .5 Im .
co the Sine of 75 gr .46 m .
Waich is the Declination of this Itar from the Equator.
As the Co. fine of 72 gr .5 Im . to the Co-line of 42 gr .56 m .
So the Co-fine of 75 gr .46 m : to the Co-fine of $5^{2} \mathrm{gr} .7 \mathrm{~m}$.

Which agrecing fo well with the Longitude of the far propofed is a good proof, that the right Afcenfion and Declination were truly found.

Thefe are fuch Aftronomical Propofitions, as I take to be ufeful for Sea-men. For the firft and fecond will help them to find their Latitude, the third to find the Suns rifing and fetting, the $4,5,6,7,8,9$ 10, I3 Prop. to find the variation of their Compafs, the iI and I2 Prop eo find the hour of the day ; and the reft toward the finding of the hour of the night. For having the Latitude of the plice, with the De clination and Alcitude of any flar, they may find the hour of the fta from the Meridian, as in the in Prop. Then comparing the righ Afcenfion of the far, with the right Afcenfion of the Sun, they mal have to the hour of the nighr.

All there Propofitions, and fuch others, may be wrought allo by th Table of Sines and Tangeats. For where four Numbers do hold in proportion; as the firlt to the fecond, fo the third to the fourth; ther if we multiply the fecond into the third, and divide the Product b the firt, the Quotient will give the fourth required. As in th examp!
example of the ISProp. where the Declination being given, it was required to find the right Afcenfion. The Tangent of 20 gr . the Declination given is 3639702 , which being multiplied by the Radius, the Produet is 36397020000000 , and this divided by 4348124 , the Tangent of 23 gr .30 m . the Quotient is 837074 I , the Sine of 56 gr .50 m . for the right Afcenfion required.

Orif any will ufe my Tables of Artificial Sines and Tangents, they may add the fecond and third together, and from the fun fubtract the firt, the remsinder will give the fourch required. And fo my Tangene of 20 gr . is $956 \mathrm{I}, \mathrm{c} 658$, which being added to the Radius, m. $\mathrm{k}=5$ 19561,0658, trom this if they fubract 9638,3019 , the Tangent of 23 gr .30 m . they fhall find the remainder to be 9922,7639 , which in my Canon is the Sine of 56 gr .49 m . 56 feconds ; and fuch is the right Afcenfion required, if it be reckoned from the next Equinotital point.

The like reafon holdeth for all other Aftronom cal Propoftions, as I will farther thew by thofe two examples which I gave before, for the finding of the Azimith in the ro Prop. becaufe they are thought to be harder than the reft, and require three operations.

> In the firf Examaplea

Diclin. South	20 gr .0 m .	The diftance	110.8	.
Alcitude	120	The Complement	78	\bigcirc
Latir,North	5130	The Complemens	38	30
		fum of all chree	226	30
		half fum	II3	15
		difference	3	15

The fift operation will be to find the forrth Sile; and that is done by adding the Sine of the Complement of the Altitude to the Sine of the Complement of the Latitude, and fubtracting the Radius: foadding 9990,4044 the Sine of 78 gr . unto 9794, 1495 the Sine of 38 gr 30 m . the fum will be 19784, 5539 . And the Radius being fubtracted, the remainder 9784,5539 is the fourth Sine, and botongeih to 37 gr .30 m .

The fecond operation will be to find the feventh Sine, and that is done

The ufe of the Line of Lines

done by adding the fine of the half fum to the fine of the difference; and fubtracting the fourth fine. So the half fum being 113 gr . 15 . I take his Compleraent to a Semi-circle, and fo find his line to be 9663 , 2168 ,to which I add 8753,5278 , the (ine of the difference 3 gr .115 m . and the fum is 18716,7446 . From this I take the fourth fine $9784 ;$ 5539 , and the remainder will be 8932,1907, which is the feventh line, and belongeth to 4 gr .54 m .

The third operation will be to find the mean proportional fine between the feventh fine and the Radius. This in common Arithmetick is done by multiplying the two extreams, and taking the fquare root of the Product. As in finding a mean proportional between 4 and 9 , we multiply 4 into 9 , and the Product is 36 , whofe fquare root is 6 , the mean proporticnal between 4 and 9 . Bur here it is done by adding the fine and the Radius, and taking the half of them. So the fum of the laft feventh fine and the Radius is 18932, 1907, and the half of that 9466,0953 , which is the mean proportional line required, and belongeth to 17 gr . whofe Complenient is 73 gr . and the double of that 146 gr . the fame Azimuth as before.

In the fecond Example.

The firft operation will be to find the fourth line, and that is here 9784, 5539, as in the former Example.

The fecond operation will be to find the feventh fine ; and fo here the fine of the half fum 93 gr . 15 m . being the fame with the fine of 86 gr .45 m . his Complement to 180 gr . I find it to be 9999,3009 , to which 1 add 9596,3153 , the fine of the difference $23 \mathrm{gr.15} \mathrm{~m}$. and the fum is 19395,6162 . From this I take the fourth fine 9784,5539 , and the remainder will be 9811,0623 for the feventh fine, and belongeth to 40 gr .20 m .

The ufe of the Line of Sines and Tangentso

The third operation will be to find the mean proportional Sine beween the feventh Sine and the Radius. And fo here the Radius being dded to the feventh Sine, the fum will be $1981 \mathrm{I}, 0.623$, and the half of hat $9905,53 \mathrm{II}$, doth give the mean proportional Sine belonging to bout 53 gr .34 m . whore Complement is 36 gr .26 m . and the double f that $7^{2} \mathrm{gr} .5^{2} \mathrm{~m}$. the fame Azimuth as before.
I have fet down thefe three Examples thus particularly, that I mighe hew the agreement between she Staffe and the Canon. But otherwife I sight deliver both the Precept and the Work, for the two laft, more ompendioully. For generally in all Spherical Triangles, where three des are known, and an Angle required, make that fide which is oppote to the Angle required, to be the Bafe; and gather the fum, the half 1n, and the difference as before.

Asthe Rectangle contained under the Sines of the fides, is to the Square of the whole Sine:
(difference, So the Retangle contaimed under the Sines of the half fum and the to the fquare of the Co-fine of the half of the Angel.

Then for the work, we may for the moit part leave out the two lalt gures; and if they be about 50 , put an unite to the fixth place, after is manner.

The fecond Example.

278 Tha ufe of the Lines of sines and Tangents?

Or for fuch Numbers as are to be fuberacted, I may rake them ous of the Radius, and write down the reffolue, and then add them together with the reft. As in the fame fecond Example, the Sines of 78 gr . and of $3^{8} \mathrm{gr} .30 \mathrm{~m}$. being the Numbers to be fubracted; if I take 9990,4044 the sine of 78 gr . out of the Radius 10000,0000 , the yelidue is 9.5956 : and to the refidue of 9794 , 1495 is 205.8505 : Wherefore inftead of fubtracting thofe Sines, I may add thefe refidues. after this manner:

Suns Azimuthas hefore, to be $7^{2} \mathrm{gr} \cdot 5^{2} \mathrm{~m}$. from the North to the Wentward,

The ufe of the Lines of Sines and Tingents.

 he true North point of the Meridian, and confequently, the Eaft, outh, and Weft Points of the Horizon, and the dittance between \mathbf{N} nd M fhall be the variation of the Needle. So that if the Magnetical szimuch A ZM Thall be 84 gr .7 m . and the Suns Azimuth A Z N 2 gr .52 m then mult N Z M the difference between the two Meriians, give the variation to be 11 gr . 15 m . as Mr . Borough herecofore ound it by his obfervations at Limehonfe in the year 1580. But if the Magnetical Azimuth Z M fhall be 79 gr .7 m . and the Suns Azimuth 1 ZN 72 gr .52 m . then fhall the variation N Z M be only 6 gr .15 m . I have fometimes found is of late. Hereupon I enquired after the lace where Mr. Borough obferved, and wens to Limeboufe with fome f my Friends, and took with us a Quadrant of three foot Semidiameer, and two Needles, the one above 6 inches, and the other io inches ong, where I made the Semidiameter of my Horizontal Plane A Z 2 inches : and towards night the i 3 of fune 1622 , I made obfervation 1 feveral parts of the ground, and found as followeth:

002
CHAP:

СНАР. VI.

Containing fuch sautical queftions, as are of ordinary ufe, concerning Longitude, Latitude, Rwmb. and Diftance.
I. To keep an account of the Shigs way.
found Sea-man by experience, by other it may be Log Lior fome fmall proportion of time, either by the Ships fide.

The time in which it maketli this way, may be meafured by a Watch, or by a Glafs, or by the Pulfe, or by repeating a certain number of words. Then as long as the wind continueth at the fame flay, it followeth by proportion,

As the time given, is to an hour:
So the way made, to an hours way.
Suppofe the time to be is leconds, which make a quarter of a minute, and the way of the Ship, 88 feet: then becaufe there are 3600 feconds in an hour, I may extend the Compaffes in the Line of Numbers, from 15 unto 3600 , and the fame extent will reach from 88 unto 21120 . Or I may extend them from 15 unto 88 , and this extent will reach from 3600 unto 2 1120, according to the ordinary work in Arithmetick,

As 15 , unto 3600 :

$$
\text { So } 88 \text {, unto } 21120 .
$$

Which fhews that an hours way came to 21120 feer.
But this were an unneceffary bufinefs, to hearken aftez feet or fathoms. It fufficeth our Sea-men to find the way of their Ship in Leagues or Miles.

And they fay that there are 5 feet in a pace, 1000 paces in a Mile, and 60 miles in a degree, and therefore 300000
feet in a degree. Yet comparing feveral obfervations, and their meafures with our feet ufual about London, I find that we may allow 352000 teet to a degree; and then if I extend the Compaffes in the Line of Numbers from 352000 unto 2 1 120, I hall find the fame extent to reach from 20 Leagues, the meafure of one degree, to 1,2 , and from 60 miles 03,6 , according to Arithmetick, which fhews the hours way to be I league, and 2 tenths of a league, or 3 miles and 6 tenths of a mile.

As 352000 , unto 2 II20,
So 20,00 , unto $1,20$.
and 60,00 , unto 3,60 .
But to avoid thefe frations, and orher tedious reductions, I fuppofe in would be much bester to keep this account of the Ships way (as alfo of the difference of Latitude, and the difference of Longitude) by deg. and parts of deg. allowing in 100 parts to each deg. which we may therefore call by the name of Centefms. For fo doing there would be fome agreement between the account and the days fayling. Ordinarily the fhip goesa degree in a day, as it may appear by comparing feveral Journals to the Eaft and Weft Indies. The time of paffage bea tween the Lizard and the Southermof Cape of Africa, is commonly faid to be about 3 months, and the diflance is nos much different from 90 degrees.

Again, this accouns by degrees and Centefms would be more exact; and the addition, fuberaction, multiplication, divifion of them more eafie. Neither would this be hard to conceive. For,

And fo in the former example of 82 feet in 15 feconds, having firf found that the hours way is about 21120 feet.

If I extend the Compaffes from 35^{2000}, unto 21120, as before, I Thall find the fame extent to reach from 100 unte 6 , as before, which Thews that the hours way required is 6 Cento fuch as IOD do make es degree, and 5 do make an ordinary league.

This might alfo be done at one operation. For upon thefe fuppolitions, divide 44 feet into 45 lengeths, and fet as many of them as you may conveniently between two marks on the fhips fide, and note the feconds of the time in which the fhip goeth thefe lengths, fo the pro portion will hold,

282 The ife of the Lines of sives and Tangents.

As the feconds, to the lengeths:
So x hour, unto the Centefims.
The lengeths divided by the time, fhall give the $C_{e n t}$. which the fhip goech in an hour.
Suppofe the diftance between the two marks to be 60 lengths (which are 58 feet and \mathcal{E} inches) and let the time be 12 feconds: extend the Compaffes from 12 to I, in the Line of Numbers; fo the fame extent will reach from 60 anto 5 . Or extend them from 12 unto 60 , and the fame extent will reach from 1 unto 5. This hews that the fhips way is according to 5 Cent. in an hour.

This may be found yet more eafily, if the Log-line fhall be fitted to the time. As if the time be 45 feconds, the Log-line may have a knot at the end of every 44 feet; then doth the fhip run fo many Cent.in an hour as there are knots vered out in the fpace of 4.5 feconds. If 30 feconds do feem to be a more convenient time, she Log-line may have a knot at the end of every 29 feet and 4 inches; and then allo she Cent. will be as many as the knots: Or if the knots be made to any fer number of feet, the time may be ficted unto the diftance. As if the knots be made at the end of every 24 feet, the Glafs may be made 24 feconds, and fomewhat more than an half of a fecond, and fo chefe knots will thew the Cent. If there be 5 knots vered out in a Glafs, then $\$$ Cent. if 6 knots, then the fhip goeth 6 Cent. in the face of an hour, and fo in the refl. For upon this fuppofition, the proportion between the time and the feet will be as 45 unto 44. Bue according to the common fuppofition, it fould feem to be as 45 unto $37 \frac{1}{2}$, or in leffer terms, as 6 unto 5 .

Thore which are upon the place may make proof of both, and follow that which agrees beft with their experience.

2. By the Latitude and difference of Longìtude, to find the diftance upona courJe of Eaft and Wef.

As the Sine of 90 gr .
to the Co-fine of the Latitude: So the difference of Longitude at the Equator, to the diftance required on the parallel.

Extend the Compaffes from the Sine of 90 gr . unto the Sine of the Complement of the Latitude ; the fame extent thall reach in the Line of Numbers, from the difference of Longitude to the diftance.

The ufe of the Lines of Sines and Tangents.

So the meafure of one degree in the Equator being 100 Centa the diftance belonging to one deg. of Longitude in the Latitude of 51 gr. 30 m . will be found about 62 Cent . and $\frac{1}{4}$.

Of if the meafure of a degree be 60 miles, the diftance will be found about 37 miles and $\frac{1}{3}$. If the meafure be 20 Leagues, then

Imoft 12 Leagues and $\frac{1}{2}$. if the meafure be $17 \frac{1}{2}$, as in the Spanifh Charts, then fomewhat lefs than ti Leagues failing upon this parallel, vill give an alceration of one degree of Longitude.
3. By the Latitude and diftance upon a coorre of Eaff or Weff, to find the: difference of Longitrade.

If the diftance be given in Leagues or Miles, reduce them into Cen: efms, then will the proportion hold.

As the Co- fine of the Latitude, to the Sine of 90 gr
So the diftance on the Parallel to the difference of Longitude.

Extend the Compaffes from the Sine of the Complement of the Latitude, to the Sine of 90 gr . the fame extent will reach in the Line of Numbers from the diftance to the difference of Longitude.

So the diftance upon a courfe of Eaft or Wef, in the Latitude of 51 gr .30 m , being 100 Cent. the difference of Longitude will be found I, 60 , which make one degree and 60 Cest. or I gr .36 m .

Or if is be 60 miles, the difference of Longitude will be 96 , which alfomake gr .36 m . as before.
4. The Longitude and Latitude of two places being given; to find the Rumb leading from the one to the other.

- As the difference of Latitude, to the difference of Longitude: So the Tangent of 45 gr . to the Tangent of the common Rumb.

Extend the Compaffes in the Line of Numbers from the difference of Latitudes to the difference of Longitudes; the fame extent will give the diftance from the Tangent of 45 gr . unto the Tangent of the Rumb, according to the Projection of the Common Sea-charr.

So the Latitude of the firf place being $50^{\circ} \mathrm{gr}$. the Latitude of the fecond $5^{2} \mathrm{gr} .30 \mathrm{~m}$. and the difference of Longitude 6 gr . the Rumb will be found to be about $67 \mathrm{gr}, 23 \mathrm{~mm}$. which is near the inclination of the fixth Rumb to the Meridian, Bus this Rumb fo found is always greater than it fhould be, and therefore to be limited; which may be done fufficiently for the Sea-mans ufe, after this manner:

As the Sine of 90 gr .
to the Co-fine of the middle Latitude:
So the Tangent of the common Rumb
so the Tangent of the Rumb reguired.

Extend the Compafles either from the Sine of 90 gr . unto the Sine If the Complement of the middle Latitude, the fame extent will reach rom the Tangent of the Rumb before found, unto the Tangent of the \{umb limited.
Or elle extend them from the Sine of 90 gr . unto the Tangent of the lumb before found; the fame extent will reach from the sine of the Complement of the middle Latitude, unto the Tangent of the Rumb imited.
So the middle Latitude between 50 gr . and 52 gr .30 m . being 51 gr . 5 m . and the Rumb before found 67 gr .23 m . the Rumb limited will e found to be about 56 gr . 20 m . which is but 5 m . more than the inlination of the fifth Rumb to the Meridian.
If any pleafe to work by the Canon, he may joyn both there in one peration.

As the difference of Latitude; to the difference of Longitude :
So the Co-fine of the middle Latitude, to the Tangent of the Rumb required.
2. This Rumb may be found by the help of the Meridlan Line upon he Staff. Por if I take the difference of Latitude out of the Meridians ine from 50 gr . unto 52 gr .30 m . and meafure it in his Equinoctial, r at the beginning of the Meridian Line, I fhall find it there to be qual to 4 gr . which may be called the difference of the Latitude inrged. Wherefore I work as if the difference of Latitude were $4 \mathrm{gr}_{0}$.

As the difference of Latitude inlarged, to the difference of Longitude :
So the Tangent of 45 gr . to the Tangent of the Rumb required.
And extend the Compaffes in the Line of Numbers from 4 unto 6: , fhall I find the fame extent to reach from the Tangent of 45 gr . nto the Tangent of $56 \mathrm{gr}, 20 \mathrm{~ms}$. and this is the inclination of the umb required.
6. By the Rumb and both Latitudes, to find the diftance upon the Rumb.

As the Co- fine of the Rumb from the Meridian, tothe Sine of 98 gr .
So the difference between both Latitudes, to the diftance upon the Rumb.

Extend the Compafies from the sine of the Complement of the Rumb, unto she Sinc of 90 gr . the fame extert in the Line of Numbers hall reach from the difference of Latitude unto the diftance upor the Rumb.

So the Latitude of the firft place being 50 gr . the Latitude of the fecond $52 \mathrm{gr} .30^{\circ} \mathrm{m}$. and the Rumb the fifth from the Meridian. If) extend the Compafes from 33 gr .45 m . unto the Sine of $90 . \mathrm{gr}$. I hal find the fame extent in the Line of Numbers to reach fro. 2 gr .56 Cent. 504 gr .50 Cent. and fuch is the diftance required.
7. By the diftance and both Latitudes to find the Rumb.

As the difance on the Ramb,
to the difference between both Latitudes :

- So the Sine of 90 gr . to the Co-fine of the Rumb from the Meridian:

Extend the Compaffes in the Line of Numbers from the diftanc unto the difference of Latitudes; the fame extent will reach in th Line of Sines from 90 gr . unto the Complement of the Rumb.

So the one place being in the Latitude of 50 gr , the other in th Latitude of $52 . \mathrm{gr} .30 \mathrm{~mm}$. and the diftance between them 4 gr .50 Cemt If Eextend the Compaffes from 4.50 unto 2.50 in the Line of Num bers, I fhall find the fame extent to reach from the Sine of 90 gr . unt the Complement of 56 gr . I5 m . and fuch is the inclination of th Rumb required.
8. By one Latitude, Rumb, and diftance, to find the difference of Latitudes. As the Sine of 90 gr .
to the Co-fine of the Rumb from the Meridian: So the diftance upon the Rumb, to the difference between both Latitudes:

Extend the Compafies in the Line of Sines; from $90 \mathrm{gr}^{3}$ unto the Complement of the Rumb, the fame extent in the Line of Numbers, will reach from the diftance, unto the difference of Latitudes.
So the leffer Latitude being 50 gr . and the diftance 4 gr .50 Cent. pon the fifth Rumb from the Meridian: If I extend the Compaffes rom the Sine of 90 gr . to 33 gr .45 m . I thall find the fame extent to each from 4.50 in the Line of Numbers unto 2.50 ; and therefore the fecond Latitude to be 52 gr .30 m .
9. By the Remb and both Latitudes, to find the difference of Longitrale.

As the Tangent of 45 gr .
so the Tangent of the Rumb from the Meridian :
So the difference of Latitude,
to the difference of Longitude in the common Sea-chart:
Extend the Compaffes from the Tangent of 45 gr . unto the Tangene of the Rumb; the fame extent will reach in the Line of Numbers from the difference of Latitudes unto the difference of Longitude, according to the Projection of the Common Sea-chart.
So the firft Latitude being 50 gr . and the fecond 52 gr .30 m . and the Rumb the fifth from the Meridian : if I extend the Compaffes from the Tangent of 45 gr . unto 56 gr . 15 m . I fhall find the fame extent to reach from 2.50 in the Line of Numbers to be about 3.75, which make 3 gr .45 m . But this difference of Longitude fo found, is always leffer than it fhould be, and therefore to be enlarged, which may be done fufficiently for the Sea-mens ufe after this manner:

As the Co-fine of the middle Latitude, to the Sine of $9^{\circ} \mathrm{g}^{r}$.
So the difference of Longitude in the common Seswecharts to the difference of Longitude inlarged.

The ule of the Lines of

Extend the Compaffes from the Sine of the Complement of the middle Latitude, unto the Sine of 90 gr . the fame will reach in the Line of Numbers from the difference ot Longitude before found, unto the difference of Longitude inlarged.

So the miedle Latitude in this example being 51 gr .15 m . and the difference of Longitude before found, 3 gr .75 Cent. the difference of Longitude inilarged will be found abouts gr. 99 Cent. which are near 6 gr .

If any pleafe to work by the Canon, he may joyn both thele in one operation.

As the Co-fine of the middle Latitude,
to the Tangent of the Rumb from the Meridian:
So the difference of Latitude, to the difference of Longitude required.
2. Thi; difference of Longitude may be found by help of the Me: ridian Line upon the Staff. For if I take the proper difference of $L_{\text {a }}$ titude out of the Meridian Line, and meafure it in his Equinoctial, or at the beginning of the Meridian Line, 1 hall find the Latitude inlarged so be equal to four of thofe degrees.

As the Tangent of 45 gr .
to the Tangent of the Rumb from the Meridian:
So the difference of Laticude inlarged, to the difference of Longitude required.

Wherefore having extended the Compafes, as before, from the Tangent of 45 gr . unto the Tangent of 56 gr .15 m . the fame extent will reach from 400 in the Line of Numbers, unto 5.99 , which fhews the difference of Longitude to be about $5 . \mathrm{gr} .99$ Cent. or about half a minute fhort of 6 degrees.
10. By tb: Rumb and both Latitudes, to find the diffance belonging to the Chart of Mercators Projection.

Take the proper difference of Latitude; out of the Meridian Line of the Charr, and meafure it in his Equinoctial; or one of the Parallels, ond is will there give the difference of Latituce inlarged.

As the Co-fine of the Rumb from the Meridian, so the Co-fine of 90 gr .
 So the difference between both Latitudes, to the diftance upon the Rumb.

Then extend the Compafies from the Sine of the Complement of the Rumb unto the Sine of $90 \dot{g} r$. the fame extent will reach in the Line of Numbers, from the Laticude inlarged, unto the diftance required: Or extend them from the Complement of the Rumb to the Latitude inlarged, the fame extent will reach from 90 gr . unto the diftance:

For example, Let the place given be A, in the Latitude of $50 \mathrm{gr} . \mathrm{D}$, in the Latitude of 52 gr .30 m . A M the difference of Latiudes, and the Rumb M A D the fifth from the Meridian. Firft, I take oat A M, the difference of Latitudes, and meafare it in A E, one of the Parallels of the Equinoctial ; Ifind it to be very near 4 gr . this is the difference of Latitudes inlarged. Then if I extend the Compaffes from the Sine of 33 gr .45 mm . the Complement of the fifth Rumb, unto the Sine 00 gr . I fhall find the fame extent to reach in the Line of Numbers, from 400 unto 7.20, And this is the diftance belonging to the Chart. Wherefore I take out there 7 gr .20 Cent. out of the Scale of the Paraliel $A E$, and prick it down upon the Rumb from A unto D, where it meereth with the Parallel of the fecond Latitude. Laftly, I meafure it in the Meridian Line, fetting one foor of the Compaffes as much below the leffer Latitude, as the other above the greater Latitude, and find it to be 4 gr .50 Cent. which is the fame diftance that I found before in the 5 Prop.
11. By the way of the 乃hip, and two Angles of pofition, to find the diftance between the Ship and the Land.

The way of the Ship may be known as in che firft Prop. The Angles may be obferved either by the Staff, or by a Needle fet on the Staff: For example, fuppofe that being at A, I had fight of the Land at B, the Ship going Eaft Northeaft from A toward C, and the Angle of the Ships Pofition B A C being 43 gr .20 m . and after that the Ship had made 10 Cent, or two Leagues of way from A unto D, Iobferved

The ufe of the Lines of

ferved again, and found the fecond Angle of the Ships Poffition B D C to be 58 deg . or the inward Angle BD A, to be 12 deg . then my 1 find the third Angle A B D, tobe I4 deg. 40 m , either by Subrraction, or by Complement unto 180 gr .

In this and the like cafes, I have a right Line Triangle, in which ther is one fide and three Angles known, and it is required to find the othe two fides, and the Canion for it is this:

As the Sine of an Angle oppofite to the known fide, is to that known fide:
So the Sine of the Angle oppofite to the fide required, is to the fide required.

Wherefore I extend the Compaffes from I 4 gr .40 m . in the Sines to 10 in the Line of Numbers, and this extent doth reach from 58 gr to $33 \frac{1}{2}$, and fuch is the difiance berween A and B, and it reacheth fron 43 gr .20 m . unto 27 in the Line of Numbers; and fuch is the diftanc from D to B.

Thefe two diftances being known, I may fet out the Land upon th Char

Chart. For having fet down the way of the Ship, from A to D, by

 that which I Thewed before in the ufe of the Meridian Line, I may by the fame reafon fet off the diftance A B and D B, which meeting in the Point B, Challthere refemble the Land required.> 12. By knowing the diftance between two places on the Land, and bow they bear one from the other, and baving the Angles of Poftion at the Sbip, to find the diftance between the Ship and the Land.

If is may be conveniently, let the Angle of Pofition be obferved at fuch time as the Ship cometh to be righe over againft one of the places. As if the places be Eaft and Weft, feek to bring one of them South or North from you, and then obferve the Angle of Pofition, fo fhall you have a right Line Triangle, with one fide and three Angles, whereby to find the two other fides. Firft, you have the Angle or Pofition at the Ship, then a right Angle at the place that is over againft you, and the third Angle at the other place is the Complemens to the Aagle of Pofition. Wherefore,

As the Sine of the Angle of Pofition,

is to the diftance between the two places:
So the Co-fine of the Ang le of Pofition,
to the diftance between the Ship and the nearer place.
And fo is the Sine of 90 gr .
co che diftance from the Ship to the farther place:
Sothe places being is Cent. or three. Leagues one from the other, and the Angle of Polition 29 gr . the nearer diftance will be found about 72 Cent. and the further diftance about 31 Cent.

Or howfoever the Angle of Pofition were oblerved, the diftance between the Ship and the Land may be found generally as in this example:
Suppofe A and D were two head Lands knownto be Eaft Northeaf; and Weft Southweft, 10 Cent. or two Leagues one from the other; and that the Ship being at B, I obferved the Angle of the Ships Pofition D B A, and found it to be 14 gr .40 m , and that D did bear 9 gr . 30 m . and A 24 gr . 10 mm . From the Meridian B S, this example would be like the former. For if the Angle SBD be 9 gr .30 m . from the South to the Weftward, then thall N.D B be 9 gr. $30, m_{i}$ from the North

The ufe of the Lines of

North to the Eaitward. Take there 9 gr .30 ms.out of the Angle NDE, which is 67 gr .30 m . becaufe the two head Lsnds lie Eaft Northeaft, and there will remain 58 gr . for the Angle B DE, and the inward An. gle B D A out of 180 gr . Take thefe two Angles A B D and B D A out of 180 gr . and there will remain 43 gr .20 m . for the shird Angle B A D. Wherefore here alfo are three Angles and one fide, by which I may find the two other fides, as in the laft Prop.

Thefe Propofitions thus wrought by the Siaff, are fuch as I thought to be ufeful for Sea-men, and thofe that are skilful may apply the example to many others. Thofe that begin, and are willing to practice, may bufie themfelves with this which followeth.

Suppofe four Ports, $\mathrm{L}, \mathrm{N}, \mathrm{O}, \mathrm{P}$, of which L is in the Latitude of $50 \mathrm{gr} \mathbf{N}$ is North from L 200 Leagues or 1000 Cent. O Weft from L 1000 Cent. and. P Weft from N 1000 Cemt. fo that L and O will be in the fame Latitude of 50 gr . N and P both in the Latitude of 60 gr : Then let two Ships depart from L, the one to touch at O, the otherat N , and then both to meet at P , sthere to Lade, and from thence tore;

curn the nearef way unto L. Here many queftions may be propored:
I. What is the Longitude of the Port at Ofrom L ?
2. What is the Longitude of P from N ? And why O and P fhould sot be the fame Longirude?
3. What is the Rumb from O unto P ?
4. What is the diftance from O unto P ? And why the way fhou'd be more from L unto P, going by O, then by N ?
5. What is the Rumb from P unto L ?
6. What is the diftance from P unto L ?
7. What is the Rumb from N unto O ?
8. What is the diftance from \mathbf{N} unto O ? And why it fhould not be he like Rumb and diftance from N unto O, as from P unto L ?
$=$ There queftions well confidered, and either refolved by the Staff,or rricked down on the Chart, and compared with the Globe and the :ommon Sea-chart, thall give fome light to the direction of a courfe, ind reduction of places to their due Longitude, which are now fully leftorted in the common Sea-charts.
Here follows all the ufual Problems of failing, according to Mercaor, which are refolved Arithmetically by the Table of Logarithm rangents, without the Table of Meridional parts, and may alfo be erformed Geometrically, by the Tangent Line upon the Crofs-ftaff if t be large.
Firft, we are to know that the Logarithm Tangents from 45 gr .00 me pwards, do increafe in the fame manner, that the Secants added togeber do, if we aecount every half degree above 45 gr .00 m . to be ne whole degree of Mercators Meridional Line; and fo the Table if Logarithm Tangents, is a Table of Meridional parts, to every wo minutes of the Meridian Line, leaving out the Radius in every ine.
The manner of making ufe of it thus, (as it is thall more plainly ppear in the Examples of the following Problems) becaure the Tales begin at 45 gr .00 m . and that every 30 m . is for a whole degree, then one, or both Latitudes are given in any queltions, take the $\frac{1}{2}$ of ach Latitude, and add 45 gr .00 m . to each of them, and take the angent of the fum of each, for the equal parts of the Latitudes given neglecting the Radius as beforefaid) then fubtract the leffer fum of qual parts from the greater, and the remainer divide by the Tangent t 45,30, the Radius neglected, the Quotient thall be the equal or

Equincaial degrees contained beween che twoLatitudes, or elfe multiply the for efaid remainer by 10 , and divide it by the half of the forefaid Tangent of 4.5 gr .30 m . and the Quotient fhall be the equal or Equinoctial Leagues conrained between she two Latitudes.

Example.

Er one Latioxde be 45 gr .30 m . the $\frac{1}{2}$ is 22 gr .45 m unto which Radias is 45 gr .00 m . the fum is 67 gr .45 m . the Tangent above the 20 gr .00 m . unto w . Se the other Latitude be 40 gr .00 m . the $\frac{1}{2}$ is
2 g Tangent above the g add 45 gr .00 m . The fum is 65 gr .00 m , the former, the remainder is 5683 I : which being divided by 75803 the Tangent of 45 gr . 30 m above the Radius, -the Quetient is 7 gr .497 patts, the Equinoctial degrees conteined between the two Latitudes, or elfe multiply the remainder or difference 568316 by 10 and divide it by 37901 , the $\frac{\pi}{2}$ of the Tangens of 45 gr .30 m . above tice Radius, and the Qotient is 149 Lea, 94 parts, the equal or Equinoctial Leagues contained between the two Latitudes, and the like of any other.

PROBL. I.

The courre and difance that the Ship bath run or failed, being given, to find the true place or point where the Ship is in Mercators Cbart.

ADmit a Ship fail SSE $\frac{3}{4} \mathrm{E} 128$ Leagues from Latitude 45 gr .30 m North Latituide, that is from A to E, according to the plain Seachart, I demand the true place or point that the Ship is ar, accordingtic Mercaters Chart.

Before this queftion can be refolved, we muft find what Latitude the Ship is in, which is thus found :
As the Radius is to the Sine of the Complement of the courft 59 deg .04 m . So is E A the diftance upon the courfe 128 , to AD the true difference of Latitude in Leagues, which is 110 . This beingcon verted into deg, and min. is 5 deg .30 m . and becaufe rhe Latirude de creafech, or the Pole is deprefled, we fubtract it from $45 \mathrm{d}$. and the remainder is $40 \mathrm{deg} .00 \mathrm{~m}_{0}$. The Latitude the Ship is in, that
at E, according to the plain Sea-chart, or at C according to Mercator: but before we can find the point C, we mult find the diftasce of the point B in the Meridian Line from A : the manner how to do it is thewed in the Example before this Problem, and it is there found to be 150 Leagues near. Now the point C, the true place of the Ship in Merctors Chart may be found two feveral ways.

Firft, As D A the true diftance of Latitude IIO, is to AE the true diftance run upon the courfe, fo is B A the difference of Latioude enlarged 150, to A C $174 \frac{5}{5}$ - the enlarged diftance, which being laid off upon the Line of the courle, gives the point C, the true place of the Ship in Mercators Chart.

Here we may take notice, that the true point of any place, according. to the plain Sea-chart, or according to Mercators Chart, is always upon one and the fame right Line of the courfe.

Secondly, As the Radius is to the Tangent of the Courle 30 d. 56 m . fo is A B the difference of Latitude enlarged iso, to BC go the difference of Longitude, which being laid off upon che Perpendicular B C, gives the point C_{2} the true place of the Ship in Mercators Chart.

PROBL. II.

The cosr fe that the Ship hath failed on, and both Latitudes being known, to find the true place or point that the Sbip is on in Mercators Chart, and the true diftance that the Ship bath failed.

S
Ulupporea Ship to fail $S \$ E_{4}^{3} \mathrm{E}$ from the Latitude of 45 deg .30 m Duntil it be in the Latitude of 40 deg. 00 m . that is from A to E , ace cording to the plain Se-chart, or from A to C, according to Mercators. Chart.

Firft, We mult find the difference of Latitude enlarged, as is before dircted, which is A Bi so Leagues.
I. As the Radius is to the Tangent of the Courfe, 30 deg. 56 mo. 10 is $A B 150$, to $B C 90$, which laid off upon the Perpendicular $B C$, gives C the true place or point, which the Ship is on in Mercators Chart.
2. As the Sine Compiement of the Conrfe 59 deg .04 m . is to the Radius, f o is D A the crue difference of Latitude iro, to A E the rrue diftange run upon the Courfe 128.

PROBL. IIT.

Botbo Latitrides given, and the diftance ras upon the Conre, to find the point or place tbat the Ship is on in Mercators Chart, and the cosrre or point of the Compas sthat the Ship hath Jailed on.

$\$$
Uppore Ship to fail $1: 28$ Eeagues, between South and Eaft, from A
in the Latisude of 45 deg .30 m a and at the end of her diftance, it be in the Latitude of 40 deg .00 m .

Fir.f, Find the difference of Latisude enlarged, as is before directed? which is AB ise.

The true ufe of Mercators Cbart.

1. As D A IIO, the true difference of Latitude, is to AE 128 the rrue diftance run, fo is B A 150 the difference of Latitude enlarged, to AC $174 \frac{s}{10}$ the diftance enlarged, which laidoff upon the Line A E, from A to C it fhall be the true point or place that the Ship is on in CWercators Projection.
2. As A Eir 8 , the true diftance run, is to A D iIo, the true difference of Latitude, fo is the Radius to the Sine of the Complement of the courle 59 deg . O4 m . 'which Complement 59 deg. 04 m . fubtract out of 90 deg .00 m . and the remainder is 30 deg .056 m . the courfe, and being it is between South and Eaft, it is SS E ${ }_{4}^{3}$ Eafterly.

PROBL. IV.

Both Latitudes, and the departure or difance of the Meridian yoss are upon, and the Meridian yos began your cour f eon, to find the point or place where you are in Mercators chart, alfo the courfe that yos have made good, and the diftance that you bave run from the place, where you beg an your courfe.

THis Problem is chiefly ufeful for the Navigator, when he hatic caf: up his traverfe. Admita Ship to a ail upon the Southeatt quarter of he Compafs, from Latitude 45 deg, 30 m . unto Latitude 40 deg. 00 m . nơ the departure from the Meridian it went from, be $6 \frac{8}{\frac{8}{50}}$ Leagues.
Firt, Find the difference of Latitude enlarged, as is before directed so Leagues.

1. As A D in the true difference of Latitude, is to DE $65 \frac{8}{5}$ the leparture from the Meridian, fo is A B 150 , the difference of Latiude enlarged, to BC 90 Leagues, the difference of Long tude, which aid off upon the Perpendicular B C, from B to shall be the point or lace in Mercators Chart, where the Ship is.
2. As A D IIO the true diference of Latitude, is to DE $65 \frac{8}{8}$ e the eparture from the Meridian, fo is the Radius to the Tangent of the ourfe 30 d .56 m . that is two points $\frac{3}{4}$. Frons the South to the Eaftward, hat is SS E $\frac{3}{4}$ E the courfe that the Ship hath kepr.
3. As the Sine of the courfe 30 deg. 56 m . is to the Radias, to is E 655_{10}^{8} the departure from the Meridian, to E A $: 28$ the diftance ano.

The true we of Mercators Chate

PROBL. V.

Buth Latitudes being given, and the difference of Longitude, to find the diftance the Ship bath kept, and the diftance it hath ran:

ADmita Ship to be at A in North Latitude 45 deg. 30 m . and to fail Southeaftwards, untill it be at E in Latitude qo deg. 00 m . according to the plain Chart, and the point C be the place in Mercators Chart where the Ship is, and the difference of Longitude be B C 90 Leagues.

Finft, Find the difference of Latitude enlarged, as is béfore directed 150 Leagues.
I. As AB iso the difference of Latitude enlarged, is to BC90, fe is the Radius to the Tangent of the courfe, 30 deg. 56 m . which is twc points $\frac{3}{4}$ that is S S E $\frac{3}{4} \mathrm{E}$.
2. As the Sine Complement of the courle 59 leg:04 m. is to the Radius, fo is DA IIo the true difference of Latitude, to A Ethe tru diftance runi28.

PROBL. VI.

One Latitsde, with the cour \int_{ρ}, and the difference of Longitude given, find the other Latitude, and the diftance run.

SUppofe a Ship to be in the Latitude of 45 deg .30 m . North Lati cude, and to fail SSE $\frac{3}{4} \mathrm{E}$ (antil the difference of Longitude b 90 Leagues) that is from A to C, which is the point or place of th Ship in Mercators Chart.
I. As the Radius is to che Tangent Comp'ement of the courfe 59 04 m . fo is C B the difference of Longitude 90 , to A B 1 so the diff rence of the Latitude enlarged, by which multiply 37901 the $\frac{1}{2}$ of Tangent of 45 deg. 30 mo above the Radius, and divide the Produ by 10 , and the Quorient is 568515 . Then take $\frac{1}{2}$ the Latitude give the $\frac{1}{2}$ of 45 deg .30 m : which is 22 deg . 45 m . unto which add 45 de 00 m . the fum is 67 deg .45 m . then feek the Tangent of 67 deg. 457 sbove the Radius, which is 388 I 591 , and fubtrant the former Quil tient 568515 from ir, and the remainer is 3313076 , which feek int Tangent, and you fhall find it at 65 deg . ocm. from which fubtra

45 deg .00 m . the remainer is 20 deg. 000 mp . which being doubled, is 40 deg .00 m . the Latitade required. Here we are to note, that if the Lacitude had increafed, we muft have added the Quotient 568515 to the Tangent of 67 deg .45 m . and fo fought the fum in the Tangenes, to have found the Latitude required.
2. A's the Sine of the Complement of the courfe 59 deg .04 m . is to the Radius, fo is D A the true difference of Latitude 110 , to A E, the true diftance run 128 .

Although I have fet down but the proportions and the anfwers to each queftion, they may all be calculated by the Canon, and the Chiliad of Logarishms in this Book.

A N
 APPENDIX,

Concerning the defoription and ufe of an Inftrument, made in form of a Crofs-bow, for the more cafe finding of the Latituide at Sea.
T He former Prop. fuppofe the Laticude to be known, I will here Thew it trow it may be eafily obferved.
Upon the Center A, and Semidiameter A B, defcribe an Ark of a

Circle

Circle S B N. The fame Semidiameter will fet off 60 gr . from B unto $\$$ for the South end, and other 60 gr . from B unto N for the North end of the Bow: fo the whole Bow will contain 120 gr . the third part of a Circle. Let ic therefore be divided into fo many degrees, and each degree fubdivided into fix parts, that each pare may be ten minutes: but lee the numbers fet to it be $5,10,15$, unto 90 gr . and then again 5,10 , 15, unto 25, that 55 may fall in the middle, as in this Figure.

The Bow being thus divided and numbred, you may fee the months and days of each month upon the back, a nd fuch itars as are fit for obfervation upon the fide of the Bow.

If you defire to make ufe of it in North Latitude, you may numbei 23 gr .30 m . from 90 towards the end of the Bow at N , and there place the tenth day of \mathcal{F} nne, And 23 gr .30 m . from 90 towards S; and there at 66 gr .30 mm . place the renth day of December. And fo the $r \in f t$ of the days of the year, according to the declination of the Sur at the fame days.

The fars may be placed in like manner according to their Declina tions, to the year 1670 .

Ar Qurus	20 gr .57 m	
The Bulls Eye	15	47
The Lions Heart	13	32
The Vultures Heart	8	8
The litele Dog	6	0

 the Triangle, the Clouds, the Crofiers, or what other Stars you thit fit for the obfervation. This I call the forefide of the Bow.

The defoription of the Bow.

If yon defire to make ufe of it in South Laticude, you may turn the ow , and divide the back fide of it, and number is in like manner, id then pus on the months and days of the year, placing the tenth of ecember at the South end, and the tenth of 7 une toward the middle of e Bow, and the reft of the days according to the Suns declination as fore.
The chiefent of the Northern Stars may here be placed in like anner, according to their declination, Anno 1670.

The Pole Star at	87 gr.	32 m
The firlt Guard	75	34
The fecond Guard	73	15
The great Bears back	63	30
In Firlt	57	47
In the great 2 Second	56	40
Bears Tail 2 Third	51	2
The fide of Perfeus	48	36
The Goat	45	37
The Tail of the Swan	44	9
The Head of Medufa	39	41
The Harp	38	32
Caftor	32	33
Pollux	28	47
The North-Crown	27	50
The Rams Head	21	30
Araturus	20	47
The Bulls Eye	15	37
The Lions Heart	12	32
The Vultures Heart	8	08
Orions right Shoulder	7	19
Orions left Shoulder	6	2

And fo any other Star whofe declination is known unto you ? hich being done. The ufe of this Bow may be.

1. The day of the month being known, to find the declination of the Strne
2. The declination being given, to find the day of the month.

Thefe two Prop. depend on the making of the Bow. If the day be R r

The ufe of the Bow

known, look it out in the back of the Bow: fo the declination will ap. pear in the fide. Or if the declination be known, the day of the mont is fer over againft it. As if the day of the month were the 14 of Fuly look for this day in the back of the Bow, and you fhall find it ove againft 20 gr . of North declination. If the declination given be 20 gr . to the Southward, you Mall find the day to be either the eleventh of Nevembir, or the eleventh of Fanuary.

3. To find the Altitude of the Sun, or Stars.

Here is is fir to have two running lights which may be ealily move on the back of the Bow. The upper fight may be fet either to 60 gr . ol so 70 gr . or to. 86 gr as you thall find to be moft convenient : the othes fight may be fet on to any place between the middle and the other enc of the Bow. Then with the one hand hold the Center of the Bow your eye, fo as you may fee the Sun or Star by the upright fight, and with the other hand move the lower fight up or down until you hav brought ane of the edges of it, to be even with the Horizon (as whe you obferve with the Crofs-Atsff) fo the degrees contained betweel that edgeand the upper fight, hall thew the Altitude required.

Thus if the upper fight fiall be at 80 gr . and the lower light at s 0 g the Altitude required is 30 gr .
4. To find any North Latitude, ly the Meridian Altitude of the Sun at forward obfervation, knowing either the day of the month, or the dedi nation of the Sun.

As oft as you are to obferve in North Latitude, place both the fight on the forefide of the Bow, the upper fight at the Declination of thi Sun, or the day of the month at the North end, and lower fight cowar, the South end. Then when the Sun comech to the Meridian, turn you face to the South, and with the one hand hold the Center of the Bow tl your Eye, foas you may fee the Sun by the upper fight; witin the othe hand move the lower fight, until you have brought one of the edges o is to be even-with the Horizon : fo that edge of the lower fight fhal thew the Latitude of the place in the fore lide of the Bow.

Thus being in North Latifude upon the ninth of Ottober: if I fe the upper lighe to this day, at the fore-fide and North end of the Bow 1. fhall find it to fall to the Southward of 90 upon 80 gr . and therefor
$: 10 \mathrm{gr}$. of South declination. Then the Sun coming to the Meridian, I ay let the Center of the Bow to mine eye, as if I went to find the Alcude of the Sun, holding the North end of the Bow upward, with the pper fight between mine eye and the Sun, and moving the lower fight, nitit come to be even with the horizon. If here the lower fight fhall ay at 50 gr . I may well fay, that the Latitude is 90 gr . For the Meidian Aletude of the Sun is 30 gr . by the third Prop. and the Sun haing 10 gr . of South declination, the Meridian Altitude of the Equaor would be 40 gr . and therefore the obfervation was made in 50 gr . of Jorth Latitude.
By the fame reafon, if the lower fide had flayed at 5 I gr .90 sm . the aritude mult have been $5 \mathrm{I} \mathrm{gr}_{0} 30 \mathrm{~m}$. and fo in che reft.

5. To find any Nortb Latitude, by the Meridian Altitade of the Starscs the Southivard.

Let the upper fight be fet to the Star, which you intend to obferve, ere placed in the fore-fide of the Bow. Then hold the North end of be Bow upward, and urning your face to the South, obferve the Meidian Altitude as before: fo the lower fighs fhall thew the Latitude f the place in the fore-fide of the Bow.
Thus if in obferving the Meridian Altitude of the great Dog-far, e lower fight fhall flay at 50 gr . it would thew the Latitude to be 0 gr . For this Star being here placed at 73 gr .48 m . if we take chence 0 gr . his Meridian Altitude would be 23 gr .48 m . to this if we add.
0 gr .12 c . Leridian Atior the South declination of this Star, it would thew the ade to be 50 gr .
6. To find any North Latitade, by the Meridian Altitude of the Stars to the Northward.

If the Bow be intended only for North Latitude it may fuffice to ave the degrees divided only on the fore fide, and then the Stars to he Northward may be placed either on the backfide or the infide of ae Bow by thefe degrees: the Pole-ftar at 87 gr .20 m . near the 20 ay of September, the formoft guard at 75 gr . 45 m . the hindmoft guard 73 gr .25 m and the reft according to their declinations before menoned, fo the 90 deg . Thall reprefent the North Pole of the World.

Rr 2
When

The ufe of the Bow

When any of thefe ftars come to be in the Meridian, and under th Pole, fecthe upper fight to that Star, hold the North end of the Bo upward, and turning your face to the North, obferve his Alcitude before; fo the degrees contained between the 90 degrees and the lowe fight, hall mew the Altitude of the Pole.

Thus the former guard coming to be in the Meridian, under the Pol if you obferve and find the lower fight of flay at 40 gr . the Elevatio of the Pole is 50 gr . accor ding to the diftance between 40 and 90 .

If you would oblerve any of thefe Stars, at fuch time as they com to be in the Meridian, and above the Pole, you may place thefe Stat in the Bow above 90 gr . the North Star as 2 gr .40 m . near the fourt day of September, the formof Guard at 14 gr .15 m.the hindmof Guar at 16 gr .35 m . and fuch others as you think fiteft, according to the diftance from the Pole : then ferting the upper fight to the place Star above the Pole, the reft of the obfervation will be the fame before.

But if the Bow be made to ferve as large, both in South and Nort Latitude, then thefe Northern Stars would be let placed on the back fide of the Bow, by the degrees on that fide, according to the Com plement of their declinations, that the North Stars may anfwer to th North Sun in South Latitude, in fuch fort as the Southern Stars didt the South Sun in North Latitude in the former Prop. This being doni let she upper fight be fer to the Star which you inrend to obferve, her placed on the backfide of the Bow. Then hold the North end of th Bow upward, and turning your face to the North, obferve the Altitud of the Star when he cometh to be in the Meridian, and under the Pole fothe lower fight thall thew the Alcitude of the Pole in the backfid of the Bow.

Thus the former guard coming to be in the Meridian under thr Pole, if you obferve and find the lower light to fay at 90 gr . fucbi the Elevation of the Pole, and the Latitude of the place to the North ward. For the diftance between the two fights will fhew the Atcitud to be 35 gr .45 m . and the Star is 14 gr . 15 m . diftant from the Nortl Bole. Thefe two do make up 50 gr . for the Elevation of the Nortl Pole, and therefore fuch is the North Latitude.
7. To find any Sosth Latitude, by the Meridian Alititude of the Sun at a formard objervation, knowing either the day of the msenth, or the declination of the Sun.

When you are come into South Latitude, curn both your fights to the back fide of the Bow: the upper light to the declination of the Sun, or the day of the month at the South end, and the lower fight toward the North end of the Bow. Then the Sun coming to the Meridian, turn your face to the North, and holding the South end of the Bow upward; obferve the Meridian A^{\prime} titude as before : fo the lower fight fhall fhew the Latitude of the place in the backfide of the Bow.
Thus being in South Latitude, upon the tenth of May, if you obierve and find the lower fight to ftay at 30 gr . on the backfide 'of the Bow, fuch is the Latitude. For the declination is 20 gr . Northward, the Alsitade of the Sun between the twe fights 40 gr . the Altitude of the Equator 60 gr . and therefore the Latitude 30 gr .
> 8. To find any South Latitude by the Meridian Altitude of the Stors io the Nortbward.

Let the upper fight be fet to the Star which you intend to obferve, here placed on the backfide of the Bow. Then hold the South end of the Bow upward, and turning your face to the North, obferve the Meridian Altitude as before : fo the lower fight fhall hew the Latitude of the place in the back fide of the Bow.
Thus being in South Latitude, and the former guard coming to be in the Meridian over the Pole. If you obferve, and find the lower fight to ftay zt 5 gr . fuch is the Latitude. For the Star 1514 gr .15 m . from the North Pole, the Altitude of the Star between the two fights 9 gr .15 mm . the North Pole depreffed 5 gr . and therefore the Latitude 5 gr , to the Southward.

9. 70 observe the Altitude of the Sunby the Bow, or with an Aftrolabe.

Here it is fit to have a third fight (like to the Horizontal fight betonging to the ftaff) which may be fet to the Center of the Bow.

If the Sun be near to the Zenith, hold the Bow as when you obferve with the Aftrolabe, fo as the Center being downward the Line A.B

The use of the Bowo

may be vertical, and the Line S N Parallel to the Horizon, then turning one end of the Bow toward the Sun, you may move one of the fights on the back of the Bow, until the fhadow thereof fall on the middle of the Horizontal fight, fo the degrees contained between the Vertical A B, and that upper light fhall fhew ehe diftance of the Sun from the Zenith.

If the Sun be nearer to the Horizon, you may hold the Bow fo as the Line S N may be Vertical, and the Line A B Parallel to the Horizon, then obferving, as before, the degrees contained between the Line A B, and the upper light, thall thew the Altitude of the Sun above the Horizon.

10. To find a South Latitude by the Meridian Altitude of the Siars to the Southward.

Let the upper fight be fet to the Star which you intend to obferve, which might be here placed on the foor fide of the Bow by the Complement of their declinations, if we knew the true place of fuch as are near to the South Pole.

Then hold the South end of the Bow upward, and curning your face to the South, obferve the Altitude when he cometh to be in the Meridian, and under the Pole, fo the lower fight fhall thew the Altitude of the Pole in the forefide of the Bow.

11. To obferve the Altitude of the Sun backward.

Ser the upper fight either to 60 , or 70 , or 80 gr . as you fhall find it ro be moft convenient, the lower light on any place between the middle and the other end of the Bow, and have an Horiz neal fight to be fet to the Center. Then may you turn your back to the Sun, and the back of the Bow toward your felf, looking by the lower fighe through the Horizontal fight, and moving the lower light up and down uncil ole upper fight do caft a fhadow upon the middle of the Hor zontal fight: fo the degree, contained beeween the wo fights on the Bow, fhall give the Altitude required.

Thus if the upper light fhall be at 80 gr . and the lower fightat gogr. the Altitude required is 30 gr . as in the third Prop.

O: if you turn the other end of the Bow upward, and fet the upper fight to the beginning of the Quadrant, and then obferve as before, she lower fight will hew the Alttudio.
12. To find any North Latitude by the Moridian Altitude of the Susat aback obfervation, knowing either the day of the month, or the desimation of the Sun.

Place your three fights as before on the fore-fide of the Bow : the upper fight to the declination of the Sun, or to the day of the month, at the North end; the lower fight toward the South end of the Bow; and the Horizontal fight to the Center. Then the Sun coming to the Meridian, curn your face to the North, and holding the Northend of the Bow upward, the South end downwards, with the back of it toward your felf, obferve the fhadow of the upper fighras in the former part of the fifth Propofition, fo the lower fight fhall fhew the Latitude of the place in the torefide of the Bow.

Thus being in North Latitude upon the ninth of October, if you obferve and find the lower fight 10 ftay at 50 gr . on the forefide of the Bow, fuch is the Latitude. For the declination is 10 gr . Southward, and the Altitude of the Sun between the two fights 30 gr . the Altitude of the Equator 40 gr . and therefore the Latitude $50 . \mathrm{gr}$.as in the fixch Prop.
13. To find any South Latitude by the Meridian Altitude of the Sun af aback obfervation, knowing either the day of the month, or the deo clination of the Sun.

When you obferve in South Latitude, place your three fights on the back fide of the Bow : the upper fight to the declination of the Sun, or the day of the month at the South end; the lower fightioward the North end of the Bow, and the Horizontal fight to the Center. Then the Sun coming to the Meridian, turn your face to the South, and holding the South end of the Bow upward, with the back of it toward your felf, obferve the fhadow of the upper fight as before: fo the lower fight fhall thew the Eatitude of the place in the back fide of the Bow.

Thus being in the South Latitude upon the tenth of May, if you obferve and find the lower fight to ftay at 30 gr . on the back of the Bow, fuch is the Alcitude of the Sun berween the ewo fights 40 gr . the Altitude of the Equator 60 gr , and therefore the Latifude 30 gr . as in the feventh Prop.
14. To find the day of the month, by knowing the Latitade of the place, and obferving the Meridian Altitude of the Sun.
Place your three fights according to your Latitude; the Horizontal fighe to the Center, the lower fight to the Latitude, and upper fighe among the months. Then when the Sun cometh to the Meridian, obferve the Altitude, looking by the lower fight through the Horizontal, and keeping the lower fight ftill at the Latitude, but moving the upper fight until is give fhadow upon the middle of the Horizontal fight: fo the upper fight thall thew the day of the month required.

Thus in our Latitude if you fet the lower fight to 51 gr .30 m . and oblerving find the Altitude of the Sun between that and the upper fight to be 28 gr .30 m . this upper fight will fall upon the ninth of OCtaber, and the twelfsh of February. And if yer you doubt which of them two is the day, you may expect another Meridian Altitude; and then if you find the upper fight upon the tenth of O Clober, and the ele: venth of February, the queftion will be foon refolved.
15. To find the declination of any unknown Star, and fo to place it on the Bams, knowing the Latitade of the place, andid obferving the Meridian Altitude of the Star.

When you find a Star in the Meridian that is fii for oblervation. Se: the Center of the Bow to your eye, the lower fight to the Latitude, and move the upper fight up or down until you fee the Horizon by the lower fight, and the Star by the upper fight, then will the upper fight ftay at the declination and place of the Star.

Thus being in 20 gr . of North Latitude, if you obferve and find the Meridian Altitude of the head of the Cofier to be 14 gr .50 mm . The upper fight will ftay at 34 gr .50 m . and there may you place this Sear. For by this obfervation the diftance of this Star from the South Pole thould be 34 gr .50 m, and the declination from she Equator $55 \mathrm{gr}$.10 m . And fo for the relt.

The Stars which I mentioned before, do come to the Meridian in this order after the firlt point of Aries.

> 16. To find any North Latitude on land by ob Servation with Thread and Plummet.

Set the fight to the day of the month at the forefide and South end
f the Bow: then when the Sun comech to the Meridian turning the North end in your left band toward the South, fo as the fight as the Senter may fhadow the fight at the day, obferve where the thread faleth, and abate 20 gr . if it fall on 70 gr . the Latitude is 50 gr . If on II gr .30 m . in the Latitude is 51 gro 30 m . And fo in the reft.
If the Bow had been made only for finding the Latitude on Land I night then have fer fuch numbers to it as needed no allowance.

17. To find any Soxth Latitsde on Land, by obfervation with Tbread and Plummet.

Set the fight to the day of the month, at the backfide and North end fthe Bow, and when the Sun cometh to the Meridian, turning the outh end to your left hand toward the North, obferve as before, and bate 20 degrees.
Or you may fet the fight to the day of the month, at the forefide, nd North end of the Bow, and fo obferving as before, the Thread will all on the Complement of the Latitude.

The right Afcenfion of thefe Stars is to the year 1670.

Anno 1679	R. A/cen: ${ }^{\text {D }}$	Declin	
Pole Star	0733	$87 \quad 35$	2
	$262 \quad 26$	$\begin{array}{lll}82 & 25\end{array}$	
	29458	86 28 8	4
Little Bear	$240 \quad 24$	78.52	4
	24724	76 30	5
Firlt Guard	$223 \quad 37$	$\begin{array}{llll}75 & 34\end{array}$	2
iecond Guard	23148	73 17	
Grear Bear			
Snout	$\begin{array}{lll}118 & 48\end{array}$	6126	
Eye	12100	$64 \quad 17$	4
Forehead \{	12445	68 16	4
	127.10	6747	4
	13145	7102	,
Neck $\{$	32 142 142	$\begin{array}{ll}63 & 37 \\ 62 & 02\end{array}$	4
Breaft	14430	61	14
Knee	14110	5949	14
Right Foot \{	13610	1327	
	12940	1836	
	$\begin{array}{cc}27 & 40 \\ 160 & 48\end{array}$	$\begin{array}{ll} 48 & 36 \\ 63 & 31 \end{array}$	
In the fquare	$\begin{array}{ll}160 & 48 \\ 160 & 08\end{array}$	$\begin{array}{ll}63 & 31 \\ 58 & 09\end{array}$	
	$173 \quad 54$	55	
	17950	5853	
	1900	5749	
	19750	5641	
In the Ta	203.42	5113	
Cefliopera.	R. Afcen.	Declin.	M
	$4=44$	5200	
Breaf	531	54:39	
Wafte	7.19		
Belly	9.18	5848	
Knce	1624	$58 \quad 25$	
Thigh	22. 49	$62 \quad 13$	13
Foor	30.14	6545	
Chair	324	6100	

ADVERTISEMENT

 CONGERNINGTHE
LOGARITHMS,

Rendring them ufefal to 100000 .
1 Number that confifeth of five places being given, to find the Logarithm thereof.

Find the Logarithm of the firt four Figures, rejecting the Characteriftick; then obferve the difference beween that and the next following, which multiply by the laft Figure of the Number given, and cut off one Sigure from the Product towards the right hand; the rea idd to the Logarithm of the firft four Figures. Lafty, if ou prefixt the proper Characteriftick for the Number gien, that Logarithm fo ordered, is the number required.

Example. 19438 being propounded, I demand the Logaithm thereof: By the direction fore-going I find the Loarithm of the firtt four Figures, viz. 1943, to be (rejecting he Cha racteriftick) 2884728 , alfo I fee the difference beween that Number and the Number following to be 235, which I malciply by the laft figure of the Number ropounded, being 8 ; and that fum is 17880 . Wherefore I dd 1788 to 2884728 , and prefix before it the proper Chacteriftick for the Number given, which maft be 4-beaufe that is the Characteriftick for all Numbers from 0000 to 100000 , fo is produced at laft $4,2886.516$, which the Logarithnu for 19438 , as was required.

Again,
 Let it be required to find the Logarithm for 56724.

Having found the Logarithm of the firft four figures be 7537362 , and the difference between that and the nex 766, and multiplied the difference by 4 , the laft figure the fum propounded, of which adding 306 to 7537362 they make 7537668 , before which prefixing the Charact riftick 4, the Logarithm for 56724 will be 4,7537668 , th thing required.

And for 94395 , it will be foand 4,9749490 , \& σ c.

FINIS.

The ese Books following are Printed for, and to be fold by Francis Eglesfield at the sign of the Marigotd in st. Paul's Charch-yard.

HSops Fables in Profe and Verfe, Illuftrated with Emblems or Pictures, and alfo Grammatically Tranlated into Profe, with apt Morals, and Printed according to the order of the Latine Copy; Together with the Hitory of his Life from the beft Greek Copies, very ufeful for all, but efpecially for young Scholars.
Note, There is lately crept forth a Counterfeit thing under the Title of Efops Fables, and the better to colour the Impofture, it is pranked up in the fame Volume and Drefs with the true: whereas the fame is none of E/fp'S, but a confured Fardle of nonfenfe fcrap'd from Poggius and the Seven mife Maffers, unworthy of Efop's name; and no more his than sooggins Tales, or the Legend of Grannum shipton.
The true one hath Efop's Picture on a Copper Cut, and a Greek Sentence in the Title Page, and is both in Verfe and Profe, the Authors Life being at the latter end, and newly reprinted the eighth time by I. R. 1673 . for Francis Eglesfield, and are to be fold by him at the Sign of the Marigold in St. Pauls Church-yard.
Formule Oratoria, in ufum Scholarum concinnate, cum praxi io wfu carundem in Epifolis, Thematibus, Declamationibus conterendis: Acceffit Dux Poeticus cum fuis aliquot peematiolis; Editio 1 I. novifíma Authoris limâ expolitis per Jo Clarke B.D. in Twelves.

The Young Mans Memento thewing bow, why, and when, we fhould remember God.

The danger of being almoft a Ehriftian.
A word to I/rael in the Wildernels; Or the
Araignment of Unbelief: All three by Fohn Cbrfloul, late Minifter of Tiverton in Devon, in Twelves.

The Englifh Rudiments of the Latine Tongue, explained by Queftion and Anfwer, in Octavo.

Rhetorice Elemsexta, in Octavo, both, by william Dugard, late Mafter of Merchant Tailors School, Price ftitcht $\delta \mathrm{d}$.

Rhetorica compendium by fohn Horn, late Mafter of Eaton Colledge, in Octavo.

The accomplifhed Accomptant, being a moft compendious and eafie way of keeping Merchanis Accompts after the Italian manner, by Fobn Carpenter Merchant, in Folio.

The Map of Emgland, with all the Kings about it fince the Conqueft, and a defription of them, being the beft that is extant, by william Hellar.

Thrafeologice Pueriles, five Sermoses, or felect Latine and Englifh Phrafes, Methodically and Alphabetically digefted by way of Common place, for the more eafie finding what is defired, very ufeful for young Latinifts, to prevent Barbarifm and bald Latine making, and to initiace them in (peaking and writing eligantly in both Languages, by Fobin Clarke B. D. The fourth Edition, recognized and amended, and above feven hundred choice Phrafes added, in Octavo.

The Grandeur and Glory of France, or a new furvey of the French Court and Camp, Illuttrated with the particular Characters of his moft Chriftian Majeety now Reigno ing, his Confort Royal, the Dauphin of the bloutd, Grand Minifter of State, Chief Martial, Officers and Offices by Sea and Land; with Yeveral choice Remarks on the Policies and prefent Affairs of that Puiffant Monarchy, by Hic. Gent.

THEEND.

Caftupes.	R. Alcen.	Declin.	M
Auriga			
Left fhoulder	$\begin{array}{ll}373 & 05\end{array}$	45 36	1
Hircus Right Thoulder	83.48	$44 \quad 55$	4
Cepheus Girlle	$327 \quad 28$		
Right fhoulder	31610	60.22	3
Ceft foulder	340	$64 \quad 33$	4
Head	32941	56	4
Right foot	304 5I	76	4
Left foot	35141	$75 \quad 32$	3
Draco			
rongue	154 31	$54 \quad 55$	
Mourh	261	$55 \quad 30$	
Eye	$260 \quad 34$	5234	
Head	267 O4	5121	3
In the mid-2			
die of the firts winding	276 41	5644	5
winding			
the fecond	28814	67 09	3
winding 5			
	39514	$72 \quad 34$	4
	$266 \quad 58$	$\begin{array}{ll}73 & 23\end{array}$	
In the third	324780	6930	
Aftershe fourth wind-	20931	6632	2
fourth wiad-ing			
Laft in the Tail	679	$71 \quad 10$	3

The End of the Second Book of the Crofs-Staff.

The right Afcenfion, Declination, and Magnitude of Some principal Fixed Stars.

The Stars Names.

The Pole-Star
The Girdle of Andromeda
The former Horn of the Ram
Bright Star in the Ram's Head
The Whale's Jaw
The Head of Medufa
The Bull's Eye
The Goat
The former Shoulder of Orion
The latter Shoulder of Orion
The great Dog
The uppermoft Head of the Twins The little Dog
The lower head of the Twins
The Crib
Hydra's Heart
Lion's Heart
Lion's Loins
Lion's Tail
The Virgin's Girdle
Alios
Vindemiatrix
The Virgin's Spike
Aráturus
The Southern Balance
The Northern Balance

Righe
Alcenfi.

In the Serpent's Neck
The Scorpion's Heart
Hercules Head
Ophinchus Head
The Harp
The Vulture
The upper Horn of the Geat
Left Hand of Aquarius
Left Shoulder of Aquarius
Pegafus Mouth
Right Shoulder of Aqustius
Fomahant
upper Wing of Pegafus 2
In the tip of Pegelas Wing

THE THIRD BOOK

The Ufe of the Lines of Numbers, Sines and Tangens, for the drawing of Hour lines on all forts of Planes.

THere are ten feveral forts of Planes, which take their denominati-s on from thofe Great Circles to which thicy are Paraliels, and may fufficiently for our ufe be reprefented in this one Fandaz nental Diagram, and be known by their Horizontal and Perpendicular ines, of fuch as know the Latitude of the Place, and the Circles of the phere.

1. An Horizontal Plane parallel to the Honizon here reprefented the utward Circle E S W N.
2. A Vertical Planc, parallel to the prime Vertical Cirde eth chrough the Zenith, and the Points of Eaft and Weft in the Horion, and is right to the Horizon and the Meridiant othat is, maketh right angles with them both. This is reprecented by EZZW.
3. A Polar Plane parallel to the Circle of the Hour of 6 , which paffech rrough the Pole, and the Points of Eaft and Wc\&, being right to the quinoctial and the Meridian, but inclining to the Horizon, with an Angle pal tathe Lacitude. This is here reprefented by E PW. 4. An Equinoctial Plane parallel to the Equinotial, which pafech rough the Points of Eaft and Weit, being righe to the Meridian, but inining to the Horizon, with an Angle equal to the Complement of the gritude. This is here reprefenced by E A W. 5. A Vertical Plane inclining to the Horizon, parallel to any Great ircle, which paffech through the Points of Eaft and Weft; being right the Meridian, bur inclining to the Horizon, and yet not paffing through CPole, nor parallel to the Equinoctial. This ishere reprelensed enher by IW, or EYW, orELW.
4. A Meridian Plane parrllel to the Meridian, the Circle of the Hol of 12, which paffeth through the Zenith, the Pole, and Points of 4 South and North, being right to the Horizon, and the prime Vertica This is here repredented by $S Z \mathrm{~N}$.
5. A Meridian Plane inclining to the Horizon, parallel to any Gre Circle, which paffech through the Points of South and North, being rig oo the prime Vercical, buc inclining to the Horizon. This is here reprefer sd by S G No.
6. A Vertical Declining Plane, parallil to any Great Circle, which p Seth thoough the Zenith, being right to the Horizon, but incliningito Meridiane This is repefented by BZD.

CA Defription of the Fundamental Diagram.

9. A Pular Declining Plane, parallel to any Great Circle, which paffech through the Pole, being right to the Equinoctial, but inclining to the Meridian. This is here reprefented by HPQ.
10. A Declining Inclining Plane, parallel to any Great Circle, which is right to none of the former Circles, but declining from the prime Vertical, and inclining both to the Horizon and che Meridian, and all the Hour-circles. This may here be reprefented either by B M D, or BFD, or BKD, or any fuch Great Circle, which pafferh neither through the South and North, nor Eaft and Welt points, nor chrough the Zenith, nor the Pole.
Each of thefe Planes (except the Horizontal) hath two Faces whereon Hour-lines may bedrawn, and fo chere are nineteen Planes in all. The Meridian Plane hath one Face to the Ealt, and another to the Weft : The other Vertical Planes have one to the Sourh, and another to the North, and the reft one to the Zenith, and another to the Nadir: but what is \{aid of the one, may be underitood of the other.

Todefcribe the Fundamental Diagrass:

The Deicription of this Diagram is fet down at large in the Ule of my Seftor, Chap. 3. But for this purpofe it may fuffice, if it have the Vertical Circle, the Hour-circles, the Equator, and the Tropicks firt drawn in it, other Circles may be fupplied afterwards, as we hall have ufe of them: And thofe may be readily drawn in this manner.
Let the outward Circle reprefenting the Horizon be drawn, and divided into four equal parts with SN the Meridian and EW the Vertical, and each fourth part into 90 gr . That done, lay a Ruler to the point S, and each Degree in the Quadrant EN, and note the Interfections where the Ruler croffeth the Vertical, fo fhall the Semidiameter EC be divided into other 90 gr . and from theace the orher Semidiameters may be divided in the fame fort. Thele may be numbred with $\mathrm{O}, 20,30, \in c$ from E toward C, and for variety with $10,20,30$, $\sigma 6$. from C toward W. But for the Meridian, the South part woutd be beft numbred according to the Declination from the. Equator, and the North part according to the diAtance from the Po'.c.

Then with relpect unto the Latitude, which here we fuppofe to be $51 \mathrm{gr}^{\text {r }}$. 30 m . open the Compaffes unto 38 gr .30 m . from C toward W, and prick them down in the Meridian from C unto P, fo thris point P hall reprefent thePole of the World, and through it mult be drawn all the Hour-circles,

A2 22
Having

ADefription of the Fundamentil Diagram.

Having three points E, P, W, find their Center, which will fall in the Meridian a little without the point S, and draw them into a Circle EPW which will be the Circle of the Hour of 6 .
Through this Center of the Hour of 6 , draw an occult Line at leingt paralle to EW, to this Line Chall contain the Centers of all the oche Hour-circles, Where the Circle of the Hour of 6 croffeth this occul Line, there will be the Centers of the Hour-circles of 9 and 3 . The di fance between thefe Centers of 9 and 3 , will be equal to the Semidiame. ters of he Hour-circles of $\mathbf{1 0}$ and $\mathbf{2}$: and where thefe two Circles of 36 and 2 Shall crofs this occule Line, there will be the Centers for the Hour. circles of 11 and $\%$ and 5 and 1 . Again, divide the diftance between th Centers of 10 and 2 into thiree equal parts, fo the feet of the Compafie will reft in two points, the one is the Center of the Hour circle of 8, ant the other the Center of the Hour-circle of 4; and the extent of the Com paffes to one of thefe third pars thall be the true Semidiameter of thel Cireles, if there be no crror committed in the finding of the other Cen ters,

The Hour-circles being thus drawn, take 51 gr .30 m . from Ctowar W, and prick them down in the South part of the Meridian from Cunt A, and bring the third point E A W into a Circle, this Circle fo draw fhall reprefent the Equator.
The Tropick of s is 23 gr .30 m above the Equator, and 66 gr .30 m diftant from the Pole, and io in this Latitude it will crofs the South par of the Meridian at 28 gr . from the Zenith, and the North part of the Me ridian at is gr. below the Horizon. Take therefore 28 gr . from C rowari W, and prick them down in the Meridian from C unto L, fo have you th South Interfection. Then lay the Ruler to the point E, and 15 gr , in th Quadrant $N E$, numbred from N toward E, and note here it crofferh th Meridian, fo hall you have the North Interfection. The half way be tween thefe two In eerfections will fall in the Meridian as the point a a a a and che Circle drawnon the Center a, and Semidiameter a L, fhall repre fent the Tropick of 5 , and here crols the Horizon before 4 in the morn ing, and afee 8 in the evening, about 40 gr . Northward fr m E and w -according to the Rifing and Setring of the Sun at his en rance into gi.

The Tropick of is is $23 \mathrm{gr}, 30 \mathrm{~m}$. below the Eqiator, and 113 30 m. diftant fre in the North Pole, fo that in this Latitude itciofle:h th Souch part of the Meridan at 75 gr. from the Zenith, and the North pair of he Meridian at $\sigma_{2} \mathrm{gr}$. below the Horzon. Take the efore 75 g from C soward W, and prick them down in the Meridian from Cunto 1 and 62 gr . in the Quadrant N E numbred from N toward E, and note where ir croffeth the Meridian, fo fhall you have the North Interfection. The half way between thefe two Interfections fhall be the Center whereon you may defribe the Tropick of v, and this Tropick will crofs the Horizon afier 8 in the Morning, and before 4 in the Evening, about 40 gr . Southward from E and W, according to the rifing and fetting of the Sun at his entrance into $\boldsymbol{\gamma}$.

To find the Inclination of any Plane.

For the diftinguilhing of thefe Planes, we may find whether they be Horizontal, or Verrical, or inclining to the Horizon, and how much they incline, either by the ufual Inclinatory Quadrant, or by fitting a Thred and Plummet unto the Sector.
For let the Sector be opened to a Right Angle, the Lines of Sines to an Angle of 90 gr . inward edges of the Sector to 90 gr . and let a Thred and Plummet be hanged upon a Line parallel to the edges of one of the Legs, 10 that Leg fhall be vertical and the other Leg parallel to the Horizon.
If the Plane feem to be vertical (like the Wall of an upright Building) you may try it by holding the Sector, fo that the Thred may fall upon his Plummet-line: For then if the vertical edge of the Sector thall lie clofe to he Plane, the Plane is ereet, and therefore faid to be vertical; and if you draw a Line by that edge of the Sector, it fhall be a Vertical Line.
If the Plane feem to be level with the Horizon, you may try it by feting the Horizontal Leg of the Sector to the Plane, and holding the other Leg upright : For then if the Thred thall fall on his Plummet-line, which Nay foever you turn the Sector, it is an Horizontal Plave.
If the one end of the Plane be higher than the other, and yet not vertial, it is an inclining Plane, and you may fund the Inclination in this nanner.
Firt hold the Vertical Leg of the Sector upright, and turn the Horiontal Leg about, untilit lie clofe with the Plane, and the Thred fall on is Plummer-line; fo the Line drawn by the edge of that Horizontal Leg hall be an Horizonal Line.
Suppofe the Plane to be B GE D, and that B D were thus found to be ae Horizontal Liine upon the Plane, then may you crofs the Horizontal ine at Right Angles with a Perpendicular C F: that done, if you fee ne of the Legs of the Sector upon the Perpendicular Line CF, and make.

make the other Leg with a Thred and Plummer to become Vertical, y thall have the Angle between the Vertical Line and the Perpendicular the Plane, as before in the Ulie of the Sector, pag. 62. and the Comp ment of this Angle is she Inclination of the Plane to the Horizon.

To find the Declination of a Planc.

The Dedination of a Plane is always reckoned in the Horizon betw the Line of Eaft and Weft, and the Horizontal Line upon che Plane. in the Fundamental Diagram, the prime Vertical Line (which is the L of Eaft and Weft) is EC.W; if the Horizontal Line of the Plane pofed fhall be B C D, the Angle of Declination is EC B.

But becaufe a Plane may decline divers ways, that we may the better Otinguifh them; we sonfider three Lines belonging to every Plane:

To find the Declinations of a Plase:

At is the Horizontal Line ; the fecond, the Perpendicular Line, crofing ic Horizontal at Right Angles; the third, the Axis of the Plane, croffing th the Horizontal Line, and his Perpendicular, and the Plane it felf at ght Angles.
The Perpendicular Line dothhelp to find the Inclination of the Plane, before: she Horizontal, to find the Declination; the Axis, to give enominstion unto the Plane.
Forexample: In a Vertical Plane in the Fundamental Diagram, reprented by FZW, the Horizontal Line is ECW, the fame with the Line EEaft and Weft, and cherefore no Declination. The Perpendicular crofng it is CZ, the fame with the Verrical Line, drawn from the Center to reZenith, right unto the Horizon, and therefore no Inclination. Thexis of the Plane is S CN, the fame with the Méridian Line, drawn from re South to the North, and accordingly gives the denomination to thelane. For the Plane having two Faces, and the Axis two Poles, S and J, the Pole S falling directly into the South, doth caule that Face to hich it is next, to be called the South Face; and the other Pole at N ; oinning into the North; doth give the denomination to the other Face? ad make it to be called the North Face of this Plane.
In like manner, in the Dedining Inclining Plane in the Fundamental Biagram, reprefented by BFD, the Horizontal Line is BCD, which roffech the prime Vertical Line ECW, and therefore it is called
Declining Plane, according to the Angle of Declination ECB or NCD. The Perpendicular to this Horizontal Line is CF, where the oint F.falleth in the Plane QZH perpendicular to the Plane propofed etween the Zenith and the North part of the Horizon; and therefore ie called a Plane inclining to the Northward, according to the Ark FQ, r the Angle FCQ. The Axis of the Plane is here reprefented by the ine CK , where the Pole K is 90 gr . diftant from the Plane, and fo is as nuch above the Horizon at H , and the other Pole as much below the H 0^{-} izonat Q, as the Plane at Fus diftant from the Zenith: And this Pole K ere falling berween the Meridian and the prime Vertical Circle into the outhweft part of the World, this upper Face of the Plane is sherefore alled the South-weft Face, and the lower the North-eaft Face of the lane.
The Declination from the prime Vertical may be found by the Needle a the ufual Inclinatory Quadrant, or sather by comparing the:Horizonal Line drawn upon the Plane, with the Azimuth of the Sun, and the Leridian Line, infuch fort as before we found the Variation of the Mag. nerical

8

To find the Decinnation of a Plane:

netical Needle. Fcr take any Board that hath one fide Ataight, and draw as in the laft Diagram the Line HO parallel to that fide, and the Line Z M perpendicular unto it, and on the Center \mathbf{Z} make a Semicircle HM O: this done, hold the Board to the Plane, fo as $\mathrm{H} O$ may be paral lel to B D the Horizontal Line on the Plane, and the Board parallel to the Horizon: then the Sun hining upon it, hold out a Thred and Plummet fo as the Thred being Vercical, the fhadow of the Sun may fall on the Center Z; and draw the Line of Shadow A Z, reprefenting the commor Section which the Azimuth of the Sun makes with the Plane of the Ho rizon, and let another take the Altitude of the Sun at the fame inftant: fo by refolving a Triangle, as I fhewed before, you may find what Azi muth the Sun was in when he gave thadow upon A Z.

Suppofe the A zimuth to be 72 gr .52 mz . From the North to the Weft ward, and therefore 17 gr 8 m . from the WeA, we may allow thefe 17 gh 8 m , from A unto V, and draw the Line $Z V$, and fo we have the true We point of the prime Vertical Line : then allowing 90 gr. from V unto S we have the South point of the Meridian Line ZS, and the Angle H Z V Thall give the Declination of the Plane from the Vercical, and the Angl OZS the Declination of the Plane from the Meridian.

Or we may take out only the Angle A Z H, which the Line of Shadow makes with the Horizontal Line of the Plane, and compare it with th Angle A Z V, which the Line of Shadow makes with the prime Vercical And fo here, if $A Z V$ the Suns Azimuth thall be 17 gr .8 m . paft th Weft, and yet the Line of Shadow A Z 7 gr .12 m. hort of the Plane, th Declination of the Plane fhall be 24 gr .20 m . as may appear by the fit of the Plane and the Circles.
If the Altitude of the Sun be taken at fuch time as the Shadow of th Thread fallerh on B D or $\mathrm{H} O$, and then a Triangle refolved, the Declina tion of the: Plane will be fuch as the Azimuth of the Sun from che Prim Vertical.
If at fuch a time as the Shadow fallech on $M Z$, the Declination will b fuch as the Azimuth of the Sun from the Meridian.
If it be a fair Summers day, you may firft find what Altitude the Sur will have when he comech to the due Eaft or Weft, and then expect unat he come to that Altitude, fo the Declination of the Plane fhall be fuch a the Angle contained between the Line HO and the Line of the Shadow. - Having diftinguifhed the Planes, the next care will be for the placing o she Style, and the drawing of the Hour-lines.
The Style will be às dhe Axis of the Worlds fometimes parallel to the

The Defcriptios of the Hour-lines in an Equinoctial Plane., , Plane, fomerimes perpendicular, fometimes cut the Plane with Oblique Angls.
The Hour-lines will be either parallel one to the other, or meet in 2 Center with equal Angles, or meet with unequal Angles. If the Style be perpendicular to the Plane, the Angles at the Center will be equal; and this falls out only in the South and North Face of the Equinoctial Plane. If the Sylle be parallel to the Plane, the Hour-lines will be allo parallel one to another; and chis falls out in all Polar Planes, as in the Eaft and Weft Meridian Planes parallef to the Circle of the Hour of $\mathbf{1 2}$, in the apper and lower direct Polars, parallel to the Circles of the Hour of σ, and in the upper and lower declining Polars, which are parallee to any of he other Hour-circles.
But in the Horizental and all other Planes, the Style will cut the Plane with an acute Angle, and the Hour-lines will meet at the root of the Syyle, and there make unequal Angles.

CHAP. I.

To draw the Hour-lines in an Equinoctial Plane.

AN Equinoctial Plane is that which is parallel to the Equinoctial Circle here reprefented by E A Y, wherein the fpaces between the Hour-circles being equal, there is no need of further Precept, but only to fraw a Circle, and to divide it into 24 equal parts from the 24 Hours, and ubdivide each Hour into Halves and Quarters, and then to fer up the Style petpendicular to the Plane in the Center of the Circle. The help which thefe Lines of Proportion do here afford us, is only in the divifiom of the Circle, which may be done readily by that which I thewed before n the Firft Book of the Sector.
For Example: Suppofe the Semidiameter of the Equinoctial Circle to e fix Inches, and that it were required to know the diftance of the Houroifts each from other; liere each Hour being 15 gr . diftant from other, I xtend the Compafles from the Sine of 50 gr . unto the Sine of 7 gr .30 m . he lalf of 15 gr . and I find the fame extent to reach in the Line of Numberss from 6.00 unto 1. 56.
Or in crofs work I extend them from the Sine of 30 gr . unto 6.00 in he Line of Numbers, the fame extent will reach from the Sine of $7 . \mathrm{gr}^{\text {. }}$ 0 m. unto 1. 56 in the Line of Numbers; which thews that in a Circle Bbb

of fix Inches femidiameter, the diftance of the Hour-points each from other will be about I Inch and 56 Cente ms or parts of 100 . The like reafon holds for the infribing of all other Chords in the Prop. following:

CHAP. II.

To draw the Hour-lines in a Direet Polar Plane.

ADirect Polar Plane is that which is parallelto the Hour of 6, the here reprefented by EPW; wherein the Style will be parallel te the Plane, and the Hour-lines parallel one to the other; and therefor may be beft drawn by that which I have fhewed in the Ufe of the Sector They may be allo drawn by the help of thefe Lines of Proportion, in thi manner.
Firf draw a Right Line W E for the Horizon and the Equator, ant cro
rols it at the Point \mathbf{C}, about the middle of the Line, with C B another Right Line, which may ferve for the Meridian and the Hour of 12, and muft alfo be the Subftylar Line wherein the Style thall ftand. Then, to oroportion the Style unto the Plane, confider the length of he Horizontal Line, and what Hour-lines you would lave to fall on your Plane.
For the diftance of any one Hour-line from the Meridiin being known, we may find both the length of the style, and the diftance of the reft : becaufe,

As the Tangent of the Hour given,
Is to the Diffayce of the Meridian :
So the Tangent of 45 gr .
To the Height of the Style.
Suppofe the length of the Horizontal Line to be 12 Inhes, and that ic were required to put on all the Hour-lines rom 7 in the Morning unto 5 in the Evening. Here we tave 5 Hours and 6 Inches in either fide of the Meridian : Wherefore I allow 15 gr . for an Hour, and extending the Sompaffes from the Tangent of 75 degrees, I find the ame extent to reach in the Line of Numbers from 600 to bout 16I. This fhews both the height of the Style, and he diftance of the Hour-points of 9 and 3 from the Merilian, to be I Inch 6I parts.

To find the length of the Tangent between the Subfylar and the Hour-points.

As the Tangent of 45 gr . To the Tangent of the Howr :
So the Height of the Style
To the length of the Tangent line between the SubAtylar and the Hour points.
Thus having found the length of the Style in our Exmple to be 1.6 I , if I extend the Compaffes from the Tangent of 45 gr . unto the Tangent of 15 gr . the meafure f the firft Hour from the Subftylar, I hall find the fame xtent to reach in the Line of Numbers from I. 6 I unto 2. 43, for the length of the Tangent between the Subltylar nd the Hour points of 11 and 1. If I excend them Bbb_{2} from

from the Tangent of 45 gr . unto the Tangent of 75 gr . tlie meafurc 0 the fifth Hour, I fhall find thern to reach in the Line of Numbers from 1. 61 unto 6.00, for the length of the Tangent from the Subftylar ti the Hour-points of 7 and 5. For how loever it be the fame diftance inth Lise of Tangents from 45 to 75 , as from 4 :
 unto 15 ; yet becaule 75 are more, and 15 lei than 45, the Tangene Lines that anfwer t them will be accordingly more or lefs than th length of the Style.

Again, If I extend thien from 45 gr . in th Tangents unto 30 gr . the mealure of the fecon Hour, I hall find tham reach in the Line Numbers from 1. 6I unto 0. 93 for the Hour 10 and 2: If I cxtend them from the Tanget of 45 gr . unto the Tangent of 60 gr . for dl fourch Hour, \mathbf{I} hall find them to reach in tl Line of Numbers from 1. 6i unto $\mathbf{2 . 7 9}$, and fuch is the length of ti Tangent Line from the Subfylar unto the Hour of 8 and 4. And tl like Reafon holdech for the infcribing of all other Tangent Lines in il Propofitions following.

But for fuch Tangents as fall under 45 gr . I may betier nue cre Work, and extend the Compafies from the Tangent of 45 gr . unto 1. in the Line of Nambers, fo thall I find the fame extent to reach fro 30 gr . in the Tangents, to 23 parts in the Line of Numbers, for the ftance of the fecond Hour ; and from 15 gr . in the Tangents, to 43 m for the diftance of the fult Hour from the Meridian.

Or if this exient from 45 gr . backward to I . 61 be too large for th^{e} Compaffes, I may extend thein forward from the Tangent of 5 gr .43 m . to 1.61 parts in the Lines of Numbers, and the fame extent thall reach from 15 gr . in the Tangents, to 43 parts in the Lines of Numbers, for the diftance of the firf Hour; and from 30 gr. to 93 parts, for the diflance of the fecond Hour, as before.

Having found the length of the Tangent Lines in Inches and parts of Inches, and pricked them in the Equaror on both fides of the Meridian, from the Center C; if we draw. Right Lines through each of thofe Points, crofling the Equator at Right Angles, they hall be the Hourlines required; and if we fet a Style over the Meridian, fo as the edge of it be parallel to the Plane, and the height of it be as much above the Meridian, as the diftance between she Meridian and the Hour-points of 3 and 9, is (hall reprefent the Axis of the World, and be truly placed for the cafting of the Shadow upon the Hour lines in a Polar Plane.

CHAP. - III.

To draw the Howr-lines in a Meridian Plane.

AMeridian Plane is that which is parallel to the Meridian Circle in the Fundamental Diagram, reprefented by $\mathbf{S Z N}$; ir hath two Faces, one to the Eaft, and the other to the Weft; in each of them the Style will be parallel to the Plane, and the Hour-lines parallel one to the

other, as in a Polar Plane; the difference being only in the placing of the Equator, and in numbring of the Hours.

For in thefe Meridian Planes having drawn an occult Vertical Line C Z, and an occult Horizontal Line C N, croffing one the other at Right Angles ia the Point C , the Equator AC will cut the Vertical with an
ngle ZCA, equal to the Latitude of the lace: then may we crofs the Equator at Right ingles with the Line C B for the Hour of 6 , ad from this fet off the Hour-points in the quator, as in the former Prop.
For, fuppofing the length of the Style B to be 10 Inches, the length of the Tanent Line belonging to the firft Hour will be In. 68 p . the length of the fecond 5 Is .77 p . in the Table. Then the Tangent of 15 gr . ang prickt down in the Equator on both des from 6, thall ferve for the Hours of 5 id 7 , and the Tangent of 30 gr . for the ours of 4 and 8 ; and fo in the reft. This done, if we draw Right Lines through th of thefe Points, croffing the Equator at ight Angles, they hall be the Hour-lines quired: And if we fer a Style over the our of 6 , fo as the edge of it may be paHel to the Plane, and the height of it may : equal to the diftance between the Hours 6 and 9 in the Equator, it fhall repreut the Axis of the World, and be truly aced for the cafting of the Shadow upon e Hour-lines in a Meridian Plane.

F Ang. Po. Tang.		
	Gr. M.	In pi
12	-	
	45	5
	$7 \quad 30$	
	15	
-	15	
	I 845	9
	$22 \quad 30$	14
	$\begin{array}{lll}26 & 15\end{array}$	4.93
2		$5 \quad 77$
	$\begin{array}{ll}33 & 45\end{array}$	$\begin{array}{ll}6 & 68\end{array}$
	7	767
	415	$8 \quad 77$
3	45	$10 \quad 00$
	48.4	0
	5	
	5615	14.97
4	60	$17 \quad 32$
	$63 \quad 45$	$20 \quad 28$
	67	
	715	29.46
57		$37 \quad 32$
	78.45	$50 \quad 27$
	82.30	7590
	86 15	15257
	190	Infinit.

CHAP. IV.

Todram the Howr-lines in an Horizontal Plane.

4N Horizontal Plane is that which is parallel to the Horizon, reprefented in the Fundamental Diagram by the outward Circle SW N, in which the Diameter SN drawn from the South to the lorth, may go both for the Meridian Line and the Meridian Circle, Z rche Zenih, P for the Pole of the World, and the Circles drawn through

The Defcription of the Hour-lines

Latir. 51			
	Ang. Po.		
	Gr. M,		M.
12	-	\bigcirc	0
	45	2	56
	$7 \quad 30$		52
	1115	8	5
	115	11	50
	18.45	14	52
	$22 \quad 30$	17	57
	26 : 5	2	6
	230	24	0
	33	27	.
	$37 \quad 30$	$3!$	0
	4115	34	8
	345	38	
	$48 \quad 45$	41	45
	5230	45	34
	5615	49	30
460		53	35
63.45		57	7
$67 \quad 30$		62	6
71.15		66	33
$575 \quad 0$		78	
	$78 \quad 45$	75	45
	8230		25
	86 15	85	13
	6190.		

through P for the Hour-circles of $1,2,3,4,6 \%$. as they are numbred from the Meridian.

Thefe are equal at the Pule, and ai the Equator, but unequally diftant at the Horizon; the diftance between the Mcridian and the firft Hour being not full 12 gr . the diftance between the fifth and fixth Hour about 18 gr . which inequality being obferved, if you fuppore Right Lines drawn from the Center C to the Interfections of thefe Hour-circles with the Horizon, the Line fo drawn thall be the Hour-lines here inquired. And then, if you can, imagine a Line drawn from the Center C , toward P the Pole of the World, and raifed above the Meridian Lirre C N, fo as the Angle PCN may be equal to the Laticude of the Place, this Right Line C P fhall be the Axis of the Style. And fo you have both Style and Hour-lines ready drawn to your hand. But more particularly to our parpofe.

Thefe Hour-circles confidered, with the Meridian and the Horizon, do make divers Triangles, P N"3, P N $2, \mathrm{PN} 3$, in which we have known, firt, the Right Angle at N , the North Interfeaion of the Meridian and the Horizon; fecondly, the Side P N, the Ark of the Meridian be eween the Pole and the Horizon, which is alway: equal to the Latitude of the Place ; thirdly, the Angles at the Pole, made by the Meridian and the Hour-circles, the Angle NP 1 being $15 g^{r}$ NP 230 gr . each Hour 15 gr . morechan other each half Hour 7 gr .30 m .each quarter 3 gr .45 m . as in che fecond Colums of this Table. And thefe three being known, we may find the Arcso the Horizon between the Meridian and the Hour-circles N 1, N $2, \mathrm{~N}_{3}$ č. For,

```
As the Sine of 90 gr.
    is to the Sise of the Latitwde:
So the Tangent of the Hour,
    to the Tangent of the Howr-line from the ALeridian.
``` ide; fo the fame Extent thall reach from the Tangent of the Hour, to

re Tangent of the Hour-l:ne from the Meridian. Thus the Latitude be1 g 51 gr .30 m . I extend the Compaffes from the Sine of 90 gr . to the ne of 51 gr .30 m . and find the fame extent to reach from the Tangent 3 gr .45 m . unto the Tangent of 2 gr .56 m . For the diftance of the At quarter from the Meridian; and from the Tangent of 7 gr .30 zs. nto the Tangent of 5 gr .52 m . for the half Hour ; and from the Tannt of 11 gr .15 m . to the Tangent of 8 gr .5 lm . for the third quarter; id from the Tangent of 15 gr .0 m . unto 11 gr .50 m . for the firt our : And fo of the reft, as in the third Column of this Table, under te Title of the Arks of the Plane.

Ccc
Only

Only when I come to fet one Foot of the Compaffes to \(48 \mathrm{gr} .45: \mathrm{ms}\) for the finding of a quarter paft 3, the other Foor will fall out of th Line, and then Imay either take out fo much as is out of the Line beyonc 45 gr . and curn it back into the Line, and it will reach from \(45 \mathrm{gr} . \mathrm{t}\) 4 Igr .45 m . or I may ufe crofs work, extending the Compaffes fron the Sine of 90 gr . to the Tangent of 48 gr .45 mm . So the fame extent wil reach from the Sine of 51 gr .30 m . to the Tangent of 4 gr .45 m . An fuch is the diftance of the Line of 3 Hours \(\frac{1}{4}\) from the Meridian.

This done, I come to the Plane, and there according as the Lines d fall in the Fundamental Diagram,
I. I draw the Right Line SN; lerving for the Meridian, the Hot of \(x 2\), and the Subfylar.
2. In this Meridian I make choice of a Center at C , and there deScribe an occultcircle reprefenting the Horizon.
3. I find a Chord of 11 gr . 50 m . and infribe it into this Circle on either fide of the Meridian, for the Hours of II and I ; in like manner, a Chord of 24 gr .20 m . For the Hours of 10 and 2 ; and a Chord of 38 gr .3 km . For the Hours of 9 and 3 : And fo for the reft of the Hours, their Halves, and Quarters.
4. Idraw Right Lines through the Center, and the Terms of thefe Chords, and thefe Lines fo drawn are the Hour-lines required.

The Line belonging to the Hour of 6 will be perpendicular to the Meridian, and the Hour-lines before 6 in the Morning, or after 6 in the Evening, may be fupplied by continuing their oppofite Hour-lines beyond the Center; as the Hour-line of 7 in the Morning continued, will be the Hour-line of \(\boldsymbol{y}\) in the Evening: And fo the reft.

Laftly, I fet up the Style over the Meridian, fo as it may cut the Plane inthe Center, and there make an Angle with the Meridian equal to the Latitude of the Place; fo it Thall reprefent the Axis of the World, and be cruly placed for calting of the Shadow upon the Hour-lines in an Horizontal Plane.

\author{
CHAP. V.
}

To draw the Howr-lines in a Vertical Plane.

AVertical Plane is that which is parallel to the Prime Vertical Circle in the Fundamental Diagram, reprefented by EZ W. It hath two Faces, the one to the North, the other to the Sourh; in each of them the Subftylar will be the fame with the MeridianLine, and the Angle of the Style above the Plane will be equal to \(\mathrm{Z} P\), the Complement of the Latitude; and the Hour-lines here inquired may be fupplied by imagining Right Lines drawa from the Center \(C\) to the Interfections of the Hour-circles E Z W.

The Triangles here confidered are made by the Vertical, the Meridian, and the Hour-circles, in which we know the Side Z P, rhe
\[
\text { Ccce } 2 \quad \text { Angles }
\]

The Defaription of the Fiowr-limas

Angles at the Pole, and the right Angle at the Zenith, and therefo may find the Arks of the Verical, beeneen the Meridian and th Hour-circles, after thismanaero.

CAs the Sine of 90 gr :
is to the Co-gine of the Latitude:
So the Tangemt of the Hour,
to the Tangent of the Hour-line from the CMridien.
Extend the Compaffes from the Sine of 90 gr . to the Sine of t Complement of the Latitude, fo the fame extent fhall reach from th Tangent of the Hour \({ }_{2}\) to the Tangent of the Hour-line from the Mer diate

Thas in the Lasirude of 5 r gr. 30 m . I extend the Compaffer from the sine if 90 gr . to the sine of \(: 8 \mathrm{gr} .30 \mathrm{~m}\). and find the fame extent to reah irom the Tangene of 15 gr . to the Tanean of 9 gr .28 m . for the diftance of the fift Hour from the Meridian; and from the Tangene of 75 yr. unto the Tangent of 66 gr .42 m . for the fifith Hour : and fo in the reft, as in this Table.

Thefe Arks being known, I may come to the Plane, and then by help of a Thread and Plummer draw a Verrical Line, ferving both for the M:ridian and the Hour of 12, and the Subfylar ; then may I draw an occult Vertical Circle, and therein inferibe the Chords of thofe former Arks, and draw the Hour-lines, and fee up the Style, as before in the Horizontal Plane.

If in be the South Face of the Plane, the Center will be upward, and the Style will point downward : If the North Face, the Center muft be in the lower part of the Meridian Line, and the Style point upward in all fuch Places as are to the Northward of the Equinoctial Line, as it may appear by confidering how the Lines do fall in the Fundamental Diagram.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Latir. 5 I 30}} \\
\hline & & & & \\
\hline \multicolumn{3}{|r|}{Gr. M} & \multicolumn{2}{|l|}{\(\overline{\text { Gr. M. }}\)} \\
\hline \multicolumn{2}{|l|}{112} & 20. & \multicolumn{2}{|l|}{0} \\
\hline & & & 2 & 0 \\
\hline & 7 & 30 & 4 & 45 \\
\hline & 11 & 15 & 7 & 3 \\
\hline & 115 & \(\bigcirc\) & 9 & 28 \\
\hline & 18 & 45 & II & 56 \\
\hline & 22 & 30 & 14 & 27 \\
\hline & 26 & 15 & 17 & 4 \\
\hline & : 30 & 0 & 19 & 45 \\
\hline & 33 & 45 & 22 & 35 \\
\hline & 37. & 30 & 25 & 3 \\
\hline & 41 & 15 & 28 & 38 \\
\hline & 345 & - & 31 & 54 \\
\hline & 48 & 45 & 35 & 22 \\
\hline & 52 & 30 & 39 & \\
\hline & 56 & 15 & 42 & 58 \\
\hline & 460 & & 47 & 9 \\
\hline & 63 & 45 & 51 & 36 \\
\hline & 67 & 30 & 56 & 20 \\
\hline & 71 & & 61 & 23 \\
\hline & 575 & & 66 & 42 \\
\hline & 78 & & 72 & 7 \\
\hline & 82 & 30 & 78 & 3 \\
\hline & 86 & 15 & 84 & \\
\hline & 6190 & & 90 & \\
\hline
\end{tabular}

\section*{CHAP. VI.}

\section*{To draw the Howr-lines in a Vertical Iniclining Plane.}
A. Ll thofe Planes that have their Horizontal Line lying Eaft and right and, as trour incline to the Pole, they are direct Polars; if to the Equinoctial, they

\section*{22}

\section*{The Defoription of the Hour-Lines}
are properly called Equinoctial Planes, and are defcribed before: if none of thefe three Points, they are then called by the general name Inclining Verticals.

Thefe may incline either to the Norih parts of the Horizon, or to th South; and each of them hath two Faces, one to the Zenith, the oth to the Nadir, in which we are firft to confider the height of the \(\mathrm{P}_{0}\) above the Plane, by comparing the Inclination of the Plane to the Hor zon with the Latitude of the Place.

As in our Latitude of 51 gr .30 m . if the declination of the Plat EI W in the Fundamental Diagram fhall be I 3 gr . Northward, that if I N, the Ark of the Meridian between the Plane and the North pa of the Horizon, fhall be 13 gr . we may take thefe 13 gr . out of PN sis 30 m . the Elevation of the Pole above the Horizon, and there will rema PI 38 gr .30 m . For the Elevation of the North Pole above the upper Fa of the Plane, and therefore 38 gr .30 m . for the height of the Sourh \(\mathrm{P}_{0}\) above the lower Face of the Planc.

Or if the Inclination of the Plane thall be found to be 62 gr . tod Southward, we may number them in the Meridian from \(S\) the South \(p a\) of the Horizon unto L, and there draw the Ark E L W reprefenting th Plane ; fo the Ark of the Meridian P L fhall give the height of the Nor Pole above the upper Face of this Plane to be 66 gr .30 m . and therefc the height of the South Pole above the lower Face of the Plane is al 66 gr .30 m .

In like manner, if the Inclination of the Plane EYW hall be \(15 \varepsilon\) Southward, that is, if S Y the Ark of the Meridian between the Sou part. ef the Horizon and the Plane fhall be 15 gr . the height of the Nor Pole above the upper Face of the Plane, and the height of the South P above the lower Face of the Plane, will be allo found to be 66 gr .30 m

But if the Plane fhall fall between the Zenith and the North Po then will the North Pole be elevated above the lower Face, and the Sou Pole above the upward Face of the Plane, as may appear by the Pıojed on of the Sphere in the Fundamental Diagram.

Then in the Triangles made by the Plane, the Meridian, and Hour-circles, we have the fide which is the height of the Pole ab the Plane, together with the Angles at the Pole, and the Righr A gle at the Interfection of the Meridian with the Plane, by which may find the Arks of the Plane between the Meridian and the Ho circles, after this manner.

Thus in the former Example, where P I the height of the Pole ove the Plane was found to be 38 gr .30 m . if you fhall extend e Compaffes from the Sine of 90 gr . to the Sine of 38 gr .30 m e fame extent will reach from the Tangent of 15 gr . unto the ingent of 9 gr .28 m . For the diftance of the firft Hour from the eridian, and from 30 gr . unto \(19 \mathrm{gr}\).46 m . for the fecond Hour, and forward, as in the direet Vertical.
And for the two laft Examples, you may extend the Compaffes from e Sine of 90 gr . unto the Sine of 66 gr .30 m . fo the fame extent thall ach in the Line of Tangents from 15 gr . unto 13 gr .48 m . for the firft our, from 75 gr . unto 73 gr .43 m . For the fifth Hour, from 30 gr . to 27 gr .54 m . for the fecond Hour, from 60 gr . unto 57 gr .48 m . \(r\) the fourth Hour, and from 45 gr . unto 42 gr .3 Im . for the third our from the Meridian.
Thefe Arks being known, you may firt draw the Horizontal Line, id crofs it in the middle with a Perpendicular, that may ferve both r the Meridian and the Hour of 12, and the Subltylar ; then knowg which Pole is elevated above the Plane, you may accordingly akechoice of a fic Point in the Meridian for the Center of your Hournes, and thence defcribe an occulc Ark of a Circle, infcribe the Chords thofe former Arks, and draw the Hour-lines, and fer up the Style \({ }_{2}\) - as thewed before in the Horizontal Plane.

CHAP.

CHAP. VII.

\section*{To draw the Hour-lines in a Vertical Declining Piane.}

ALl upright Planes whereon a man may draw a Vertical Line, are in this refpect faid to be Verrical; if chey fhall allo ftand directly Eaft and Weft, they are directly Verticals; if directly Norch and Sourh, they are properly called Meridian Planes, and are defcribed before: if they bchold none of thefe four principal Parts of the World, but fhall ftand berween the prime Vertical and the Meridian, they are then called by the general name of Declining Verticals.

Thefe have two Faces, one to the South, the other to the Northward, which may be diftinguifhed in thefe Northern parcs of the World afeer this manner. If the Sun coming to the Meridian fhall fhine upon the Plane, it is the South Face; if not, it is the North Face of that Plane. Again, Tf the Sun thall thine upon the Plane at High-noon, and yet longer in the Forenoonthan in the Afternoon, it is the South-eaft Face; if longer in the Afternoon than in the Forenoon, it is the South-wef Face of the Plane. But how much the Declination comech to, is beft found as before,

When the Declination is found, there be four things more to be conift dered, before we can come to the drawing of the Hour-lines.
1. The Meridian of the Plane, and his Inclination to the Meridian of the Place.
2. The Height of the Pole above the Plane.
3. The Diftance of the Subftylar from the Meridian Line.
4. The Diftance of each Hour-line from the Subfylar.

And thefe four may all be reprefented in the Fundamental Diagram as in this Example.

Suppofe that in our Latitude of 51 gr .30 m . Northward, the Declina tion of an upright plane fhould be found to be 24 gr .20 m .

In the Triangle P R Z we know the Angle at R to be a Right Angle and the Angle at \(Z\), for it is the Complement of the Declination; ant the Bale PZ, for it is the Complement of the Latitude. And thefe thre being known, we may find the other Angle R PZ, which is the Ang! of Inclination between both Meridians.

N
As the Sine of the Latitude
Is to the Sine of 90 gr .
So the Tangent of the Declination
to the Tangent of Inclination of Meridians.
Thus in our tormer Example I extend the Compaffes from the Sine of - Latitude 51 gr .30 m . unto the Sine of 90 gr . the fame extent will ach in the Line of Tangents from 24 gr .20 m . The Declination given, to out 30 gr . and fuch is Z PR, the Angle of Inclination between the aridian of the Place and the Meridian of the Plane: and thererefore Ddd the
the Meridian of the Plane will here fall upon the Circle of the fecond Hour from the Meridian of the Place (as it may alio appear by opening the Compaffes to the neareff extent between the Pole and Plane) and there I place the Letter R to make this Rectangle P R Z.

\section*{2. To find the Height of the Pole above the Plane.}

The Height of the Pole is to be meafared in the Meridian of the Plane it is here reprefented by the Ark PR, and may be found by that which we have known in the former Triangle PRZ.
```

As the sine of }90\textrm{gr}
5) the Co-fine of the Latitude:
So the Co-fine of the Declination,
to the Sine of the Heigbt of the Pole above the Plane.

```

Extend the Compaffes from the Sine of 90 gr . unto the Sine of 38 gr 30 ms . the Complement of the Latitude, and the fame extent will read from the Sine of 65 gr .40 m , the Complement of the Declination, unt the Sine of \(34 \mathrm{gr}^{\mathrm{r}} 33 \mathrm{~m}\).

Or if you pleafe co make ufe of the Angle of the Inclination of th two Meridians, the proportion will hold,

\section*{As the Sine of 90 gr .} to the Co-fine of the Inclination of CMeridians: So the Tangent of the Liatitude, to the Tangent of the Heighs of the Pole above the Plane:

And then you may extend the Compaffes from the Sine of 90 gr . un the Sine of 60 gr : the Complement of the Inclination of the Meridian and the fame extent will reach from the Tangent of 38 gra 30 m . tl Complement of the Latitude, univ the Tangent of 34 gr .33 m . and fu is the Ark P R the Height of the Pole above the Plane:

\section*{3. To find the Diftance of the Subftlar from the Meridian.}

This is here reprefented by the Ark ZR, and may be found by th which we have known in the former Triangle PRZ.

As the sine of 90 gr .
to the Sine of the Declination: So the Co-tangent of the Latitade, to the Tangent of the Subjylar from the Meridian.

Extend the Compaffes from the Sine of 90 gr . unto the Sine of 24 gr . 20 m . the Declination given, and the fame extent will reach from the Tangent of 38 gr .30 m . the Complement of the Latitude, unto the Tangent of 18 gr .8 m . and fuch is the Ark Z R, the Diftance of the Sublylar from the Meridian.

\section*{4. To find the Diffance of each Hour-line from the Subftylar.}

The Diftances of the Hour-lines from the Subttylar are here reprefented by thate Arks of the Declining Vertical belonging to the Plane, which areincerceped berween the proper Meridian of the Plane and the Hourcircles.
To this purpofe we have divers Triangles made by the Declining plane, together with his proper Meridian and the Hour circles. In thefe we have known, firlt the Right Angle at the Interfection of the proper Meridian with the Plane; then the Side which is the Height of the Pole above the Plane; and thirdly, the Angles at the Pole. For knowing the Angle of Inclination between the Meridian of the Plane and the Meridian of the Place, which is always the Hour of 12, we may find the Angle between the Meridian of the Plane and the Hour of T , by Allowing in 15 gr . and the Angle berween the Meridian of the Plane and he Hour of 2, by allowing in 30 gr and fo for the reft : which being known, and fet down in a Table, we may find the Arks of the Plane rom the Subfty lar to the Hour-circles, in this manner.

As the Sine of 90 gr . to the Sine of the Height of the Pole above the Plane:
So the Tangent of the Hoar from the proper Meridian, to the Tangent of the Hour-line from the Sabfilar.

Thus in our Latitude of 51 gr .30 m . if the Declination of an uprigh s Plane fhall be found to be 24 gr . 20 m . from the prime Vertical, the one Face open to the South-weft, the other to the North-eaft, I may number Ddd 2

\section*{2}

\section*{The Defcription of the Hour-lines}
thefe 24 gr .20 mos in the Horizon of the Fundamental Diagram from E unto \(B\), according to the fituation of the Plane, and there draw the Vertical BZD, which thall reprefent the Plane propofed.

The two Poles of this. Plene will fall in the Horizon at Hand Q. and therefore the proper Meridian drawn thr ush the Poles of the Plane and the Pole of the World muft be the Circle HPQ, which here crofferh the Plane at Right Angles in the Point of R, and inclinech to PZS the Meridian of the Place, according to the Angle R.PZ.

The quantity of this Inclination may be readily found by the Hourcircle where the proper Meridian fallech. Ashere ir fallech on the fecond Hour-circle, and forthe Inclination is 30 gr .

The height of the Pole above the Plane, which giveth the height of the Syle above the Subftylar, is here reprefented by the Ark P R. For as in the Horizontal, fo in this and all other Planes, the Line C P the Axisol the World is always the Axis of the Style, and the neareft Line that can be drawn upon the Plane to the Axis of the World is the firteft for the Subfylar, and that is the Line CR: fo the Angle PCR is the Angle between the Axis and the Plane, commonly called the Heíght of the Sryle, and the meafure of this Angle is the Ark PR. This Ark is alway: lefs than the Complement of the Latitude, and may be eftimated by taking the diftance \(P R\) with the Compaffes, and meafuring it in the Meridian from P toward Z . So in this Example it will appear to be about \(34 \mathrm{gr} . \frac{\mathrm{A}}{2}\) 。

The diftance of the Subflylar from the Meridian is here reprefented by the Ark ZR : For the Meridian Line upon the Plane is C Z, the Sub. Atylar Line is C R; fo the Angle contained between them is \(Z C R\), and the meafure of this Angle is the Ark Z R, which taken with the Compaffes, and meafured in the Semidiamecer \(C W\), from \(C\) coward \(W\), will be found about 18 gr .

The diftances of each Hour line from the Subftylar are here reprefented by the Arks of the Plane between the Point R and the Interfections of the Hoor-circles: For the Subftylar Line is C.R, and the Hour-circle of \(x\) croffing the Plane in the Point O , the Hour-line of r upon the Plane muft be CO ; fo the Angle between the Subftylar and the Hour-line of I is RCO, and the mealure of this. Angle is the Ark RO. In like manner, the Hour-line of 12 will be \(\mathrm{CZ}_{2}\), and the diffance from the Subfylar R Z: the Hour-line of in will be CX, and the diftance from the Subftylar R X : and fo the reft. Thefe diftances \(R O, R Z, R X, E\). may alfo be taken with the Compaffes, and meafilied as before.

Bèfides theff four Reprefentations, the Diagram will Thew what Pole is elevated above the Plane, and what time the Sun fhineth upon the Piane. If it be che North-ealt Face of this Plane, you inay think P to be the North Pole, and the Hour-circles to be drawn on a Convex Hemilphere; fo CR the Subftylar, and CP the Axis of the Style, will will both point upward: and having drawn the Tropick of \(\sigma\), you Chall. fiad by the meeting of the Plane with the Tropick, and the Hour-circles, that the Sun at the higheft may thine upon the Plane from the time of the rifing until it be paft 9 in the morning, and from 7 in the evening unto the time of his fercing. But if it be the South-weft Face of the Plane, then you may either fuppofe the Subftylar and the Axis to be continued down below the Center, like unto the Hours before and afeer 6 in an Horizontal Plane; or elfe you may turn the Diagram, and think \(P\) to be the South Pole, and the Hour-circles to bedrawn in an Horizontal Concave,' \(\mathrm{I}_{0}\) CR the Subtylar, C P the Axis of the Style, will both point dowaward, and fo alfo the Hour-lines from 8 in the morning until after 7 in the cvening, as it doth appear by the meeting of the Plane with the Horizon, and the Hour-circles.

Thus with the drawing of one Line in the Diagram, to reprefent the Plane according to his declination, you may have the Hour-lines fitted to any Declining Vertical, with the Style and Sabitylar in their due place, which may fuffice to free you from grofs errour ; but for more exactnefs? we confider three Triangles.

\section*{1. To find the Inclination of Meridians.}

The Meridian of the Place is a Circle pafing through the Poles of the World, the Zenich and the Nadir. The. proper Meridian of the Plane is a Circle paffing through the Poles of the. World and the Poles of the Plane. The Circle of the Plane and thefe two Meridians do make a Tri: angle, fuch as PRZ, wherein we know the Angle ar R.

Iconfider the Angle of Inclination of the Meridian RPZ , and there fee how that PZ, the Meridian of the Place, which is the Herr of 32 being 30 gr . diftant from PR che Meridian of the Plane, and that one Face of the Plaixe being open to the South-weft, and the other to the North-caft, this Meriduin of the Plane fallech to be the fame with the Hour of 2, (orherwife with the Hour of 10:) therefore allowing \(15 . \mathrm{gr}_{0}\) for an Hour, the Hour of \(1 R P O\) will be \(15 g r\). and RPX the-Hour of 11 will be 45 gr . diftant from PR the proper Meridian of she Plane:

\section*{The Defcription of the Hour-lines}
\begin{tabular}{|c|}
\hline \begin{tabular}{llll}
\hline Latitude N. & 51 & 30 \\
Declinar. & 24 & 20
\end{tabular} \\
\hline Dilf. Merid. 30 \\
\hline Alt. Scyl. 34 \\
\hline Dift. Subit. 18 \\
\hline Hours Ang. Po. Ar \\
\hline M. E Gr. M. G \\
\hline \(4 \quad 8900090\) \\
\hline \(5 \quad 7 / 750064\) \\
\hline 6. \(\quad 650004\) \\
\hline 7 - 545000 \\
\hline 8. 4 :0 \\
\hline \(\begin{array}{llllllll}9 & 3 & 15 & 00 & 8 & 38\end{array}\) \\
\hline \(10 \quad 2\) Merid. Subftyl. \\
\hline \begin{tabular}{lll|lllll}
15 & 3 & 15 & 00 & 8 & 38
\end{tabular} \\
\hline 1.231300018 \\
\hline \(1145 \quad 0029\) \\
\hline 10600044 \\
\hline \(3 \quad 9750064\) \\
\hline 890 \\
\hline
\end{tabular}

And fo I gather the Inclination of the reft of the Hour-circles towards this Meridian, according to their Angles at the Pole, as in the fecond Column of this Table.

Then taking my Compaffes in my hand, I extend them from the Sine of 90 gr . unto the Sine of 34 gr .33 m . the height of the Pole above the Plane, and find them to reach in the Line of Tangents from 15 gr. the Inclination of the Hour of I , to 8 gr 38 m . for the Ark of 1 from the Subitylar, and from 30 gr . unto 18 gr .8 m . For the Hour of 12, agreeable to the third Prop. and from 45 gr unto 29 gr . 33 m . For the Hour of II, and fo the reft, which I alfo fer down in the third Column of the Table.

Thefe Arks being thus found, will ferve for the drawing -of the Hour-lines both on the South-weft Face and the North-eaft Face of this Plane, and alfo on either Face of the like Plane that hath the fame Declination, and the Poles in the South-eaft and North-wef.
I. By the help of a Thred and Plummet I draw a Vertical Line ferving both for the Meridian of the Place, and the Hour of 12.
2. In this Meridian Line I make choice of a Center at C, in the upper part of the Line if it be the South Face, als here we fuppofe it, that the Style may have room to point downward: but in the lower part of the Line if it be the North Face of the Plane, for there the Style mult poin upward: and upon this Center I defcribe an occult Circle, reprefenting th Declining Vertical belonging to the Plane.
3. I find a Chord of \(18 \mathrm{gr}_{\mathrm{r}} 8 \mathrm{~m}\). the diftance of the Subftylar from the Meridian of the Place, and infribe it into this Circle, from the Me ridian unto A toward the right hand, becaufe in this Example the Meridian of the Plane falls among the Hours after Noon, (for otherwife i muft have been infcribed toward the left hand) and there I draw th Line C A ferving for the Subftylar.
4. According to the Table of the Arks of the Plane from the Subtly
lar, I find a Chord of \(8 \mathrm{gr} \cdot 38 \mathrm{~m}\). and infcribe it into this Circle, from the Sublfylar toward the Muridian for the Hour of 1. In like manner 2 Chord of 29 gr .23 mm . for the Hour of 11, and a Chord of 44 gr . 30 m . for the Hour of 10 ; and ' O for the reft of the Hours, their Halfs, and Quarcers.

5. Idraw Righe Linesthrough the Center and the Terms of thefe Chords, and thefe Linesfo drawn are the Hour-lines required.
Laftly, Ifer up the Style over the Subftylar, fo as it may cut the Plane in the Center, and there make an Angle with the Subftylar of 34 gr : 33 m . according to the height of the Pole above the Plane; fo it thall reprefsit
reprefent the Axis of the World, and be truly placed for cafting of the Shadow upon the Hour-lines in this Declining Plane.

\section*{A fecond Example.}

Suppofe anotier upright Plane in the fame Latitude to decline from the Vertical' 5 gr .44 m . with one Face open to the South-eaft, the other to the North-wcft. Thefe 65 gr .40 m . would be numbred from E unto Q , and from W unto H , and the Plane reprefented by QZH : For fo the one Pole will fall at B in the South eaft, and the other at D in the North-wcf, -according to the fuppofition. The proper Meridian of this Plane may be fupplied by the Circle BPD, croffing the Plane in the Point T, between the Hours of 7 and 8, and there is the place of the Subltylar. The South-eaft Face will contain all the Hours from Sun-rifing unto 2 after Noon; and the North-weft Face, all the Hours from I after Noon unto Sun- ferting. Then working as before,
1. The Angle ZP T, the Inclination of the two Meridians, will be
 found to be abour 70 degrees 30 minutes.
2. The Ark P T, the meafure of the Angle P C T, the height of the Pole above the Plane, and fo the height of the Style above the Subftylar, will be 14 gr .5 Im .
3. The Ark Z T, the mealure of the Angle ZCT, fhewing the diftance of the Subftylar from the Meridian, will be 35 gr. 56 m.
4. The Arks of the Plane between the Subftylar and the Hour-lines, depending on the difference of Meridians, which is here 70 gr .30 m . or 4 ho. 42 mm . Thort of the Meridian, I firft draw a Table with three Columns, one for the Morning and Evening Hours, another for the Angles at the Pole, and the third for the Arks of the Plane, and there write \(7 \otimes \mathrm{gr} .30 \mathrm{~m}\). by the Hour of 12, and place the Meridiam and Subftylar between the Hours of 7 and 8, according as the Poles of the Plane do fall in the Diagram.

Then will the Angle ar the Pole between the proper Meridian and the Hour of 11 be 55 gr .30 m . the Hour of 10 will be 40 gr .30 m . diftant from that Meridian; and the reft in their order - which being noted in the fecond Column, the Ark of the Plane will be found to be fuch Num. bers as I have nored in the third Cclumn.
With this Table thu's made you may draw the Hour-lines, and fet up the Style-on either Face of this or the like Plane, the difference being' only in the placing of the Subftylar, and that is refolved by the fight of the Diagram.

\section*{4 third Example, of a Plane falling near the Meridian.}

After the like manner, if in our Latitude an upright Plane fhall deline 85 gr . for the prime Vertical, the one Face of it being open to the North-weft, and the other to the South eaft, we may in fome fort repreent it by the Vertical Q Z H, and then working as before,
1. The Angle Z P T, the Inclination of the two Meridians, will be ound to be \(86 \mathrm{gr}_{0} 5 \mathrm{~m}\). Io that P T the Meridian of this Plane will here all between the Hour-circles of 6 and 7 from the Meridian.
2. The Ark P T, the meafure of the Angle PCT, the height of the ,ole above the Plame, will be onely 3 gr .6 m .
3. The Ark Z T, the meafure of the Angle ZCT, the diftance of the ubfty lar from the Meridian, 38 gr .23 m .
4. The Table of the Angles at the Pole vill be alfo gathered, by comparing the Meidian of the Plane with the reft of the Hour-circles: For the Angle TPZ, beween TP the Meridian of the Plane, \(P Z\) he Meridian of the Place; and the Hour of 2, being 86 gr .5 m . allowing 15 gr . for n Hour, the Hour of \(11 \frac{1}{2}\) will be 78 gr .35 m . and the Hour of 1 r , igr. s.m. diftant from the Meridian of the Plane; and fo the reft of ae Hours. Or becaufe the difference of Meridians 86 gr .5 m . refolved tio Time, makes \(5 \mathrm{ho}\).44 m . and fo the Meridian of the Plane falls beween the Hours of 6 and 7 from the Meridian. Ifirt place chis Meriian berween thefe Hours, and then taking 75 gr . the common meafure ir 5 Hours, out of 86 gr .5 m . there remains in gr .5 m . for the Angle the Pole between the Meridian of the Plane and che Hour of 7. Again, take 86 gr .5 m . out of 90 gr . the common meafure of 6 Hours, and

The Defrription of the Howr-lines

there remains 3 gr .55 m . for the Angle at the Pole between the Meridian of the Plane and the Hour of 6. To thefe Angles fo found, I allow 15 gr . for every Hour, as in the fecond Column of this Table.

Then having the height of the Pole above the Plane, and there Angles at the Pole, the Arks of the Plane between the Subtylar and the Hour-circle will be found as in the thirc Column.

Thefe Arks being found, wil ferve for the drawing of th Hour-lines on either Face o this or the like Plane.
\(\mathbf{f}^{\text {: }}\) : By the help of a Thire and Plummet I draw Z C Vertical Line, ferving bot for the Meridian of the place, and the Hour of 12.
2. In this Meridian Line I make choice of a Center in the upper pal of the Line, if it had been the Southern Face of the Plane; but here i C the lower part of the Line, becaule we fuppofed it to be the North weft Face of the Plane, and the Style mult point upward: and upon th Center I defribe an occule Circle; reprefenting the Declining Vertic belonging to this Plane.
3. Ifind a Chord of \(38 \mathrm{gr}\).23 m . the diftance of the Subitylar fro the Meridian of the Place, and infcribe it into this Circle, from Z in t Mcridian, unto T toward the left hand, according as the proper Meridi PT falls in the Fundamental Diagram; and here I draw the Line C Ierving for the Subftylar.
4. The Subftylar being drawn, I may infcribe the Chords of the Ar of the Plane from the Subftylar, and draw the Hour-lines, and fet up.t Style, as in the former Plane.

Or the Arks of the Plane from the Subftylar being found as before, may draw the Hour-line, upon the Plane otherwife than by Chords: F having drawn the Hour-lines as in the laft Figure, upon Paper or Paf
board, we fhall find the mot part of them, in this and fuch like Planes that have greater Declination, to fall fo clofe togecher, that they can hardly be difcerned; wherefore to draw them actarge to che beft advantage of the Plane, I leave out the Center, and draw them by Tangents, as in the Polar Plane,

P. I confider the length and breadth of the Plane whereon I am to draw the Hour-lines, which I fuppofe to be a Square whole Side is 36 Inches, and find that the little Square A B D E will contain boch the SubAylar and all thofe. Hour-lines which are required in the great Square \(A Z C Q\)
2. I draw two parallel Lines, FN,G M, croffing the Subftylar at Righe Angles in the points \(F\) and \(G\),as they may beft crofs all the Hour-lines, and yet the one be diftant from the other as far as the Plane will give me leave;

\section*{The Defeription of the Howr-lines}
and I find by the fight of the. Figure, that if A B the Side of the leffer Square fhall be 36 Inches, the Line CF will be about in 5 Inches, and the Linc CGabout 100 Inches, and cherefore FG 15 Inches. Again, that the Point \(F\) will fall about 6 Inches below the upper Horizontal Side A B, and about 12 Inches from the next Vertical Side B D; for I need not here Itand upon Parts.
3. Becaufe thefe two parallel Lines are Tangent Lines, in refpect of Circles drawn upon the Semidiameters CF,CG, and fuch Tangent as belongs to the Arks of the Plane, being between the Subftylar and the Hour-lines, the proportion will hold,

> As the Tangent of \(45 \mathrm{gro}_{0}\)
> is to the Tangent of the Ark of the Plane:
> So the Length of the Sermidiameter, to the Length of the Tangent-line.

As for Example: The Ark of the Plane between the Subfylar and the Hour of I is 15 gr .28 m . in the former Table, the Semidiamete CF 115 Inches, and the Semidiameter CG. 100 Inches: Wherefore] extend the Compaffes from the Tangent of 45 gr . unto the Tangent of 15 gr .28 m . the fame extent will reach from 115 in the Line of Numbers unto \(3 \mathbf{1}, 82\), which hews the length of the Tangent-line between \(F\) in the Subfylar and the Hour-line of i to be 3 I Inches 82 cent. or parts of 100 Again, the fame extent will reach from 100 unto 27,67 ; and fuch is the length of the leffer Tangent from \(G\) to the Hour of 1 .

The like reaton holds for the length of the orher Tangents from the Subftylar to the reft of the Hours, as in the Table; as alfo for the heigh of the Style above thefe Tangent-lines: and fo the Angle of the Styl above the Plane being 3 gr .6 m , the Height \(\mathbf{F} \mathbf{K}\) will be found to be 6 In . ches 23 cent. and the Heaght GL 5 Inches 42 cent.
Where the Reader may obferve, that if the extent from the Tangent 0 45 gr . to the Tangent of 3 gr .6 m . or to 115 in the Line of Numbers betioo large for his Compaffes; he may ufe the Tangent of 5 sr .43 m . in ftead of the Tangent of 45 gr . as \(I\) noted before.
4. Having found there Lengths and Heights, and fet them down in a Ta. ble, I come to the Plane here refembled by the leffer Square A B D E where I begin with an occule Vertical FH, about 12 Inches from the Sid B D, and upon the Center \(F\), about 6 Inches below the Side A B, de scribe an occalt Ark of a Circle.
5. Into this Ark I firft infcribe a Chord of 38 gr .23 m , the diftance of the Subftylar from the Meridian, to make the Angle HF G equal to the Angle ZCT; fo the Line F G thall be the Subftylar : and then another Chord of \({ }^{1} \mathrm{gr} .37 \mathrm{~m}\). the Complement of this Diftance, to make up the Right Angle GFN; fo the Line FN thall be the greater of the two Tangent-linies before-mentioned.
6. I fet off 15 Inches from \(F\) unto \(G\) toward the Center, and through G draw the leffer Tangent-line \(G\) M, parallel to the former.
7. Thefe two occult Tangent-lines being thus drawn, I look into the former Table for the Hour of 1, and there find the Ark of the Plane between the Subftylar and the Hour of 1 to be I \(5 \mathrm{gr}_{\mathrm{r}} 28 \mathrm{~m}\). and the length belonging to it in the greater Tangent-line to be 3 II Inches 82 cent. in the leffer Tangent-line 27 Inches 67 cent . wherefore I take out 3 I Inches 82 parts, and prick thein down in the greater Tangent from F to N , and then 27 Inches 67 Parts, and prick them down in the leffer Tangent from \(G\) to \(M\), and draw the Line MN for the. Hour of 1 , which if it were produced, would croós the Subftylar \(F G\) in the Center \(C\), and there make the Angle FCN 15 gr .28 m . The like Reafon holdech for the drawing of all the reft of the Hour-lines.

Laftly, I fet up the Style right ever the Subftylar, fo as the Height F K may be 6 Inches 23 cent. and the Height GL 5 Inches 42 cent. then Thall K L reprefent the Axis of the World, and if it were produced, would crofs the Subfylar F G in the Center C, and there make the Angle F C K to be 3 gr .6 m . and to be truly placed for cafting of the Shadow upon the Hour-lines in this Declining Plane.

\section*{CHAP. VIII.}

\section*{To draw the Hour-lines in a cMeridian Inclining Plane.}

\(A^{\prime}\)Ll thofe Planes wherein the Horizontal Line is the fame with the Meridian Line are therefore called Mcridian Planes: if they be right to the Horizon, they are called by the general name of Meridian Planes, withour farther addition, and are defcribed before: if they lean to the Horizon, they are chen called Meridian Incliners.

Thefe may incline either to the Eaft part of the Horizon, or to the Weft, and each of them hath two Faces, the upper towards the Zenith, the lower towards the Nadir, wherein knowing the Latitude of the Place.

Place, and the Inclination of the Plane to the Horizon, we are to confider,
I. The Inclination of the Meridian of the Plane to the Meridian of the Place.
2. The Height of the Pole above the Plane.
3. The Diftance of the Subftylar from the Meridian.
4. The Diftance of each Hour-line from the Subftylar.

And all thefe four are reprefented in the Fundamental Diagram, as in this Example.
In our Latitude of 5 I gr. 30 m . a Meridian Plane inclinech Eaftward 50 gr . thefe \(\varsigma 0 \mathrm{gr}\). I number in the Vertical Circle from E unto G , according to the Inclination of the Plane, and there draw the Ark S G N reprefenting the Plane propofed. Again, I number 50 from \(\mathbf{Z}\) unto K , fo the Point K (being 90 gr . from the Plane at \(G\)) fhall be the Pole of this Plane, and the proper Meridian of this Plane may be fupplied by a Circle drawn through \(K\) and \(P\). This Meridian doth here fall between theHours of 4 and 5, and croffing the Plane at Right Angles in the Point V, in the Right Line C.V thall be the Subftylar, and the Angle PCV the height of the Style above the Plane, and Right Lines drawn from the Center C to the Interfections of the Hour-circles with S G N fhall be the Hour-lines here inquired. The lower Face of the Plane will contain all the Hour-lines from Sun-rifing unto 11 in the Morning, and the uppes Face the Hours from 9 in the Morning unto Sun-fetting. Then have Ia Rectangle Triangle P V N, wherein the Bale PN is the Height of the Pols above the North part of the Horizon, and the Angle P N V the Comple. ment of the Inclination to the Horizon: And thele being known,
1. I may find the Angle NP V of Inclination of the two Meridi ans: For,

As the Cofine of the Latitude, is to the Sine of 90 gr .

\section*{So the Tangent of Inclination to the Horizon, to the Tangent of Inclination of Meridians.}

Extend the Compaffes from the Sine of 38 gr .30 m . the Complemen of the Latitude, unto the Sine of 90 gr . the fame extent will reach fron the Tangent of 50 gr .0 m . the Inclination of the Plane to the Horizon unto the Tangent of 62 gr .25 m . and fuch is the Inclination of the Me sidian of the Plane to the Meridian of the Place; which being refolve
aro Time, doth give about 4 ho . and ro m . from the Meridian, for the place of the Subftylar among the Hour-lines.
2. The Height of the Pole above the Plane is here reprefented by the quancity of the Ark of the proper Meridian \(P V\),between the Pole and the Plane, and may be known by that which we have given in the former Triangle PVN. For,

As the Sine of \(9^{\circ} \mathrm{gr}\).
to the Sine of the Latitude:
So the Co- Ine of the Inclination to the Horizon, to the Sine of the Height of the Pole above the Plane:
Extend the Compaffes from the Sine of 90 gr . unto g gr .30 m . the Sine of the Latirude, the fame extent will reach from the Sine of 40 gr . the Complement of the Inclination of the Plane to the Horizon, unto the sine of 30 gr .12 m . Or,

As the Sine of 90 gr .
to the Co-fine of Inclination of Meridians:
So the Tangent of the Latitude, to the Tangent of the Height of the Pole above the Plane.

Extend the Compaffes from the Sine of 90 gr . unto the Tangent of 51 gr .30 m , the Latitude of the Place, the fame extent will reach from the Sinc of 27 gr .35 m . the Complement of the Inclination of the two Meridians, unto the Tangent of 30 gr .12 m . And fuch is PV the Height of the Pole above the Plane, and fuch muft be the Height of the Style above the Subfylar.
3. The Diftance of the Subltylar from the Meridian is here reprefented by N V the Ark of the Plane between the two Meridians, and may be found by that which we have given at the firft in the former Triangle PVN. For,

As the Sine of 90 gr .
to the Sine of the Inclination to the Horizon:
So the Tangent of the Latitude,
to the Tangent of the Sulfolar from the cMeridian.
Extend the Compaffes from the Sine of 90 gr . unto the Tangent of 51 gr 。

\section*{The Defcription of the Hour-lines}

5 Igr .30 ms . the Latitude of the Place, the fame extent will reach from the Sine of 50 gr . the Inclination of the Plane to the Horizon, unto the Tangent of 43 gr .55 m . And fuch is the Ark N V, the diftance of the Subitylar from the Meridian.
4. The Diftances of the Hour-lines from the Subftylar are here alfo reprefented by thofe Arks of che Plane which are here intercepted between the proper Meridian and the Hour-circles, and may be found by that which we have given in the Triangles made by the Plane, with his proper Meridian and the Hour-circles: For the Angle at V, between the Plane and the proper Meridian, is well known to be a Right Angle, and the Side PV is the Height of the Pole above the Plane, and the Angles at the Polebetween the proper Meridian and the Hour-circles are eafily gathered into a Table. The Angle V PN between
\begin{tabular}{|lcc|}
\hline Latitude & 51 & 30 \\
Indlinar. & 50 & 0 \\
\hline Diff. Merid. & 62 & 25 \\
Alt. Styl. & 30 & 12 \\
Dift. Subft. & 43 & 55 \\
\hline
\end{tabular} V P the proper Meridian of the Plane,and PN the general Meridian of the Place, being 62 gr .25 m . the Angle between the proper Meridian and the Circle of the Hour of 11 will be 77 gr .25 m . and the Angle belonging to the Hour of \(1,47 \mathrm{gr} .25 \mathrm{~m}\), and fo the reft of the Angles at the Pole. Thén,

> As the Sine of 90 gr .
> to the Sine of the Height of the Pole above the Plane:
> So the Tangent of the Angle at the Pole, to the Tangent of the Hour-line from the Subffylar.

Wherefore I extend the Compaffes from the Sine of 90 gr . unto the Sine of 30 gr . 12 m . the Height of the Pole above the Plane, and I find the fame extens to reach in the Line of Tangents from 77 gr .25 m . unto 66 gr .4 m . For the diftance. belonging to the hour of 11; and from the Tangent of 62 gr .25 m . to 43 gr .55 m . For the Hour of 12 , as when I found the diftance of the Subitylar from the Meridian: And fo for the reft of whe Arks of the Plane between the Subltylar and the Hour-circles, as in the Table.

Thefe Arks being thus found, will ferve to draw the Hour-lines on either Side of this Plane: But fappofing it to be the upper fide,
x. I draw the Horizontal Line CN, ferving for the Meridian and Hour of 12.

2. In this Line I make choice of a Center at \(C\), and thence deribe an occult Ark of a Circle reprefenting the Plane propofed.
3. I find a Chord of 43 gr .55 m . the diftance of the Subitylar from 1e Meridian, and infcribe it into this Circle from N unto A , according I find the proper Meridian PV to fall in the Fundamental Diegram, id there I draw the Line C A ferving for the Subltylar.

\section*{The Defription of the Howir-Hines}

4: The Subftylar being drawn, I may infcribe the Chords of the Arl of the Plane from the Subfylar, and draw the Hour-lines, and fee up th Style, as in the former Planes.

\section*{GHAP. IX.}

\section*{To draw the Hour-lines in a Polar Declining Plane:}

THofe Planes wherein a Line may be drawn parâllel to the Axis of tt World are called Polar Planes, becaufe that Line pointech unto tl Poles; and the e Planes are always parallel to fome one of the Hour-ci \({ }^{\circ} \mathrm{Cles}\). If they be parallel to the Hour of 6, they are called Direct Pol Planes; if to the Hour of 12 , they are called Meridian Planes; and bo thefe are defrribed before: if to any other of the Hour-circles, they a then called by the name of Polar Dedlining Planes, becaufe of their i clining to the Pole, and declining from the Vertical.

There kind of Planes may be known in this fort: Firf, confidert Inclination of the Plane to the Horizon, which in thefe parts of the Wor muft always be Northward, and more than the Latitude of the Pla Then find the Declination from the Vertical. Thefe two being know if the proportion hold,

> As the Sine of 90 gr .
> to the Co-jine of the Declination: So the Tangent of the Declination,
> is the Tangent of the Latitude, it is then a Polar Declining Plane; otherwife not.

For example: In our Latitude of 51 gr .30 mm . a Plane is propo declining from the Vercical 65 gr .40 m . and inclining Northward 7 r 5 m. the upper Face being open to the South eaft, and the lower to North-weft. If I number thofe \(65 \mathrm{gr.40m}\). in the Horizon of the \(\mathrm{F}_{1}\) damental Diagram from Eunto \(Q_{3}\) and draw the Line \(H C Q_{i}\) it reprefent the Horizontal Line of the Plane: then croffing it at Ri Angles with the Plane BZD drawn through the Zenith, I num \(71 \mathrm{gr}^{\circ} .51 \mathrm{~m}\). For the Inclination from D unto R , and there draw CircleHRQ: this Circle fo drawn thall reprefent the Plane propof and becaule is allo pafiech through the Pole, it is therefore a Polarpla

\section*{in. a Polar Declining Plane.}

But for farther trial, I extend the Compaffes from the Sine of 90 gr, to the sine of 24 gr .20 mm , the Complement of the Declination, and I find he faine Extent to reach from che Tangent of 71 gr .51 m . the Indinadion propofed, unto the Tangent of \(5^{1} \mathrm{gr} .30 \mathrm{~m}\). which is the true Latiude of the Place; and therefore it is a Polar Plane.
Again, I number the Inclination of \(71 \mathrm{gr}^{\mathrm{g}} 5 \mathrm{Im}\). in the Circle BZD from \(Z\) unto \(M\), fo this point \(M\) will fall ar the meeting of \(B Z D\) with He Equator, and being \(9 \circ \mathrm{gr}\). from the Plane at R , it Chall be the Pole f this Plane ; and a Circle drawn through \(M\) and \(P\) will be the proper Meridian of this Plane. This Meridian M P here falling on the Hour of 3, doth give MP Z, the Angle of the Inclination of Meridians, to be \({ }_{4}\) Hours, or 60 Degrees; then croffing the Plane at the point \(P\), it fhews that the Subitylar hould be CP, and be placed at the Hour of S. But recaule \(P\) is the Pole, and \(C P\) the Axis of the World wherein all the Hour-circles do meet, and fo there would be no diftinction between the Axis, the Subfylar, and the Hour-lines, I now fuppofe the Plane in a paralle to the Circle HRQ, according to the diftance thatI would have etween the Axis of the Style and the Subftylar, then will the Syle be parallel to the Plane, as appears in the Fundamental Diagram.
Here then the Style will be parallel to the Plane, and the Hour-lines Hallel one to the other, as in the Meridian and Direct Polar Planes. Yet hat we may better know how to draw the Hour-lines, and where to place he Style, we are to confider

\section*{1. The Ark of the Plane between the Horizen and the Pole.}

In a Meridian Plane, the Ark between the Horizon and the Pole, which eprefents the Ark between the Horizon and the Hour-lines, is always qual to the Latitude of the Place; in a direct Polar it is an Ark of 90 gr n thefe Declining Polars it is greater than the Latitude, and yet lefs than 10 gr . This Ark is here reprefented by \(\mathbf{P Q}\), and may be known by reolving the Triangle QN P, or PRZ .

\section*{As the Sine of 90 gr . \\ to the Co. Fine of the Latitude: \\ So the Sine of the Declination, \\ to the Co-fine of the Ark betmeen the Horizon and the Pole:}

Extend the Compaffes from the Sine of 90 gr , unto the Sine of 38 gro Fff 2 - 30 \%

30 ms . the Complement of the Latitude, the fame extent will reach from the Sine of 65 gr .40 m . the Declination propofed, unto the Sine of \(34 \mathrm{gr} \cdot 34 \mathrm{~m}\). whofe Complement is 55 gr .26 mo the Ark of the Plan required between the Horizon and the Pole.

\section*{Or, As the Co-fine of Inclination to the Horizon, to the Sine of 90 gr . \\ \[
\begin{aligned}
& \text { So the Co-tangent of the Declination, } \\
& \text { to the Tangent of the Ark between the Horizon and the Pole. }
\end{aligned}
\]}

And fo extending the Cornpaffes from the Sine of 18 gr .9 m , the Com plement of the Inclination to the Tangent of 24 gr .20 mm the Comple ment of the Declination, the fame extent doth reach from the Sine o 90 gr . unto the Tangent of 55 gr .26 m . And fuch is \(\mathrm{Q} P\) the Ark of th Plane between the Horizon and the Pole, the meafure of the Angle QCl between the Horizental Line and the Subftylar.
2. The Inclination of the Meridian of the Plane to the Meridian of th Place.

The Subftylar in a Direat Polar Plane is malways the fame with th Hour-line of 12 ; in a Meridian Plane it is the fame with the Hour-lin of 6 ; in thefe Declining Polarsit muft be placed between 12 and 6 , ac cording to the Inclination of the Meridian of the Plane to the Meridia of the Place, which is here reprefented by MP \(Z\), the Complement 6 the Angle R P Z, and thus known.
```

As the Sine of 90 g.
to the Sine of the Latitude:
So the Tangent of the Declination of the Plane, tothe Tangent of the Inclination of Meridians.

```

Extend the Compaffes from the Sine of \(90 . \mathrm{gr}\), to the Sine of 51 g 30 mothe Latitude of the Place, the fame extent will reach from the Tanget of 65 gr .40 m . the Declination propofed, unto the Tangent of 60 g and fuch is the Angle of Inclination between the Meridian of the Pla and the proper Meridian of the Plane, which refolved into Time, dot make four Hours; and fo the Subfylar muft here be placed upon the Hor of 8 in the-Moraing.

This Angle being known, the reft of the Angles at the Pole are eafily gathered: Forif the Hour of 12 be 60 gr . diftant from the Meridian of the Plane, the Hour of 1 will be 75 gr . and the Hour of 1 I will be 45 gro diftant, and the reft of the Hours, as in the Table following. Then coming to the Plane,
1. I draw an occult Horizontal Line H.Q, wherein. I make choice of a Center at \(\mathrm{H}_{3}\) and defrribe an occult Circle for the Horizon of the Plane.
2. I find a Chord of 55 gr .26 m . and infaribe it into this Circle from Q unto \(B_{\text {, acording to the fituation of the Plane; fothe Line HB fhall }}\) be the Meridian of the Plane, and therefore the Subitylar ; and the Line A C, croffing it at Right Angles, Ihall be the Equator.

3. I confider the length of the Plane, and how many Hours I am to draw upon it, that fo I may proportion the Height of the Style; and I find by the Fundamental Diagram, and the former Table, that it will
contain all dhe Hours from Sunrifing until it be paft \(\mathbf{I}\) after Noon : and cherefore che Meridian of the Planefalling on the Hour of 8 in the morning, there will be four Hoirs on the one fide, and five on the other fide of the Sublylar. But in all Polar Planes the height of the Style above the Snbifylar muft be equal to the diftance of the third Hour from the Subtylar, or about \(\frac{4}{7}\) of the fourch Hour, or little more chan \(\frac{1}{4}\) of the fifth Hour, and thereupon I allow the height of this Style to be equal to \(C \bar{B}\), which you may fuppole to be 10 Iiches.
4. Becaufe the Equator A Cis a Tangent-line, in refpect of the Radius BC, and the partsthereof are fuch as belong to the Angles between the Meridian of the Plane and the Hour-lines, which Angles are fer down in the Table following; I may find the length of each feveral Tangent in this manner.

> As the Tangent of 45 gr . is to the Tangent of the Hour: So the Parts of the Radius, to the Parts of the Tangent-linea
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Latitude} \\
\hline \multicolumn{2}{|l|}{\(\begin{array}{lll}\text { Declinat. } & 65 \quad 40\end{array}\)} \\
\hline Inclinat. & \\
\hline \multicolumn{2}{|l|}{Diff. Merid. 60} \\
\hline \multicolumn{2}{|l|}{Dift. Subit.} \\
\hline \multirow[t]{2}{*}{Houts.} & Ang. Po. Tang. \\
\hline & Gr: M. In. Far. \\
\hline 4 & 60,001731 \\
\hline 5 & \(45: 001000\) \\
\hline 6 & \(\begin{array}{llll}50 & 00 & 5 & 77\end{array}\) \\
\hline 7 & \(45 \quad 002\) \\
\hline 8 & Merid. Subltyl. \\
\hline 9 & \(\begin{array}{llll}15 & 00 & 2 & 68\end{array}\) \\
\hline 10 & \begin{tabular}{|ll|ll}
30 & 00 & 5 & 77
\end{tabular} \\
\hline II & 45.001000 \\
\hline 12 & \(60 \quad 0017 \quad 32\) \\
\hline I & \(\begin{array}{lllll}75 & 00 & 37 & 32\end{array}\) \\
\hline 2 & 90 oolınfin \\
\hline
\end{tabular}

The Angle A B C between the Meridian of the Plane and the Hour of \(\mathbf{1 2}\), the Meridian of the Place, is 60 gr . in the former Table, and the Radius \(B C\) is fuppofed to be 10 Inches; whereupon I extend the Compaffes from the Tangent of 45 gr . unto the Tangent of 60 gr . the fame extent will reach from ro in the Line of Numbers, unto 17.32, which Thews the length of the Tangent A C, berween the Subftylar and the Hour of 12; to be 17, 32 cest. The like reafon holds for the reft of the Hours.

Thefe Lengths being thus found and fet down in the Table, I take out 17 Inches 32 cent, and prick them in the Equator from C unto A for the Hour of 12 , and 37 In ches 32 cent. and prick them down for the Hour of I: And fo the reft of the Hourpoints.
6. This done, if I draw Right Line througl thall be the Hour: lines required: And if I fer the Style over the Subflylar, fo as the edge of it may be parallel to the Plane, and the height of it be ro Inches, equal to the former Radius B C., it Ghall reprefent the Axis of the World, and be truly placed for cafting of thie Shadow upon the Hour-lines in chis Declining Polar Plane.

\section*{CHAP. X.}

\section*{To draw the Howr-lines in a Declining Inclining Plane。}

TF a Plane Chall decline from the prime Vertical, and incline to the Horizon, and yet not lie even with the Poles of the World, it is then called a Dedlining Inclining Plane.

Of thefe there are feveral forts; for the Inclination being Northward; the Plane may fall between the Horizon and the Pole, as the Circle B M D in the Fundamental Diagram ; or between the Zenith and the Pole, 25 BF D; or the Inclination may be Southward, and to be reprefented by B K D: it may alfo fall either below the Interfection of the Meridian and the Equator, or above it; and each of thefe harh two Faces, the upper toward the Zenith, and the lower toward the Nadir; wherein having the Latitude of the Place, with the Declination and Inclination of the Plane, we are further to confider,
I. The Ark of the Meridian between the Pole and the Plane.
2. The Inclivation of the Plane to the Meridian.
3. The Ark of the Plane between the Horizon and the Meridian.
4. The Angle of Inclination between both Meridians.
5. The Height of the Pole above the Plane.
6. The diftance of the Subftylar from the Meridian.
7. The diftances of each Hour-line from the Subitylar.

And all thefe feven may be reprefented in the Fundamental Diagram, as in this Example.
In our Latitude of 5 r gr .30 m . a Plane is propoled declining from the Vertical 24 gr .20 m . and inclining Norchward 36 gr . the upper Face lying open to the Souch-weft, the lower to the North-caft. If Inumber thrce 24 gr .20 m . in the Horizon from E to B, and theredraw the line BCD, it fhall reprefent the Horizontal Line of the Plane: Then croffing it at Righr Angles with the Plane HZ Q drawn through the Zenith,

\section*{48}

\section*{The Defcription of the Hour-lines}

I number 36 gr . for the Inclination from \(\mathbf{Q}\) unto M , and there draw the Circle BMD, croffing the Meridian in the Point a; this Circle fo drawn fhall reprefent the Plane propofed : and becaule it doch not pafs through the Pole, is therefore no Polar, but an ordinary Declining Inclining Plane.
I. The Ark of the Meridian of the Place between the Pole and the Plane is here reprefented by \(P a\), and may be found by refolving the Triangle D N \(a\), wherein the Angle at N is known to be a Right Angle, the Angle at D is the Angle of Irclination, the Side D N the Complemene of the Declination; which being known,

\section*{As the Sine of 90 gr .}
to the Co-jine of Declination :

\section*{So the Tangent of Inclination to the Horizon, \\ to the Tangent of the Ark of the cMeridian between the Horto zon and the Plane.}

Extend the Compaffes from the Sine of 90 gr . unto the Sine of 65 gr : 40 m . the Complement of the Declination, the fame extent will reach from the Tangent of 36 gro the Inclination propofed, unto the Tangent of \(33 . \mathrm{gr} .30 \mathrm{~m}\). and fuch is the Ark of the Meridian \(\mathbf{N}\) a between the Horizon and the Plane. This Ark N a being compared with the Ark N P, which is the Elevation of the Poleabove the Horizon, and is here fuppofed to be 51 gr .30 m . the difference N a comech to 18 gr . and fuch is the Ark of the Meridian required between the Pole and the Plane.
2. The Inclination of the Plane to the Meridian is here reprefented by the Angle N \(a\) D, and may be found by that which we have given in the former Triangle DNa. For,

> As the Sine of 90 gr. to the Sine of the Declination from the Vertical:
> So the Sine of Inolination to the Horizon, to the Co- Sine of Incination of the Plane to the CMeridian.

Extend the Compaffes from the Sine of 90 gr . unto the Sine of \(24 \mathrm{~g}^{\gamma}\). 20 m . the Declination of the Plane, the fame extent will reach from the Sine of 36 gr . the Inclination given, unto the Co-fine of 76 gr . and fuch is \(\mathrm{N} a \mathrm{D}\) the Angle of Inclination between the Plane \(\mathrm{D} a\) and \(\mathrm{N} a\) the Mezidian of the Place. Or,
```

As the Sine of the Ark of the Meridian between the Horizon and tbe
Plane,
is to the Sine of 90 gr.
So the Co-tangent of \$be Declination,
to the Tangent of Inclination of the Plane to the Meridiam.

```

Extend the Compaffes from the Sine of 33 gr .30 m . the Ark of the Meridian between the Horizon and the Plane, unto the Sine of 90 gr . the fame extent will reach from the Tangent of 65 gr .40 ms . the Complement of the Declination, unto the Tangent of 67 gr . and fuch isthe Inclination of the Plane to the Meridian, the fame as before.
3. The Ark of the Plane between the Horizon and the Meridian is here reprefented by \(\mathrm{D} a\), and may allo be found by that which we have given in the former Triangle D N \(a_{0}\)

> As the Co-fine of Inclination to the Horizon, is to the Sine of 90 gr .
> So the Co-tangent of the Declination, to the Tangent of the Ark of the Plane from the Horizon to the Meridian.

Extend the Compaffes from the Sine of 54 gr . the Complement of the Inclination of the Plane to the Horizon, unto the Sine of 90 gr. the fame extent will reach from the Tangent of 65 gr .40 mm . the Complement of the Declination, unto the Tangent of 69 gr .54 m . And fuch is D a the Ark of the Plane between the Horizon and the Meridian of the Place.
4. The Inclination of Meridians is here reprefented by the Angle abP.: For having drawn the proper Meridian \(b \mathrm{P} k\), or let down a Perpendicular \(\mathrm{P} b\) from the Pole anto the Plane, this Perpendicular thall be the Meridian of the Plane, and we thall have another Triange a \(b \mathrm{P}\), wherein the Aggle at \(b\) is a Right Angle becaufe of the Perpendicular, the Angle at \(a\) is the Inclination of the Plane to the Meridian of the Place, and the Side \(P a\) is the Ark of the Meridian between the Pole and the Plane; which being known,

> As the Co- Sine of the Ark of the Miridian letween the Pole and the Plane, is to the Sine of 90 gr .

\section*{The Defcription of the Hour-lines}

So the Co tangent of the Inclination of the -Plane to the Meridian, to the \(T\) angent of Inclination of the Meridian of the Plane to the Meridian of the Place, that is, the Angle at the Pole betmeen the two Meridians.

Extend the Compaffes from the Sine of 72 gr . the Complement of the Ark \(\mathrm{P} a\) between the Pole and the Plane, unto the Sine of 90 gr . the fame extent will reach from the Tangent of 14 gr . the Complement of the Inclination of the Plane to the Meridian, unto the Tangent of 14 gr .4 Im . And fach is the Angle \(a P b\) of Inclination berween the Meridian of the Place and the proper Meridian of the Plane; which refolved into Time, doth make abour 59 m . and fo the Subltylar mult here be placed near the Hour of 1 after Noon,
5. The Height of the Pole above the Plane is here reprefented by Pb the Ark of the proper Meridian between the Pole and the Plane, and may be found by that which we have given in the Triangle \(a b\) P. For,

As the Sine of 90 gr .
to the Sine of the Ark of the Meridian of the Place between the Pole and the Plane:
So the Sine of Inclination of the Plane to the Meridian,
to the Sine of the Height of the Pole above the Plane.
Extend the Compaffes from the Sine of 90 gr . unto the Sine of 18 gr the Ark Pa of the Meridian of the Place from the Pole to the Plane, th fame extent will reach frem the Sine of \(b a \mathrm{P}\) the Inclination of the Plan to the Meridian of the Place, unto the Sine of 17 gr .26 m . Or,

As the Sine of 90 gr .
to the Co-fine of Inclination of Meridians:
So the Tangent of the Ark of the Meridian of the Place between th Pole and the Plane, to the Tangens of the Height of the Pole above the Plane:

Extend the Compaffes from the Sine of 90 gr . unto the Sine of \(75 . \mathrm{g}^{\prime}\) 19 m. the Complement of \(a \mathrm{~Pb}\) the Inclination of the two Meridian the fame extent will reach from the Tangent of 8 gr . the Ark \(P \cdot a\) of general Meridian between the Pole and the Plane, unto the Tange, of 1.7 gr .26 m . And fuch is Pb the Height of the Pole above tt

Plane ; and fuch mult be the Height of the Style above the Subfylar.
6. This Diftance of the Subflylar from the Meridian of the Place is. here reprelented by \(a b\) the Ark of the Plane berween the rwo Meridians, and may be found by that which we had given at the firft in the former Triangle a \(b\) P. For,

\section*{As the Sine of 90 gr .}
to the \(C_{0}\) - Ine of the Inclination of the Plane to the Meridian: So the Tangent of the Ark of the Meridian of the Place between the Pole and the Plane, suto the Tangent of the Sulfylar from the Meridian of the Place.

Extend the Compafies from the Sine of 90 gr . unto the Sine of 14 gr . the Complement of \(b a P\) the Inclination of the Plane to the Meridian, the fame extent will reach from the Tangent of 28 gr . the Ark of the general Meridian between the Pole and the Plane, unto the Tangent of 4 gr .30 m . And fuch is the Ark of the Plane between the two Meridians; and fach muft be the Diffance from the Hour of 12 to the SubAylar.
7. The Diftances of the Hour-lines from the Subtylar are here allo reprefented by thofe Arks of the Plane which are intercepted between the proper Meridian and the Hour-circles: For in thefe Triangles, the Angle at \(b\) between the Plane and the proper Meridian is a Right Angle, the Side \(P b\) is the Height of the Pole above the Plane, and then the Angles at the Pole between the proper Meridian and the Hour-circles being gathered into a Table,

As the Sine of 90 gr .
to the Sine of the Height of the Pole above the Plane:
Sothe Tangent of the Angle at the Pole,
to the Tangent of the Howr-line from the Subfylar.

\section*{The Defcription of the Hour-lines}

Extend the Compaffes from the Sine of 90 gr . unto the Sine of 17 gr : 26 m . the Height of the Pole above the Plane, the fame extent will reach from the Tangents of 14 gr .41 m . the Angle at the Pole belonging to the Hour of 12 , unto the Tangent of 4 gr .30 m . for the Ark of the Plane between the Subflylar and the Hour ot 12; and from the Tangent of 29 gr .41 m . unto the Tangent of 9 gr .41 m . for the Hour of 11 : And fop for the reft of the Arks of the Plane berween the Subitylar and the Hour-lines, as in the former Table.

Thefe Arks being thus found, will ferve for the drawing of the Hourlines on either fide of the Plane : bur fuppofing is to be the upper fide, I confider how the Lines do fall in the Fundamental Diagram, and accordingly,

4. I draw an occult Horizontal Line D D, whercin I make choice of
e Center \(C\), and thence draw an occult Circle for the Horizon of the ane.
2. I find a Chord of 69 gr .54 m . the Ark of the Plane between the orizon and the Meridian, and defribe into this Circle from D unto and there draw the Line C a for the Hour of I 2.
3. I find a Chord of 4 gr .30 m . the Ark of the Plane berween the ro Meridians, and infcribe it into this Circle from a unto \(b\), and there raw the Line \(\mathrm{C} b\) for the Subftylar.
4. The Subftylar being diawn, I may inferibe the Chords of the Arks. the Plane from the Subftylar, and draw the Hour-lines, and fer up the yle, as in the former Plane.

A fecond Example of a Plane falling between the Pole and the Zenith.
In like manner if in our Latitude a Plane : propofed dechning from the Vertical 4 gr .20 m , as before, but inclining to the lerizon 75 gr .40 m . Norchward, the uper Face being open to the South-weft, the wer to the North eaft, rhis Plane fhall be ere reprefented by the Circle B F D, crofng the Meridian in the point \(d\), between re Pole and the Zenith, and the proper Median of this Plane, by the Perpendicular rk Pe.
Then in this Triangle \(\mathrm{DN} d\) knowing re Side \(\mathbf{D ~ N}\), the Complement of the Deination, with the Angle of Inclination to he Horizon at D; and the Right Angle at \(J\), thefe former Canons will give \(\mathrm{N} d\), the trk of the Meridian between the Horizon nd the Plane, to be 7.4 gr .20 m . and thereore P D, the Ark of the Meridian between he Pole and the Plane, will be 22 gr .50 m . he Angle DdN of the Inclination of the lane to the Meridian will be found to be i 6 gr .29 m . and D d the Ark of the Plane etween the Horizon and the Meridian
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Lanka \\
Declinar. Inclinat.
\end{tabular}} & & 30 \\
\hline & & \\
\hline & & \\
\hline \multicolumn{2}{|l|}{} & 36 \\
\hline \multicolumn{2}{|l|}{Diff. Merid.} & \\
\hline \multicolumn{2}{|l|}{D ft. Subit:} & 32 \\
\hline \multicolumn{2}{|l|}{Alt. Styl.} & so \\
\hline \multirow[t]{2}{*}{Hours.} & An. Po & ar. Pla, \\
\hline & Gr. M & Gr. M. \\
\hline 8 & 3517 & 76-56 \\
\hline 9 & 10 1\% & 44 -47 \\
\hline 10 & 5.517 & \(27 \quad 11\) \\
\hline 11 & 40.17 & \(16 \quad 43\) \\
\hline 12 & 2517 & 932 \\
\hline I & 10 I & 941 \\
\hline & Merid & Subftyl. \\
\hline & 44 & 140 \\
\hline 3 & I9 4 & \(7 \quad 16\) \\
\hline 4 & 344 & \(13 \quad 50\) \\
\hline 5 & 494 & 2246 \\
\hline 6 & 54 & 37 \\
\hline 7 & 79 & \\
\hline
\end{tabular} \(3 . \mathrm{gr} .36 \mathrm{~m}\).

\section*{The Defcription of the Hour-lines}

Agan, in the Triangle \(P e d\), knowing the Side \(P d\), the Ark of th Meridian between the Pole and the Plane, with the Angle of Incl nation to the Meridian at \(d\), and the Right Angle ate, the Angle \(d\) Pe of the In clintion of the two Meridians will be found to be 25 gr .17 m . and P the Height of the Pole above the Plane to be 20 gr .50 m . and \(d e\) the di flance of the Subftylar from the Meridian about 9 gr .32 m .

Lafly, having found the Height of the Pole above the Plane, and ga thered the Angles ar the Pole, the Arks of the Plane from the Subftyla to the Hour-lines will be as in the Table:

This done, if we confider how the Lines do fall in the Fundamenta Diagram; we may there fee how the North Pole is elevated above th lower Face, and the South Pole above the upper Face of the Plane, and accordingly make choice of a Center, draw the Horizontal, the Meridi an, the Subfylar, and the Hour=1ines, and fet up the Style, as in th other Planes.

\section*{A third Example of a Plane inclining to the Southward.}

If in our Latitude a Plane were propofec declining from the Vertical 24 gr .20 m 。 a before, but inclining to the Horizon 14 g 20 m . Southward, the upper Face being oper to the North eaft, the lower to the South weft, this Plane fhall be there reprefente by the Circle B K D, croffing the Meridia in the point \(f\), between the Equator and th Horizon, and the proper Meridian of thi Plane, by the perpendicular Ark Pg , down from the Pole to the Plane, nearth Hour of \(\mathbf{j I}\), at the Norch part of the Ho rizon, as may partly appear by the nearel extent of the Compaffes, if the Circle BKI were drawn round, and the two Letters and \(g\) fupplied.

Then in the Triangle BS \(f\), knowing th Side B S the Complement of the Declina tion, with the Angle of Inclination to th Horizon at B, at the Right Angle at S,
nay find \(S f\) the Ark of the Meridian between the Horizon and the Plane be 13 gr .6 m . And therfore \(P f\), the Ark of the Meridian between te Pole and the Plane to the Southward 115 gr .24 m . but 64 gr .36 mm . the Northward, the Angle B \(f\), or \(\mathbf{D} f\) N of the Inclination of the lane to the Meridian will be found 84 gr .9 m . and \(\mathrm{B} f\) the Ark of the lane between the Horizon and the Meridian 66 gr .20 m .
Again, in the Triangle \(\mathrm{P} g f\), knowing the Side \(\mathrm{P} f\) the Ark of the aeridian between the Pole and the Plane, with the Angle of Inclinatiin to the Meridian at \(f\), and the Right Angle ar \(g\), the Angle \(f \mathrm{P} g\) of re Inclination of the cwo Meridians will be found to be 13 gr .27 m . ind \(\mathrm{P} g\) the Height of the Pole above the Plane, about 64 gr and fg the) fance of the Subftylar from the Meridian 12 gr .8 m .
Having found the Height of the Pole above the Plane, and gathered Angles at the Pole, the Arks of the Plane from the Sul ftylar to the four-lines will be found as in the Table.
This done, if we confider how the Lines do fall in the FundamenIDiagram, we may there fee how the North Pole is elevared above the pper Face, and the South Pole above the lower Face of this Plane ; and ccordingly make choice of the Center, draw the Horizontal, the Meriian, the Subltylar; and the Hour-lines, and fer up the Sryle, as in the forner Planes.

\section*{CHAP. XI.}

\section*{To defcribe the Tropicks and otber Circles of Declination in in. Equinoctial Plane.}

Yuch Circles as are parallel to the Equinoctial, and yet fall within the Tropicks, may be defcribed on any Plane by help of thefe Lines of roporion, but after a different manner, according as the Style thall be ther perpendicular or paratlel to the Plane, or cut the Plane with Obgue Angles.
In an Equinoctial Plane, where the Style is perpendicular to the lane, the Tropicks and other Circles of Declination will be perfect Cires: Wherefore confider the leagth of the Sryle in Inches and parts, and te Declination of the Circle which you intend to defribe in Degrees ad Minutes, the proportion will hold,

\section*{The Defcription of the Tropicks}

As the Tangent of 45 gr .
to the Length of the Style: So the Co-tangent of the Parallet, to the Semidiameter of his Circle.

Suppofe the Length of the Style above the Plane to be 10 Inches, an that it were required to find the Semidiameter of the Tropick, who Declination is known to be 23 gr .30 m . Extend the Compaffes frol the Tangent of 45 gr . unto the Tangent of 66 gr .30 m . the fame exte

will reach in the Line of Numbers from ro unto 23, which Thews Semidiameter of the Tropick to be 23 Inches. So if the Declinatior 20 gr . the Semidiamer will be 27 Inches 47 cent. if 15 gr . then 37.3 if 10 gr . then \(\mathbf{~} 6.71\); if 5 gr . then 114.305: and fo in the reft. Or if it were required to proportion the Style to the Plane,

\section*{As the Tangent of 45 gr . to the Tangent of the Declination: \\ So the Semidiameter of the Plane, to the Length of the Style.}

As if the Semidiameter of the greateft Parallel upon the Plane were but fix Inches, and that Parallel fhould be the fifth Degree of Declination; extend the Compaffes from the Tangent of 45 gr . unto the Tangent of 5 gr . the fame extent will reach in the Line of Numbers from 6.00 unto about 0 . 53 , which fhews that the lengh of the Style mult be 53 parts of an Inch divided into 100: Then the length of the Scyle being known, the Semidiameter of the orher Circles will be found as before.
Ibegin here with the fifth Parallel, and thence proceed unto the Tropick, becaufe the Shadow of the reft near the Equinoctial would be over-long, and the Equinoctial it felf cannot be defribed. The ParalIels of North Declination are to be fet on the Norch Face, and the Parallels of South Declination on the South Face of the Plane. Neither need thefe Parallels to be drawn in full Circles, but onely to the Horizontal Line, which thall be defrribed in Chap. 18.
Having by thefe means fer up the Style to its true Height, and drawn the Circles of Declination, if we fhall place the Plane fo as it Thall make an Angle with the Horizon equal to the Complement of the Latitude, and then turn it until the top of the Style caft the Shadow upon the Pa rallel of Declination belonging to the Time, the Meridian of the Plane will thew the Meridian of the Place, and the Shadow of the Style the Hour of the day, without the help of a Magnetical Needle.

\section*{CHAP. XII.}

To defcribe the Tropicks and other Circles of Diclination in a Polar Plane.

IN all Polar Planes, whether they be parallel to the Meridian, or to the Circles of the Hour of 6 , or otherwife declining, the Equinoctial will be a Right Line, bur the Tropicks and other Circles of Declimation will be Sections Hyperbolical, and be thus defcribed.

Confider the length of the Style, the Declination of the Parallel, and
\[
\mathrm{Hhh}
\]
the Angle at the Pole between the Subltylar and the Hour-line, whereon you mean to defcribe the Parallel.

If you would find where the Parallels do crofs the Subftylar,
As the Tangent of 45 gr :
to the Tangent of Declination:
So is the Length of the Style,
to the Diftance of the Parallel froms the Equinortial.

As in the Example of the Polar Planie, where the length of the Sty BC was found to be Inch 61 cent. If you defire to know the diftan between the Equinoetial and the Tropick upon the Subfylar Line, e tend the Compaffes from the Tangent of 45 gr . unto the Tangent 23 gr .30 m . the fame extent will reach in the Line of Numbers fro 1.61 unto 0.70 ; and therefore the diftance required is 70 pars of: Inch divided into 100. The like reafon holdeth for all other Parall of Declination croffing the Subftylar:

But if you would find where the Parallels do crofs any other of \(t\) Hour-lines, firft find the diftance between the Axis of the Style and t Hour - line, then the diftanse between the Equinoctial and the Parall Both thefe may be reprelented in this manner,

On the Center B, and any Semidiameter B D, defcribe an occult A of a Circle, and therein infcribe a Chord of 23 gr .30 m . from D ut T, with fach other intermediate Declinations as you intend to defcr on the Plane; fo the Line BD Chall be the Equator, and BT the T
ick, and the other intermediate Lines the Lines of Declination.
That done, confider your Plane, which for example may be either the Meridian or the Declining Polar Plane; whercin having drawn both the Equator and the Hour-lines as before, firft take out the Height of the Style, and prick that down in this Equator from B unto C ; then taking out all the Diftances berween B the top of the Style, and the feveral Points wherein the Hour-lines do crols the Equator, tranffer them into this Equator B D from the Center B, and at the terms of thefe Diftances ereet Lines perpendicular to the Equator, croffing the Lines of Declination, and note them with the Number of the Hour from whence they were taken: 10 thefe Perpendiculars fhall reprefent thofe Hour-lines, and the feveral Diffances between the Equator and the Lines of Declination fall give the like Difturces between the Equator and the Parallels of Declination upon your Plane, Upon this ground it followeth,

To find the diftance between the \(A x\) is and the Hour-lines.
As the co- ine of the Hour from the Subfylar, is to the Sine of 90 gr .
So the length of the Style, to the diftance between the \(\mathcal{A x i s}\) and the Hour-line.
As if in the former Example of the Meridian Plane, where BC the height of the Style is fuppofed to be 10 Inches, it were required to find the diftance between B to the top of the Style, and the point whereir the Hour of II in the Morning doth crofs the Equator, which ishere repreented by B5, becaufe it is the fifth Hour from che Subitylar, whofe Angle at the Pole is 75 gr . Excend the Compaffes from the Sine of 15 gr o Hhh 2

the Complement of the fifth Hour from the Subftylar, unto the Sine o 90 gr . the fame extent will reach from 10.00 in the Line of Number: unto 38.64; and therefore the diftance B5, between the Axis and th Hour-line, is 38 Inches and 64 cent . and may be called the Secant of th Hour. Then in the Rectangle B5T, having the Side B 5, and the An gle of Declination at \(B\),

To find the diffance letween the Equinottial and the Parallelo
As the Tangent of 45 gr.
to the Taagent of the Declination,
So the diftance between the Axis and the Hosr-line;
to the diffence between the Eqainottial and the Parallel.
Extend the Compaffes from the Tangent of 45 gr . unto the Tanges of 23 gr .30 m. the Declination of the Tropick, 符 the fame extent wi
reach in the Line of Numbers from 38.64 the diftance berween the Axis and che fifth Hour-line, unte 16.80; and therefore the diftance is 16 Inches and 80 cent. The like reafon holdeth for all the reft, which may be gathered, and fer down in fuch a Table as this which followeth.

Wherin I have fet down the. Diftances for feveral Declinations, for 11 gr . 30 m . for 16 gr .55 m . for 20 gr .12 m . for 21 gr .41 m . and for the Declination of the Tropick \(23 \mathrm{gr} .3 \odot \mathrm{~m}\). which may be applied to the like Declinationsin all Meridian and direct Polar Planes.

As in the former Example of the Polar Plane, where B C the height of the Style is found to be Inch \(6 \mathbf{1}\) cent. if it were required to find the diftance between. \(B\) the top of the Style, and the Points wherein the Hour-lines of 7 in the Morning or 5 Afternoon do crofs the Equator (which diftances Icalled the Secants of thofe Hours) either you may exrend the Compaffes from the Sine of 15 gr . the Complements of the Hour from the Subftylar, unto the Sine of 90 gr . fo the fame extent will reach in the Line of Numbers from 1. 6 I the length of the Style, unto 6. 2 I , according to the former Canon. Or elfe you may make ufe of the following Table, extending the Compaffes in the Line of Numbers from ro. 00 the length of the Style in the Table, unto 1. 61 the length of the Style belonging to your Plane; fo the fame extent fhall reach from 38.64, the Secant in the Table, unto 6.21, and fuch is your Secant required, the diftance between the top of the Style and the point of Interfection, wherein the fifth Hour-line from the Subfylar doth crofs the Equator.

Again, the fame extent will reach from 16.80 the diftance in the Table belonging to the fifth Hour-line between the Equator and the Parallel of 13 gr .30 m . declination, unto 2.70 for the like diftance upon your Plane ; and fo for the reft, which may be gathered, and fer down. in a Table.

The Tangents and Secants in the chird and fourth Columns of this Table are taken out of the Tables of the Natural Tangents and Secants, according to the Degrees and Minutes that are in the fecond Column of this Table.

That done, and the Equator drawn asbefore, if you would draw the Tropicks in the Polar Plane, look into the Table, and take 70 cent. out of the Line of Inches, and prick them down in che Subftylar, on either fide of the Equator, and \(\mathrm{f}_{0} 72 \mathrm{cent}\). on the firt Hour, and \(80^{\circ}\) on the fecond
lecond Hour, and 2 Inches 70 eent. to the fifth Hour from the Subftylar, and the reft of thefe Diftances on their feveral Hour-lines; and then draw a crooked Line through all thefe Points, fo as it makes no
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Hours.} & \multicolumn{4}{|l|}{Ang. Po. Tang. 1 Secan.} & \multicolumn{2}{|r|}{Trep;} \\
\hline & & M. In. & Pa . In . & Pa. & In. & . Pa \\
\hline 12 & & 00 & 01 & 61 & \(\bigcirc\) & 70 \\
\hline I I & 15 & 00 & 43 L & 63 & \(\bigcirc\) & 72 \\
\hline 10 & 30 & 0,0 & 931 & 85 & \(\bigcirc\) & 80 \\
\hline 9 & 45 & 0 I & 612 & 27 & 0 & 99 \\
\hline 8 & 460 & 02 & 793 & 22 & I & \(4{ }^{\circ}\) \\
\hline 7 & 5175 & 06 & 006 & 21 & 2 & 70 \\
\hline
\end{tabular} Angles, the Line fo drawn fhall be the Tropick required. In like manner you may draw any other Parallel of Declination.

\section*{CHAP. XIII.}

To deforibe the Tropicks, and other Circles of Declination, in fuch a Plane as is neither Equinoctial nor Polar.
IN Planes neither Equinoctial nor Polar, the Equator will be a Right Line, the Tropicks and other Parallels of Declination will be Conical sections, fome of them parabolical, fome eliptical, but moft of them hyperbolical.

To find the Points of Interfection of thefe Parallels with the Hourlines, we are to confider,
Firft, The length of the Axis of the Style in Inches and parts of Inches.

Secondly, The height of the Style above the Plane.
Thirdly, The Angles at the Pole between the proper Meridian and the Hour-circles.
Thefe being known, will help us to find, firt, the Angle berween the Axis and the Hour-lines on the Plane; and then the diftance between the Center and the Parallels. Both thefe may be reprefented in this manner,

Let the Triangle A B C be made equal to the Syyle belonging to your Plane, A C che Subfylar, BC the Axis of the Style, A B the length of the Style perpendicular to the Plane. Then having drawn the Line B D perpendicular to the Axis on the Center B, and any Semidiameter B D, defcribe an occule Ark of a Circle, and therein infcribe a Chord of 23 gr . 30 m . from D unto T , on either fide of the Line, with fuch other intermediate Declinations as you intend to defribe on the Plane; fo the Per-

pendicular B D thall be the Equator, and B T the Tropicks, and the other intermediate Lines the Parallels of Declination. Wherefore you may take out the diftance C V from the Center to the Equator, and prick it down on the Subftylar of your Plane from the Center at \(\mathbf{C}\) unto \(V_{\text {; }}\) fo the Line drawn through \(r\), perpendicular to your Subftylar, thall be the Equaror of your Plane.
That done, take the diftance of each Hour-line between the Center and the Equator of your Plane, and prick them down in the Equator of this Figure, from the Center at C , noting the place where they crofs the Equator, with the Number belonging to the Hour, and drawing the Hourlines from \(C\), through the Lines of Declination.

Or, having the Seftor, you may draw an occult Line C E, perpendicular to the Axis BC, and therein prick down the Tangent of the height of the Style above the Plane, from C unio E: Then draw the Line EF parallel to the Axis, croffing the Subftylar produced in the point \(F\); thi:

Line EF will be the Line of Sines upon the Sector, and therein you may prick down the Sines of the Complement of the Angles at the Pole from E toward F, and draw the Hour-lines by thofe Points through the Lines of Declination; fo the Angles at C, between the Axis BC and thofe Hour-lines, fhall be the Angles between the Axis of your Style and the Hour-lines in your Plane; and the feveral Diftances between the Point C and the Lines of Declination, fhall give you the like Diftances between the Center and the Parallels of Declination upon the Hour-lines in your Plane. Upon this ground it followeth,

\section*{1. To proportion the Style unto the Plane.}

Confider the height of the Style above the Plane, and the length of the Subftylar between the Center and the Place which you intend for the Tropick. If it be the Tropick which is farcheft from the Center, add 113 gr .30 m . if the nearer Tropick, add 66 gr .30 m . unto the height of the Style, the Remainder anto 180 gr . Thall give you the Altitude of the Sun above the Plane, when he cometh to that Tropick. As in our Latitude, the height of the Style above an Horizontal Plane is \(5 \mathbf{I} \mathrm{gr} .30 \mathrm{~m}\). add unto this 133 gr .30 m . the fum is 165 gr . which being taken out of 180 gr . the remainder will be 15 gr . and fuch is the Altitude of the Sun above this Plane when he cometh ro be in the Winter-Tropick : But if you add 66 gr . 30 m . unto 51 gr .30 m . the remainder to 180 gr . will be 62 gr . And fuch is the Altitude of the Sun in the Summer-Tropick. Then,

\section*{As the Sine of 66 gr .30 m . to the Sine of the Suns Altitude: So the Length of the Subfylar Line, to the Length of the Axis of the Style.}

As in the firft Examples of the Declining Vertical, where the height of the Style was found to be 34 gr .33 m . and is here reprefented befort, pag. 31. by the Angle B C \(\sigma\); add to this height 113 gr .30 m . For the Angle C B. \(\sigma\), the fum will be \(14^{8} \mathrm{gr} .3 \mathrm{~m}\). and the remainder to 180 gr . will be 31 gr .57 m . and fuch is the Angle B so C of the Altitude of the Sun above the Plane; when he cometh to be in the Tropick of \(\boldsymbol{\xi}\), which is here the farcheft Tropick from the Center.

Then fuppofing the length of the Subftylar-line between the Center I i i

and the Place which is fir for the fartheft Tropick, to be about 21 Inche: extend the Compaffes from the Sine of 66 gr .30 m . unto the Sine of 31 g 57 m. the fame extent will reach in the Line of Numbers from 21 unt 12.11, and fo the length of the Axis of the Style fhould be 12 inch. 11 cen Or it may fuffice to make it juft 12 Inches, as a more eafie ground for th veft of the Work.

But if it were required to proportion the Style unto the Plane, fo as may caft the Shadow to the full length of the Subftylar-line at all times the Year, you may then confider the Sun in the Tropick, which is to be nearelt wnte the Center, and add \(66 \mathrm{gr}, 30 \mathrm{~m}\), unta 34 gr .33 m . fo tl remaind Compaffes from the Sine of 66 gr .30 m . unto the Sine of 78 gr .57 ms . the fame extent will reach in the Line of Numbers from 21 unto 22.47 for the length of the A xis of the Style.
2. Having the length of the Axis, and the height of the Style above the Plane, to find the length of the Sides of the Style.
The Style of a Plane neither Equinoctial nor Polar, may be either a fmall Rod of Iron fer parallel to the Axis of the World, or perpendicular to the Plane, or elfe a thin Plate of Iron or Brafs, made in form of 2 Rectangle Triangle B A C, with the Bafe B C parallel to the Axis of the World, the Side A B perpendicular to the Plane, and the Side A C the fame with the Subtylar-line; wherein knowing \(B C\), and the Angle B AC,

As the Sine of 90 gr . to the Length of the eAxis:
So the Sine of the Height of the Style, to the Length of the Perpendicular Side:
And So the Co fine of the Height of the Style,
to the Length of the Subftylar fide.
Thus in the former Example, the length of the Axis being fappofed to be 12 Inches, and the height of the Style 34 gr .33 m . Extend the Compaffes from the Sine of 90 gr . (or elle from the Sine of 5 gr .45 m .) unto 12 in the Line of Numbers, the fame extent will reach from the Sine of 34 gr .33 m . unto. 6.80 in the Line of Numbers, for the length of the perpendicular Side; and from the Sinie of 55 gr .27 m . unto 9.88 for the length of the Subftylar fide.
3. To find the Diftance between the Center and the Equator upon the Subfylar Line.
This is here reprefented by \(\mathrm{C} r\), and may be found by refolving the Rectangle Triangle C B \(r\).

As the Sine of the Height of the Style,
is to the Sine of, 90 gr .
So the Length of the Axis,
To the \(D i f\) fance of the Equator from the Crnter.

\section*{The Defcription of the Tropicks}

Extend the Compaffes from the Sine of 55 gr .27 m . unto the Sine of 90 gr . the fame excent will reach in the Line of Numbers from 12 unto 14. 17. Wherefore if you take \(14 \mathrm{inch}, 57\) cent. and pricking them down on your Subftylar- line from \(C\) unto \(r\), draw a Line through \(r\), croffing the Subftylar at Right Angles, the Line fo drawn thall be the Equator.
4. To find the Angles contained between the Equator and the Hour-lines upon your Plane.
Thefe Angles made by \(r\) and the Hour-lines are Complements of thofe which are as \(C\), between \(B C\) the Axis and thofe feveral Hour-lines, and depend upon the Angles at che Pole, between the proper Meridian and the Hour-circles.

\section*{As the Sine of 90 gr . \\ to Co-fine the Angle at the Pole:}

So the Co-tangent of the Height of the Style,
to the Tangent of the Angle between the Equator and the Howr-line:
In our Example the height of the Style is 34 gr .33 m . and the proper Meridian'falleth to be the fame with the Circle of the fecond Hour after Noon; whereupon the Angle at the Pole, berween this proper Meridian, and the Circles of the Hour of \(I\) on the one fide, and 3 on the other fide will be 15 gr . So between this Meridian and the Hour-circles of 10 and 4, the Angle will be 30 gr . \(\sigma \mathrm{c}\). as in the Table.

If then it be required to find the Angle which the Hour-line of -4 afte noon doth make with the Plane of the Equator, that is the Angle C 4 E

\section*{and Circles of Declination.}
ntained between the Hour-line \(\mathrm{C}_{4}\) and the Line B4, drawn from the p of the Style unto the Incerfection of the Hour-line of 4 with the quator.
Extend the Compaffes from the Sine of 90 gr . unto the Sine of 60 gr : e Complement of the Angle at the Pole, the fame extent will reach from te Tangent of 55 gr .27 m . the Complement of the height of the Pole, no the Tangent of 51 gr .30 m . and fuch is the Angle C 4 B in the Jiagram.
Or in Crols-work, if it were required to find the Angle C9 B, look nto the Table for the Hour of 9, and there you fhall find the Angle at he Pole to be 75 gr . and if you extend the Compafies from the Sine of \(\rightarrow 0 \mathrm{gr}\). unto the Tangent of 55 gr .27 m . the fame extent will reach from the Sine of 15 gr . the Complement of 75 gr . unto the Tangent of 20 gr . 36 m . and fuch is the Angle C9 B, made at the Equator between the Line B 9, drawn from the rop of the Style, and the Hour-line C 9, drawn from the Center. The like reafon holdeth for the reft, which may be found and fer down in a Table: Then may you either draw thefe Angles at C in the former Figure more perfealy, and thence fixifh your Work, or elfe proceed,
5. To find the Diftance between the Center and the Parallels of \(D_{e}\) clination.

The Diftances between the Center and the Parallels of Declination may be found by refolving the Triangles made by the Axis B C, the Lines of Declination, and the Hour-lines. For having the Angles at the Equator, and knowing the Declination of the Parallel, if the Parallel fhall fall between the Equator and the Center, add the Declination unto the Angle at the Equator: or if it fhall fall without the Equator, take the Dedination our of the Angle at the Equator, fo thall you have the Angle. at the Parallel. Then,

> As the Sine of the Angle at the Parallel; to the Co-fine of the Declination: So the length of the Axis of the Style, to the Diftance between the Center and the Parallelo.

Thus in our Example, the Angle at the Equator belonging to the Hour of 4 after-noon was found before to be 5 gr .30 m . if you would find the:

\section*{The Defcription of the Tropicks}
the diftance between the Center and the Equator, extend the Compaffe from the Sine of 51 gr .30 m . unto the Sine of 90 gr . the Complemen of the Declination, the fame extent will reach in the Line of Number from 12 unto 15.33 , and-fuch is the diftance upon the Hour-line of berween the Center and the Equator.

If you would find the diftance upon this Hour-line between the Cente and the inner Tropick, whole Declination is known to be 23 gr .30 n add the Declination to the Angle at the Equator, fo the Angle at the Pa rallel will be 75 gr . wherefore extend the Compaffes from the Sine of 75 g unto the Sine of 66 gr .30 m . the Complement of the Declination, th fame extent will reach in the Line of Numbers from 12 unto 1 I. 40, an fuch is the length of the Hour-line of 4 between the Center and the Trc pick of \(v\).

If you would find the diftance upon this Hour-line between this Cer ter and the Tropick of \(\boldsymbol{5}\), which is here the farcheft from the Cente take the Declination cut of the Angle at the Equator, fo the Angle at th Prallel will be 28 gr . wherefore extend the Compaffes from the Sine 28 unto the Sine of 66 gr .30 m . the fame extent will reach in the Lis of Numbers from 12 unto 23.44 , and fuch is the diftance between tl Center and Tropick of \(\Phi \boldsymbol{s}\) upon this Hour-line of 4. The like reafc holdech for all the reft, which may be gathered and fer down in a Tabl

That done, and the Equator drawn as before, if you would draw tl Tropick of \(\sigma_{\sigma}\), look into the Table, and there finding under the Tis \(\mathrm{C} \Phi\) the diftance of the Subflylar between the Center and the Parallel 55 to be 20 inch .80 cent. take 20 inch .80 cent . out of the Line of Inch and prick them down in the Subftylar of your Plane from C unto \(\sigma\).

Or if either the Center fall without your Plane, or the extent be ti large for your Compaffes, you may prick down the difference betwe \(\mathrm{C} r\) and \(\mathrm{C} \Phi\) : As here the diftance \(\mathrm{C} r\) between the Center and \(t\) Equator is 14.57 , the diffance \(\mathrm{C} \sigma_{0} 20.80\), the difference 6.23. Ther fore taking \(r 6\) inch. 23 cent. prick them down on the Subftylar from unto 5 , and you fhall have the fame Interfection of the Tropick a1 the Subltylar as before: And the like reafon holdech for pricking dov of the reft of thefe Diftances on their feveral Hour-lines.

Then having the Points of Interfection between the Hour-lines and t Parallel, you may joyn them all in a crooked Line, without making any Angles, the Line fo drawn thall be the Tropick required. And af this manner you may draw any other Parallel of Declination, where you have Examples in moft of the fôrmer Diagrams.

\section*{CHAP. XIV.}

\section*{To defcribe the Parallels of the Sines in any of the former Planes.}

THe Equator and the Tropicks before defcribed do fhew the Sums entrance into 4 of the Signs; the Equator into \(r\) and \(\leadsto\), the one lropick into \(\Phi \boldsymbol{\Phi}\), and the other into \(\boldsymbol{s}\) : The reft of the intermediate igns will be defcribed in the fame manner as the Tropicks, if firft we know heir Declination.
The manner of finding the Dedination, not onely of the beginning of the Signs, but all other Points of the Ecliptick, is before fet down in 2 Prop. Afronomical, by which you may find the Declination of the beginning of \(\gamma\), 㤨, and \(m, \forall\) to be \(I \mathrm{gr} .30 \mathrm{~m}\). and of \(I I, \Omega, x^{7}\) and ro be 20 gr .12 m . If then you infcribe the Chords of \(\mathbf{1 1} \mathrm{gr} .30 \mathrm{~m}\). and of 20 gr .12 m . into the former Figure B D T, pag. 64. from D toward T , the Lines drawn from B through the Terms of thofe Chords fhall be the Signs required.
And with there Declinations, the height of the Style, and the length of the Axis, you may find the Angles at the Parallel, and then the Difances between the Center and the Parallel, which being pricked down upon the feveral Hour-lines, thall give you the Points of Interfection, by which you may draw the Parallels of the Signs, as in the Figures belonging to the Polar Planes:

CHAP. XV.
To defcribe the Parallels of the length of the Day in any of the former Planes.
THe lengch of the Day will always be 12 Hours, when the Sun fat other times of the Year the fame place of the Sun will not give the
fame lengh of the Day in another Latitude \(;\), wherefore the Latitude ing known, we are firft,

To find the Declination of the Sun agreeing to the length of the \(D_{a y}\).
Confider the difference between the length of an Equinoctial day, an the day propofed, and turn the time into Degrees and Minutes..

As the Sine of \(90 \mathrm{gr}_{0}\)
is to the Sine of half the difference:
So the Co-tangent of the Latitude,
to the Tangent of the Declination.
As if the length of the Day propofed were I 5 Hours, the differen between this and an Equinoctial Day (whofe length is always I2 Hour:

would be three Hours(which make 45 gr .) and the half difference is 22 g 30 m . Wherefore extend the Compaffes from the Sine of 90 gr . unto Tangent of \(3^{8} \mathrm{gr} \cdot 30 \mathrm{~m}\). the Complement of the Latitude, the fame

\section*{Parallels of the length of the Day.}

\section*{tent will reach from the Sine of 22 gr .30 m . unto the Tangent of 16 gr .} 55 m . for the Declination of the Sun at fuch time as the length of the Day is either 9 or 15 Hours; and from the Sine of 30 gr . unto the Tangent of 21 gr .40 m . For the Declination belonging to 8 or 16 Hours; and from the Sine of 15 gr . unto the Tangent of 11 gr .38 m . For the Declination belonging to 10 or 14 Hours; and from the Sine of 7 gr .30 m . unto the Tangent of 5 gr .56 m . for the Declination of the Sun when the lengh of the Day iserther II or 13 Hours.

If then you infrribe the Chords of thefe Arks into the former Figure B D T, the Limes drawn from B through the Tcrms of thefe Arks fhall K k k
be the Lines belonging to the Diurnal Arks, and the feveral Diftances berween them and the Point C, give the like Diftances between the Center and the Parallels of the lengch of the Day upon the Hour-lines in your Plane.

Or comparing thefe Angles of Declination with the Angles-at the Equator, you may have the Angles at the Parallel, and then find the Diftances between the Center and the Parallel, which being pricked down upon the feveral Hour-lines, fhall give you the Points of Interfection, by which you may draw the Parallels of the length of the Day, whereof you have another Example in the Diagram belonging to an Horizontal Plane in chap. 4. And by the fame realon you may draw the Parallels of thofe Circles to which the Sun is Vertical, the Parallels of the principal Feaft, or what elle depends on the Declination of the Sun.

\section*{CHAP. XVI.}

\section*{To draw the Old Unequal Hours in the former Planes:}

ITwas the manner of the Ancients to divide the Day into 12 equa Hours, and the Night into 12 other equal Hours, and fo the whol Day and Night into 24 Hours. Of thefe 24, thofe which belonge anto the Day were either longer or fhorter (excepting the two Equinc ctial Days) than thofe which belonged unte the Night; and the Sur mer Hours always longer than the Hours in the Winter, according to th lengthning of the Days, whereupon they are called the Old Uinequ (and by fome the Planetary) Hours.
To exprefs thefe in the former Planes, firf draw the common Hon lines, the Eqpiator, and the Tropicks, as before: Then defrribetwo cult Parallels of the length of the Day, one for 9 Hours, the other \(f\) Is Hours; for fo you may draw a fraighe Line for the firt unequ Hour througl 5 bo. 45 m . in the Parallel of 15 , and through 8 ho: 15 , in the Parallel of 9 . This ftraight Line fhall pals directly through 7 l - rss in the Equator, and fo cut off a twelfth pare of the Arks above. Horizon, both from thele two Parallels and the Equator; and bei

\section*{Housts from Sun-rifing and Sun-fetting?}

\section*{CHAP. XVII.}

To drais the Hourrs from Sun-rifing and Sunzletting in the former Planes.
TO know how many. Hours are paft fince the Sun-rifing, or how ma: the Equator,

rallels of the length of the Day, one for 8 Hours, and the other for 11 Hours: For fo you may draw the firft Hour from the Sun-rifing througl the common Hours of 5 in the Parallel of 16, of 7 in the Equator, ane
f 9 in the Parallel of 8. In like manner, the fecond Houir from Sunifing, through the common Hours of 6 in the Parallel of 16 , of 8 in the Zquaror, and of 10 in the Paralle of 8 . And fo the reft in their order.
The firt Hour before Sun-fetting, or the 23 Hour from the laf Suiretting, may be drawn in like fort, through the common Hours of 3. ffer10on in the Paraille of 8 , of 5 in the Equator, and of 7 in the Para!le of 16. The fecond Hour before Sun feeting, or the 22 Hour aferer the laft Sun: fecting, through the common Hours of 2 in the Parallel of 8, of 4 in the Equator, and of 6 in the Parallel of 16: And fo the reft in the like order, whereof you have another Example in the Diagram belonging to the Declining Vertical.

\section*{CHAP. XVIII.}

\section*{To draw the Horizontal-line in the former Planes.}

THe common Hour-lines do commenly depend on the fhadow of the Axis; but the Parallels of the Signe, and of the length of the Day, the Hour-lines from Sun-rifing and Sun-ferting, with many others, depend on the Shadow of the top of the Style, or fome other Point in the Axis, which here fignifieth the Center of the World, and is reprefented by the Point B. "And thefe Lines fo depending are then onely ufeful, when they fall between the two Tropicks, and within the Horizon.

There may be feveral Horizontal-lines drawn upon every Plane, as I Thewed before in finding the Inclination of a Plane; but the proper Hori-zontal-line, which is here meant, muft always be in the fame Plane with B the top of the Style; fo that in an Horizontal Plane there can be no fucli Horizontal-line: but in all other Planes it may be found by applying the Horizontal Leg of the Sector unto the top of the Style, and then working as before; and the Interfection of this Line with the Meridian or Sublty-: lar-line may be found by Proportion.
1. To find the Interfation of the Horizonwith the Meridian in an Equinoctial Plane.

> As the Tangent of 45 gr . to the Tangent of the Latitwale: So is the Height of the Style, to the Difrance becween the Style and the Herizontal-line.

\section*{To draw the Horizobtal-lineo.}

Asin the Example of the former Equinodial Plane, extend the Compaffes from the Tangent of 45 gr . unto \({ }^{1} \mathrm{gr} .30 \mathrm{~m}\), the Tangent of the Latitude, the fame extent will reach in the Line of Numbers from si the length of the Style, unto 66, and fuch is the Diftance between the Style and the Horizontal-linc: Wherefore I take 66 parts out of a Line of Inches, and prick them dosvn in the Meridian-line from C unto H above the Style in the upper Face, but below the Style in the lower Face of the Plane; foa Right Line drawn through H , parallel to the Hour of 6, Thall be the Horizontal-line.
2. To find the Interfection of the Horizow with the Meridian in a Diret Polar Plane.

As the Tangent of 45 gr . to the Co-tangent of the Latitude: So the length of the Style, to the diffance between the Style and the Horizontal-line.

As in the Example of the former Polar Plane, extend the Compaife from the Tangent of 45 gr . unto the Tangent of 38 gr .30 m . che Com plement of the Latitude, the fame extent will reach in the Line of Numbers from 1. 61 the length of the Style, unto 1.28, and fach is the di ftance upon the Meridian between the Style and the Horizontal-line.

In all upright Planes, whether they be Direet, Vertical or Declining or Meridian Plane;, the Horizontal-line muft always be drawn througl A the Foot of the Style,, as may appear in the Examples before.

And generally, in all Planes wharfoever, the Horizontal line muft b drawn through the Interfection of the Equator with the Hour of 6 . 0 if that Interfection fall without the Plane, yet if any Arks of the lengd of the Day be drawn on the Plane, the Horizontal-line may be drawis through their Interfections with the Hours of the Suns rifing or fetting.

\section*{CHAP. XIX.}

\section*{To deforibe the Verical Clicles in the former Planes.}

THe Vertical Circles, commonly called Azimuchs, are Great Cirdes drawn through the Zenith, by which we may know in what part of the Heaven the Sinn is, how far from the Eaft or Weft and how near unto the Meridian.
In all upright Planes, whether chey be Diret Verricals, or Declining; or Meridian Planes, the Semidiameter of the Horizon will be the fame with A B the perpendicular fide of the Style, and thele Azimuths will be Parallels one to the other, and the diftance of each Azimuch from the Foot of the Style upon the Horizontal line, may be found in chis man-
Confider the length of theS Syle in Inches and parts of Inches, and the diftance of each Azimuth from the Style, according to the Angle as the Zenith in Degrees and Minutes.

As the Tangent of 45 gr .
to the Tangent of Azimuth:
So the tength of tbe Style,
to the length of the Horizantal-line between the Stgle and the Aximath:

As if it were required to draw the common Azimuths on the South Face of the Vertical Plane before defcribed, where A B the length of the Style may befuppofed to be ro Inches.

Here the Plane having no declination, the Style is in the Plane of the Meridian, and fo pointeth direaly into the Soun. The Point of \(S . b E\) is 11 gr .15 m . diftant from the Style, and \(S S E\) 22 gr .30 m. and the reft in their order: Wherefore excend the Compaffes from the Tangent of \(45 \mathrm{gro}_{0}\) unto 10 in the Line of Numbers; the fame extent will reach from the Tangent of 11 gr .15 m

\begin{tabular}{|c|c|}
\hline Azimaths. & \[
\sqrt{\mathrm{An}}
\] \\
\hline South & 0-0 00 \\
\hline E & 9 \\
\hline \(S S \varepsilon\) & 22.30 .4 .14. \\
\hline SEbS & 3345 \\
\hline SE & 4) 0 \\
\hline SEbE & \(\begin{array}{llll}56 & 15 & 14 & 97\end{array}\) \\
\hline \(E S E\) & \(\begin{array}{llll}67 & 3024 & 14\end{array}\) \\
\hline \& 6 & \(78 \quad 45150 \quad 27\) \\
\hline Eaft. & 190 \\
\hline
\end{tabular}
unto \(\mathbf{8} .99\) in the Line of Numbers fo the length of the Tangent-line, betweet the Style and the Point SbE; anc from the Tangent of 22 gr .30 m . unt 4. I4 for \(S S E\) : And fo for the reft as in this Table.

In like manner, in the firf Exam ple of the Declining Plane, where th Style ftandeth according to the Dedlina tion 24 gr .20 m . diftant from the Sout toward the Wef, the next Point 0
\(S 6 \mathrm{~W}\) is but 13 gr .5 m . diftant from the Scyle; and the fecorid of \(\mathcal{S} S W\) onely 1 gr . 50 m . and the third of \(S W b S\) is again 9 gr .25 m . and the reft in their order. Wherefore having before found the length of the Style to be 6 Inches 80 parts, extend the Compaffes from the Tangent of 45 gr . anto 6.80 parts in the Line of Numbers, the fame extent will reach from the Tangent of 24 gr .20 m . unto 3.07 in the Line of Numbers, for the length of the Tangent-line between the Style and the Sourh; and from the Tangent of 13 gr . 5 m . unto 1.58 for the Point of \(S .6 \mathrm{~W}\) : and fo for the reft, as in this Table.

That done, if you take thefe Parts out of a Line of Inches, and prick shem down in the Horizontal-line on either fide of the Style, drasving Right Lines perpendicular to the Horizon through thefe Interfections,
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{eqzi
muths.} & An. Zen. T \\
\hline & Gr. M. In. \\
\hline Ebt & \(80 \cdot 354\) \\
\hline SE & 692018 \\
\hline SEbS & 58.150 \\
\hline SSE & \(46 \quad 507\) \\
\hline Ste & \(\begin{array}{llll}35 & -35 & 4\end{array}\) \\
\hline b & \(\begin{array}{llll}24 & 20 & 3\end{array}\) \\
\hline W & 13.51 \\
\hline W & I \(50 \% 22\) \\
\hline The & F.oot of the Style \\
\hline swbs & 925 \\
\hline SW & \(\begin{array}{llllll}20 & 40 & 2 & 57\end{array}\) \\
\hline Swb & \\
\hline WS W & \(\begin{array}{lllll}43 & 18 & 6 & 37\end{array}\) \\
\hline Wbs & \(\begin{array}{llllll}54 & 25 & 9 & 50\end{array}\) \\
\hline & \(\begin{array}{llll}55 & 4015 & 02\end{array}\) \\
\hline Wb \(\quad\) N & 776 \\
\hline W & 10.22 \\
\hline
\end{tabular} but Yo as they may be contained bectween the Horizontal and the Tropicks, the Lines fo drawn Chall be the Azimuths required.
In an Horizontal Plane theie Azinuths are drawri more cafily: For here the perpendicular fide of the Style is the fame with the Axis of the Horizon, and the Foot of the Style is the Vertical Point, in which all the Azimuth-lines do meet, as their Circles do in the Zenith : Wherefore let any Circle delcribed on the Center A, at the Foot of the Style, be divided filt into four parts, beginning at the Meridian ; and theri each quarter fubdivided cither into cight equal parts, according to the Points of the Mariners Compafs, or into 90 gr . according to the Aitronomical divifion; if you draw Right Lines through the Center and thefe divifions, the Lines fo drawn hall be the Azimurhs required.

In all orher Planes inclining to the Horizon, thefe Vertical Circles will meer in a Point ; but that Vertical Point being more or lefs diftant from the Foot of the Style, the Angles at this Point will be unequal.

\section*{The Defription of the Azimuths}
2. To find the diffance between the Foot of the Style and the Vertical Point.

The Vertical Point, wherein all the Vertical Lines do meet, will be alwaysin the Meridian, diredly under or over the top of the Style; and the Angle between the perpendicular fide of the Style, and the Verrical line, will be equal to the Inclination of the Plane to the Horizon. Wherefore,

As the Tangent of 45 gr .
to the Tangent of the Inclination of the Plane:
So is the length of the Style,
to the diftance betweenthe Foot of the Style and the Vertical Poin

Thus in the firt Example of the Declining Inclining Plane, where the upper Face of the Plane looking South-weft, the Declination was 24 gr . oo m. the Inclination 36 gr . and you may fuppofe A B the length of the Style to be 6 Inches; if you extend the Compaffes from the Tangene of 45 gr . unto the Tangent of 36 gr . the fame extent will reach in the Line of Numbers from 6.00 unto 4.36 , for the diftance AV, between A the Foot of the Style and \(V\) the Vertical Point.
2. To find the diffance between the Foot of the Style and the Horizontal? line.

\section*{As the Tangent of the Inclination of the Plane,} is to the Tangent of 45 gr .
So the length of the Sijle,
to the diftance between the Foot of the Style and the Horizostalline.

So the fame extent of the Compaffes as before will reach in the Line of Numbers from 6.00 unto 8.26 for the diftance \(A H\) between the Foot of the Style and the Horizontal-line.

Then may you take 4 inch. 36 cent. and pricking them down from \(A\) the Foot of the Style, unto \(V\) the Vertical Point in the Meridian, draw the Line V A, which being produced, fhall cut the Horizon in the Point \(H\) with Right Angles, and be that particular Azimuth which is perpendicular to the Plane.

Or, you may take 8 inch. 26 cent. and prick them down in the former Line V A, produced from \(A\) unto \(H\), and to draw the Horizontal-line through H, perpendicular unto V H, which Horizontal-line being produced; will crofs the Equator in the fame Point wherein the Equator cro-ferh the Hour-line of 6 , unlefs there be fome former error.

\section*{3. To find the Angles made by the Azimuth-lines at the Vertical Point.}

The Angles at the Zenith depend on the Declination of the Plane, as in our Example, where the Sryle ftandech according to the Declination 24 gr .20 m . diftant from the South toward the Weft, the Azimuch of 10 gr . from the Meridian Eaftward will be 34 gr .20 m . the Azimuth of 10 gr . Weftward will be onely 14 gr .20 m . diftant from the Style ; and fo the reft in their order.

Lll 2
Or

\section*{The Defription of the Azimuths}

Or if you would racher defcribe the common enimuths, the Point of \(S b E\) will be 35 gr .35 m . the Point of \(S b \mathrm{~W} .3^{7} \mathrm{gr}: 5 \mathrm{~m}\). diftant from the Style; and fo the reft in their order. Then,

\section*{As the Sine of 90 gr :}
to the Co-fine of the Inclination of the Plane:
So the Tangent of the Angle at the Zenith,
to the Tangent of the Angle at the Vertical Point, between the Line drain through the Foot of the Style, and the Azimuth required.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Axi- } \\
& \text { muths. }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\frac{\text { Ans.Ze. }}{\text { Gr. M. }}
\]} & \multicolumn{2}{|l|}{Ang. \({ }^{\text {V }}\)} \\
\hline & & G & \\
\hline SEVE & \(80 \quad 35\) & & \\
\hline & 6920 & 65 & \\
\hline \(S E\) & 58 & 5 & \\
\hline S S & \(46 \quad 50\) & 40 & \\
\hline S & 35-35 & 30 & \\
\hline South & 24 & 20 & \\
\hline Sbw & 13 & 10 & \\
\hline S SW & & & \\
\hline & & & \\
\hline & & & \\
\hline SW & 20 & 16 & \\
\hline SW6W & 31 & 26 & \\
\hline WS W & 43 & & \\
\hline Wbs & 54 & 48 & \\
\hline & & & \\
\hline N & 6 & 73 & \\
\hline & & & \\
\hline
\end{tabular}

Wherefore the Inclination of the Plane in our Example being 36 gr . extend the Compaffes from the Sine of 90 gr . unto the Sine of 54 gr . the fame extent hall reach in the Line of Tangents from 34 gr . 20 m . anto 20 gr .5 m . for the Angle HV a at the Vertical Point, between the Line VH, drawn through A the Foot of the Scyle, and the South. Again, the fams exient will reach from the Tangent of \(\mathbf{I}\) \(\mathrm{gr}_{\mathrm{r}} 5 \mathrm{ma}\) anto 10 gr .38 m . For the Angl belonging to \(S b W\); and fo for the reft, a in this Table.

Thefe Angles being known, if on th Center V, at the Vertical Point, you de fcribe an occult Circle, and therein infcrib the Chords of thefe Angles from the Lin V H, and then draw Right Lines throng the Verrical Point, and the Terms of thol Chords, the Lines fo drawn thall beth fzimuths required.
The like reafon holdeth for the drawing of the Azimuths upon al other Inclining Planes, whereof you have another Example in the Dia gram belonging to the Meridiain Incliner, as before.

Or, for further fatisfaction you may find where each Azimuth-lin fhall crofs the Equator.

> As the Sine of 90 gr .
> to the Sine of the Lationde:

> upon an Inclining Plane.
- Sosthe Tangent of the Azimuth from the Meridian, to the Tangent of the Equator from the Meridian.

Extend the Compaffes from the Sine of 90 gr . unto the Sine of our Latitude 51 gr .30 m . the fame Extent will reach in the Line of Tangents from 10 gr . unto 7 gr .50 m . for the Interfection of the Equator with the Azimuth of 10 gr . from the Meridian. Again, the fame extent will reach from 20 gr . unto 15 gr .54 m . for the Azimuth of 20 gr . And fo the reft, as in thefe Tables.

By which you may fee that the Azimuth 90 gr . diftant from the Meridian, which is the Line of Eaft and Weft, will crols the Equator at 90 gr . from the Meridian, in the fame Point with the Horizontal-line and the Hour of 6: and that the Azimuth of 45 gr . will crofs the Equatorat 38 gr . 2 m . from the Meridian; that is, the Line of SE will crofs the Equaror at the Hour of 9 and 28 m . in the Morning, and the Line of S W at 2 bo 。 32 m . in the Afternoon: And fo for the reft, whereby you may examine your former Work.

\section*{CHAP. XX.}

Te deforibe the Parallels of the Horizon in the former Planeso

THe Parallels of the Horizon, commonly called Almicanters, or Pa: rallels of Altitude (whereby we may know the Altitude of the Sun above the Horizon) have fuch ref pect unto the Horizon; as the Parallels of Decli-

\section*{The Defoription of the Parallel of the Horizons}

Declination unto the Equator, and fo may be defcribed in like manner.
In an Horizontal Plane thefe Parallels will be perfect Circles; wherefore knowing the length of the Style in Inches and parts, and the diftance of the Parallels from the Horizon in Degrees and Minutes,

> As the Tangent of 45 gr .
> is to the length of the Style: So the Co-tangent of the Parallel, to the Semidiameter of his Circle.

Thus in the Example of the Horizontal Plane, if A B the length of the Style fhall be 5 Inches, and that it were required to find the Semidiameter of the Parallel of 62 gr . extend the Compaffes from the Tangent of 45 gr . unto 5.00 in the Line of Numbers, the fame extent will reach from the Tangent of 28 gr . the Complement of the Parallel, unto 2.65 : And if you defribe a Circle on the Center A, to the Semidiamerer of 2 inch. 65 cent. it fhall be the Parallel required.
In all upright Planes, whether they be Direet Verticals, or Dedining, or Meridian Planes, thefe Parallels will be Conical Sections, and may be drawn through their Points of Interfection with the Azimuth-lines, in the fame manner as the Parallels of Declination through their Points of Interfection with the Hour-lines., To this end, you may firft find the diftance between the top of the Style and the Azimuth, and then the diftance berween the Horizon and the Parallel, both which may be reprefented in this manner.

On the Center B, and any Semidiameter BH, defcribe an occulc Ar of a Circle, and therein infcribe the Chords of fuch Parallels of Alcitud as you intend to draw on the Plane, (I have here put them for \(15 ; 30,45\) and 60 gr .) then draw Right Lines through the Center and the Termso thofe Chords, fo the Line B H fhall be the Horizoin, and the reft the Line of Altitude, according to their diftance from the Horizon.

That done, confider your Plane, (which here for example is the Sour Face of our Vertical Plane) wherein having drawn both the Horizont: and Vertical Lines, as I heewed before, firft take out A B the length c the Style, and prick that down in this Horizontal Line from Bunto \(A\) then take out all the diftances between B the top of the Style and the if veral Points wherein the Vertical Lines do crols the Horizontal, transf chem intorthis Horizontal-line BH, from the Center B, and at the Term of thefe diftances ereet Lines perpendicular to the Horizon, noting then

with the Number or Letter of the Azimuth from whence they were taken ; fo thefe Perpendiculars fhall reprefent thofe Azmuths, and the feveral diftances berween the Horizon and the Lines of Altitude fhall give the like diftances between the Horizontal and the Paralles of Alcitude upon the Azimuths in your Plane. Upon thisground it followeth,
1. To find the diffance between the top of the Style, and the feveral Pionts wher cin the Azimaths do crofs the Horizontal-line.

Having drawn the Horizontal and Azimuth Lines as before, look into the Table by which youdrew them, and there you thall have. the Angles at the Zenith. Then,

As the Co fine of the Angle at the Zenith,
is to the Sine of 90 gr .
So the length of the Style, to the Diffance required.

As in our Example of the Vertical Plane, where A B the length of the Sryle was fuppofed to be 10 Inches, exrend the Compaffes from the Sine of 78 gr .45 m . (the Complement of in gr .15 m . the Angle at the Zenith, belonging to \(S b E\) and \(S b W\)) unto the Sine of 90 gr . the fame extent will reach from 10. 00 the length of the Style, unto 10. 20, for the diftance between the top of the Seyle and the Interfection of the Azimuth S \(b E\) with the Horizontal line, which diftance may be called the Secant of the Azimuth, and may ferve for the drawing of the Parallel of 45 gr . from the Horizon. The like reafon holdeth for the reft of thefe diftances here reprefented in the Line BH.

\section*{2. To find the diftance between the Horizon and the Parallels.}
\[
\begin{aligned}
& \text { As the Tangent of } 45 \mathrm{gr} \text {. } \\
& \text { to the Tangent of the Parallel: } \\
& \text { So tbe Secant of the Azimuth, } \\
& \text { to the Diftance required. }
\end{aligned}
\]

As if it were required to draw the Parallel of 15 gr . from the Horizon, upon this Vêrrical Plane; extend the Compaffes from the Tangent of 45 gr . unto the Tangent of 15 gr . the fame extent will reach in the Line of Numbers from 10.00 the Secant of the Sourh Azimuth, unto 2.68, and therefore the diftance between the Horizon and the Parallel of \(\mathrm{I}_{5} \mathrm{gr}\). is 2 inch .68 cent . upon the Souch Azimuth. Again, the fame extent will reach from 10.20 the Secant of \(S b E\), unto 2.73, for the like difance belonging to \(S b E\) and \(S b W\) : And fo for the reft, which may be gathered and fet down in the Table.

That done, and the Horizon and Azimuths being drawn, prick down 10 Inches from the Horizontal-line upon the South Azimuth, and 10 inch. 20 cent. on the Azimuths of \(S \zeta E\) and \(S L W\), and 10 inch .82 cent . on the Azimuths of SSE and SSW, and 12 inch. 3 cent. on the Azimuths of \(S E b S\) and \(S W b S\), and fo the reft of thefe diftances on thicir feveral Azimuths: then if you draw a crooked Line through thele Points, that may make no Angles, the Line fo drawn fhall be the Parallel of 45 gr . from the Horizon. In like manner may you draw the Parallel of 15 gro or any other Parallel of Altitude, upon any Vertical Plane.
If the Plane incline to the Horizon, after we have found the Vertical Point, and drawn the Horizontal-line, we are farther to find the length of the Axis of the Horizon, then the Angles betwixt this Axis and the Mmm

A zionuth

\section*{To draw the Parallels of the Horizon}

Azimuth-lines, and fo the feveral diftances between the Parallels and the Vertical Point, all which may be reprefented in this manner.

On the CenterB, and any Semidiameter, defcribe an occult Quadrant of a Circle, and therein infribe the Chords of fuch Parallels of Altitude as you intend to draw on the Plane, drawing Right Lines through the Center and the Terms of thefe Chords, fo the Line B H Thall be the Horizon, and his Perpendicular BV the Axis of the Horizon, and the reft the Lines of Altitude, according to their diftance from the Horizon.

That done, confider your Plane, which here, for example, is the firft of of our three Declining Inclining Planes; wherein having drawn both the Horizontal and Vertical Lines, as I Thewed before; firft take out the Axis of the Horizon, which is the Line between B the top of the Scyle anc V the Vertical Point, and prick that down in this Figure from B untic \(V_{\text {g }}\) then take out both the Line V H, and all the reft of the diftances be zween V the Vertical Point and the feveral Points wherein the Vertica Lines do crofs the Horizontal Line of this Figure from the Point V, notin the place where they crofs the Horizontal-line, with the Number or Lette of the Azimuth from whence they were taken, and drawing the Azi muth-lines from V through the Lines of the Alcitude.

Or having the Sector, you may draw an occulc Line \(V\) E, perpendic lar to the \(A x i s \mathrm{~V} \cdot \mathrm{~B}_{\text {, and therein prick }}\) down the Tangent of the Comp
ment of the Inclination of the Plane from \(V\) unto \(E\) : then draw the Line E F parallel to the Axis, croffing the Line V H produced in the Point \(F\); fo this Line E F will be as the Line of Sines upon the Sector, and therein you may prick down the Sines of the Complement of the Angles at the Zenith from E towards \(F\), and draw the Vertical-lines by thofe Points through the Lines of Alritude ; fo the Angles at V, between the Axis VB and thofe Azimuth-lines, thall be the Angles betweefr the Axis of the Horizon and the Azimuth-lines on your Plane, and the feveral diftances between the Point \(V\) and the Lines of Altitude fhall give the like diftances between the Vertical Point and the Parallels of Altitude upon the Azimuths in your Plane. Upon this ground it followeth,

\section*{1. To find the length of the Axis of the Horizon.}

The Vertical Point is always either direetly over or under the top of the Style, and the diftance between them is that which I call the Axis of the Horizon, which may thusbe found:

> As the Co-jne of the Inclination, to the Sine of 90 gr .
> So the length of the Style,
> to the length of the Axis of the Herizon.

For example, in the firt of the three Declining Inclining Planes, the Inclination to the Horizon is 36 gr . the length of the Style A B 6 Inches; extend the Compaffes from the Sine of \(s 4 \mathrm{gr}\), the Complement of the Inclination, unto the Sine of 90 gr , the fame extent witl reach in the Line of Nimbers from 6.00 unto 7.43 s and fuch is V B the length of the Axis equired.
2. Th find the Angles contained between the Horizon and the Verrical
Lines upon our Plane.
The Angles at the Vertical Point between the Axis of the Horizon and the Azimuth-Iines upon your Plane, are reprefented in this Figure by thofe at \(V\), between \(Y\) B and the Azimuths. The Angles between the Horizon and the Azimuth-lines being Complements to the former, are reprefented either by thofe which are made by \(V E\), or by \(B H\), and the Azimuth-lines which are drawis from \(V\).

\section*{92} The Defoription of the Parallels of the Horizon
That you may find chem, look into the Table by which you drew the Azimuth-lines, there fha! you find the Angles at che Zenith. Then,

\section*{As the Sine of 90 gr .}
to the Co-fine of the Angle at the Zenith:
So the Tangent of Inclination to the Horizon,
to the Tangent of the Angle between tbe Horizon and the Vertical Linf.

In our example, where the Inclination to the Horizon is 36 gr . and the Angle at the Zenith, between the Azimuth at the Sryle and the Meridian,

is according to the Declination 24 gr .20 m . extend the Compaffes from the Sine of 90 gr . anro the Tangent of 30 gr , the fame extent will reach from
om the Sine of 65 gr .40 m . the Complement of the Angle at the Zenith; noo the Tangent of 33 gr .30 m . fer the Aingle contained between the Iorizon and the South parc of the Meridian-line. Again, the fame exent will reach from the Co-fine of 35 gr .35 m . the Angle at the Zenith elonging to \(S b E\), unto the Tangent of 30 gr .3 m . for the Angle beween the Horizon and the Azimuth-line of \(S b E\). The like realca olderh for the reft, which may be found and fer down in the Table.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & & & & \\
\hline & Gr & & & In. Pa, & Pa. & & In. \\
\hline Eaft. & & & & & & & \\
\hline & & & & & & & \\
\hline SE & 91 & 192 & 20 & & 98 & & \\
\hline SEbE & & & \(\begin{array}{ll}6 & 47 \\ 6\end{array}\) & & 2344 & & \\
\hline E & 69.20 & & \(14 \quad 232\) & & 16.79 & & \\
\hline E 6 & 58 & & & & & & \\
\hline \(S\) & 46 & 40 & 6 251 & & & & \\
\hline b \(E\) & 35. 35 & & 30,35 & 14 & Io. 90 & & \\
\hline South & 2420 & 20.5 & \(33 \quad 301\) & & & & \\
\hline \(6 W\) & I3 & & 35 & & & & \\
\hline S & 150 & & \(35 \quad 59\) & & 9 & \(7 \quad 47\) & 5 \\
\hline & & & & & 99 & \(7 \quad 47\) & 531 \\
\hline & & & 35 & & & 750 & \\
\hline & 2040 & & 3412 & & & 759 & \\
\hline swbw & 31 & 26 & 3146 & & & & \\
\hline WS И & 43 & 3711 & \(27 \quad 5\) & & & & \\
\hline & 54 & \(48 \quad 30\) & \(22 \quad 55\) & & 128 & 8.73 & \\
\hline & 65 & 60.48 & 1640 & & 12 & 960 & \\
\hline Wb 2 & \(76 \quad 55\) & & 1920 & & 20 & & \\
\hline NNW & 88 & & 1 \begin{tabular}{l}
120 \\
\hline
\end{tabular} & 31888 & 33 & & \\
\hline NW6W & & T01:35 & & Inf & 92 & & 8.48 \\
\hline \(N W\) & Io 40 & & & nite. & & & \\
\hline
\end{tabular}

Then may you either draw thefe Angles at V in the former Figure: more perfeetly, and thence finifh your Work, or elfe proceed.

\section*{To defribe the Parallels of the Horizois}
3. To find the diftance between the Vertical Point, and the Parallel of the Horizon.

Thefe diftances may be found by refolving the Triangles in the laft Figure made by the Axis, the Lines of Altitude , and the Azimuth lines. For having the length of the Axis, and the Angle at the Horizon, if you add the diffance of the Parallel from the Horizon, unto the Angle at the Horizon, you fhall have the Angle at the Parallel. Then,

\author{
As the Sine of the Angle at the Parallel, to the Co. Sine of the Altitude: \\ So the length of the Axis, to the diffance between the Vertical Point and the Parallel.
}

Thus in our Example, if it were required to find the diftance upon th Stylar Azimuth VH, between the Verrical Point and the Horizon, yo have the Rectangle Triangle V B H, wherein the Angle at the Horizol here reprefented by B HV is (equal to the Inclination of the Plane) \(368^{\prime}\) and B V the Axis of the Horizon between the Plane and the top of th Style is 7 inch. 42 cent. Wherefore extend the Compaffes from the Sim of 36 gr . anto the Sine of 90 gr . the Complement of the Altitude, th fame extent will reach in the Line of Numbers from 7.42 unto 12.62 and fuch is the diftance of the Perpendicular Azimuch-line V H, betwee the Vertical Point and the Horizon.

In like manner, if you would find the diftance upon the Meridia between the Vertical Point and the Horizon, extend the Compaffes from the Sine of 33 gr .30 m . the Angle at the Horizon, to the Sine of \(90 \%\) the fame extent will reach in the Line of Nambers from 7.42 unto 13.4 and fuch is V a the diftance between the Vertical Point and the Horizo upon the Line of the South Azimuth, that is, upon the Meridian-line.

But if you would find the diftance upon the Meridian between t Vertical Point and any other Parallel of the Horizon, as upon the Para let of 26 gr .34 m . then add thefe 26 gr .34 m . unto 33 gr .30 m . tl Angle at the Horizon, fo thall you have 60 gr .4 m . for B DV whe \(\mathrm{A}_{1}\) gle at the Parallel. And if you extend the Compaffes from the Sine of 60 g 4 m . unto the Sine of 63 gr .26 m . the Complement of the Parallel fro the Horizon, the fame extent will reach in the Line of Numbers fro \(7.4^{2}\) the length of the Axis, unto 7.66 , and fuch is the diftance V betwe
between the Vertical Point and the Parallel of \(26 \mathrm{gr} \cdot 34 \mathrm{~m}\) upon the Me-ridian-line. The like reafon holdech for all the reft, which may be gathered and fer down in the Table.
That done, and the Horizon drawn as before, if you would draw the Parallel of 26 gr .34 ms . from the Horizon, look into the Table, and there finding under the Tirle of the Parallel of 26. 34 the diftance on the South Azimuth-line to be 7.66 , take 7 inch. 66 cent. out of a Line of Inches, and prick them down on the Meridian of your Plane from the Vertical Point at \(V\).
Or if either the Vertical Point fall without your Plane, or the extent at any time be too targe for your Compaffes, you may prick down the diftance between the Hor zon and the Parallel. As here the diftance between the Vertical Point and the Parallel is 7.66 , between the Vertical Point and the Horizon 13.44, the difference between them \(5.7^{8}\) is the diftance from the Horizon to the Parallel, which being pricked down upon the Meridian, flall give the fame Interfection as before. And the like reafon holderh for the pricking down the reft of their diftances on their feveral Azinuths.
Having the Point of Interfection between the Azimuths and the Parallel, you may joyn themall in a crooked Line, without making of Angles; the Line fo drawn hall be the Darallel required. And upon chisground it followeth,

Todefcribe fwch Parallels on the former Planes, as may Gbew the propor: tion of the Shadow anfo the Gnomon.

The proportion of a Mans Shadow unto his Height, or other Shadow to his Gnomon, fer perpendicular to the Horizon, may be fhewed by Parallels to the Horizon, if they be drawn to a due Alcitude, which may thus be found:

\section*{"As the length of the Shadow",}
to the length of the Gnomos:
So the Tangent of 45 gr .
to the Tangent of the Altitude.
As if it were required to find the Altitude of the Sun when the Shadow of a Man fhall be decuple to his Height, extend the Compaffes from 10 unto I in the Line of Numbers, the fame extent will reash in the Tan-
gent of 45 gr . unto the Tangent of 5 gr .42 m . which Thews that when the Sun comerh to the Altitude of 5 gr .42 m . your Shadow upon a level Ground will be ten times as much as your Height. In the fame manner you may find, that at 7 gr .7 m . of Altitude your Shadow will be a duple, at 9 gr .27 m . Sextuple, at it gr .18 m . quintuple, at 14 gr .2 m . quadruple, at 18 gr .26 m . triple, at 26 gr .33 m . double to your Height, at 33 gr . 41 m . as 3 unto 2 , at 36 gr .52 m . as 2 unto 3 , at 34 gr .39 mb . as 5 unto 4, at 45 gr . equal, at 5 r gr .20 m . as 4 unto 5 , at 53 gr .7 km . as 3 unto 4 , at 56 gr . 19 m . as 4 unto 3, at \(58 \mathrm{gr} \cdot 2 \mathrm{~m}\). as 3 unto 5 , at 63 gro 26 m . as I unto 2 , ơc.

If then you draw a Parallel to the Horizon at 5 gr .42 m . another at 7 gr .7 m . and fo the reft, when the fhadow of the Style fallech on the Parallel, you have the proportion, and thereby may you know the Shadow by the Height, and the Height by the Shadow, whereof you have an exam: ple lpag. 8.

I might here proceed to fhew the Defcription of the Circles of Pofition, the Signs of the Zodiack in the Meridian, the Signs afcending and defcending, with fuch other Gnomonical Conclufions: but thefe would prove fuperfluous to fuch as underftand the Doctrine of the Sphere; and for others, that which is delivered may fuffice for ordinary ufe, it being my intention not fo much to explain the full ufe of Shadows, (whereof I have lately given a large example in another place) as the ufe of thefe Lines of Proportion, that were not extant heretofore.

A N
A PPENDIX
CONCERNING THE
Description and Use Of a fmall Portable QUADRANT,

For the more eafie finding of the HOUR and A ZIMUTH,

AND
Other Aftronomical and Geometrical Conclulions.

CHAP. I.
Of the Defcription of the Quadrant.
Aving defcribed thefe ftanding Planes, 1 will now fhew the molt of thefe Conclufions by a fmall Quadrant. This might be done generally for all Latitudes, by a quarter of the general Aftrolabe, defcribed before in the Ule of the Sector ; and particularly for any one Latitude, by a quarter of the particular Aftrolabe, there alfo defcribed; which if it be a Foot Semidiameter, may thew the Azimuth unto a Degree and the time of the Day anto a Minute \(:\) But for ordinary ufe this fmaller Quadrant may fuffice, which may be raade portable in this manner.

Nn
s.Lipon

8. Upon the Center A; and Semidiameter A B, defreibe the Ark BC the fame Semidiameter will fet off 60 gr and the half of that will ! 30 gr . which being added to the former 60 gr . will make the Ark BC

\section*{The Inforiptios of the General Lines:}
be 90 gr . the fourth part of the whole Circle, and thence comes the name of a Quadrant.
2. Leaving fome little fpace for the Infcription of the Months and Days, on the fame Center A, and Semidiamerer A T, defcribe the Ark TD, which fhall ferve for either Tropick.
3. Divide the Line \(A T\) in the Point \(E\), in fuch proportion, as that A T being 10000, A E may be 65.56, and there draw another Line EF, which thall ferve for the Equator; or AE being 10000, let ET be 5253.
4. Divide AF the Semidiameter of the Equator in the Point \(G\), fo as AF being 10000, the Line A \(G\) may be 4343 : and on the Center \(G\), and Semidiameter GD, defribe the Ark ED, which fhall ferve for a fourth part of the Ecliptick.
5. This part of the Ecliptick may be divided into three Signs, and each Sign into 30 gr . by a Table of Right Aifcenfions, made as followeth.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
0
\]} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{c}
\(r\) \\
\hline Gr. M \\
Gr. M
\end{tabular}}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(\frac{\text { II }}{\text { Gr. } \mathrm{M}}\)}} \\
\hline & & & & & & \\
\hline 0 & & 027 & 54 & 57 & & - \\
\hline 5 & & 3532 & 42 & & & \\
\hline 10 & & 1137 & & & & \\
\hline 15 & & 4842 & 31 & & & 43 \\
\hline 20 & & 2747 & & & & 7 \\
\hline 25 & & 952 & & & & 32 \\
\hline 30 & & 5457 & & & & \\
\hline
\end{tabular}

Athe Right Afcenfion of the firft Point of \(\gamma\) being 27 gr .54 m . you may lay a Ruler to the Center \(A\) and 27 gr .54 m , in the Quadrant BC, the Point where the Ruler croflerh the Ecliptick fhall be the firf Point of \(\gamma\). In like manser, the Right Afcenfion of the firt Point of II being 57 gr .48 m . if you lay a Ruler to the Center A and 57 gr .48 mb . in the Quadrant, the Point where the Ruler croffech the Ecliptick fhall be the firt Point of II: And fo for the ref. But the Lines of diftinction between Sign and Sign may be beft drawn from the Center \(G\).
\begin{tabular}{|c|c|}
\hline Gr. & Parrs. \\
\hline 1 & 176 \\
2 & 355 \\
3 & 537 \\
4 & 723 \\
5 & 913 \\
\hline 6 & 1106 \\
7 & 1302 \\
8 & 1503 \\
9 & 1708 \\
10 & 1917 \\
\hline 11 & 2130 \\
12 & 2348 \\
13 & 2571 \\
14 & 2799 \\
15 & 3032 \\
\hline 16 & 3290 \\
17 & 3514 \\
18 & 3763 \\
19 & 4019 \\
20 & 4281 \\
\hline 21 & 4550 \\
22 & 4825 \\
23 & 5104 \\
Trop. & 5258 \\
\hline
\end{tabular}

\section*{The Infreviption of the Stars.}
6. The Line ET between the Equator and che Tropick, which I call the Line of Declination, may be divided into \(23 \mathrm{gr} \cdot \frac{1}{2}\) : out of this Table. For let A E the Semidiamerer of the Equator be \(\mathbf{1 0 0 0 0}\), the diftance between the Equator and 10 gr : of Declination may be 1917 more ; between the Equator and 20 gr .428 I ; the diftance of the Tropick from the Equator 5252.
7. You may put in the moft of the principal Stars between the Equator and the Tropick of \({ }^{5}\); by their Declination from the Equaior, and Right Aicenfion from the next Equinoctial Point. As che Declination of the Wing of Pegafos being \({ }^{1} 3 \mathrm{gr} \cdot 7 \mathrm{~m}\). the Right Afcenfion 358 gr .34 m . from the firt Point of \(r\), or \(1 \mathrm{gr}, 26 \mathrm{~m}\). hhort of it. If you draw an oscult Pa rallel through 13 gr .7 moof Declination, and then lay the Ruler to the Center A, and 1 gr .26 m . in the Quadrant B C, the Point where the Ruler croffech the Parallel (hall be the Place for the Wing of Pegajus, to which you may fer the name and the time when he cometh to the South at midnight in this manncr; W. Peg. * 23 Ho. 54 M . And to for the reft of thelf five, or any other Stars.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{\multirow[b]{6}{*}{}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline Lioss Heart & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}
8. There being fpace fufficient between the Equator and the Center you may there defcribe the Quadrat, and divide cach of the two Side fartheft from the Center A into 100 parts; fo fhall the Quadrant be pre pared generally for any Latitude.

But before you draw the particular Lines, you are to fit four Table ander your Latitude.

Firf, a Table of Meridian Alcitudes, for divifion of the Circle of Days and Months, which may be thus made. Confider the Latitude of the Place, and the Declination of the Sun for cach Day of the Year. If the Latitude and Declination be alike, both North, or both South, add the Declination to the Complement of the Latirude; if they be unlike, one Nörth, and the otherSouth, fubtract the Declination from the Complement of the Latitude, the Remainder will be the Meridian Altitude belonging unto the Day.
ches in our Latitude of 51 gr .30 m . Northward, whofe Comple ment is \(38 . \mathrm{gr} .30 \mathrm{~m}\). the Declination upon the tenth day of fune will be 23 gr .30 m . Northward; wherefore I add 23 gr .30 m . unto 38 gr 30 m . the fum of both is 62 gr . for the Meridian Alritude at the renth of Fune. The Declination upon the tenth of December will be 23 gr .30 m . Southward, wherefore I take thefe 23 gr .30 m . sut of 38 gr .30 m . there will remain 15 gr . for che Meridiain Alcicude at the tenth of December; and in this manner you may find the Meridian Altitude for each Day of the Year, and fer them down in a Table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Dies. & 0 & 5 & 0 & 15 & :20 & 25 & & \\
\hline Monibs. & Gr. M. & Gr. M. & Gr. M. & Gr. M & Gr. M & Gr. M & & \\
\hline fanmary & 16 & \begin{tabular}{ll}
\hline 77 & 24
\end{tabular} & \(\overline{18} \quad 26\) & 19 : 37 & 20. 57 & 22 & & 58 \\
\hline February & 12417 & \(25 \quad 59\) & 2745 & 29. 35 & \(31 \quad 29\) & 33.25 & & \\
\hline March & 344 & 36 & \(38 \quad 32\) & \(40 \quad 30\) & 42,27 & \(44 \quad 22\) & 46 & 15 \\
\hline April & 46 & \(48 \quad 26\) & 50.11 & 515015 & \(53: 25\) & 54 & 56 & 15 \\
\hline May & \(\left\lvert\, \begin{array}{lll}56 & 15\end{array}\right.\) & \(|57 \quad 29|\) & \(58 \cdot 35\) & \(59 \quad 33\) & 6022 & 6 I [2 & 61 & 31 \\
\hline fune & 61.36 & 61.54 & 620 & 61~58 & 6145 & 6I 22 & 60 & 49 \\
\hline fuly & 60.49 & 60.6 & 5914 & 5813 & 57 & \(55 \quad 48\) & 54 & 24 \\
\hline Anguft & \(54 \quad 7\) & 52, 36| & 50 & 49 & 47.31 & \(145 \quad 41\) & 43 & 26 \\
\hline September & \(43 \quad 26\) & 41.30 & 139 331 & \(\mid 37 \cdot 36\) & \(35 \quad 38\) & 133 4I & 31 & 46 \\
\hline OEtober & 31.46 & 2953 & \(28 \quad 3\) & \(26 \quad 16\) & 24.35 & 22.59 & 21 & 29 \\
\hline Noversb. & 2112 & 1951 & \(18 \quad 39\) & \(17 \quad 36\) & 1643 & 160 & I & 28 \\
\hline December & |l 15 28| & \(15 \quad 5\) & 150 & \(1 \begin{array}{ll}15 & 2\end{array}\) & \(15 \quad 17\) & \(15 \quad 44\) & & 22 \\
\hline
\end{tabular}

The Table being made, you may infcribe the Months, and Days of

\section*{10: To fit a Table for drawing and dividing of the Horizos:}
each Month into your Quadrant, in the fpace leff below the Tropick. For, lay the Ruler unto the Center A, and 16 gr .31 m . in the Quadrant BC, there may you draw a Line for the end of December and beginning of Fanuary; then laying your Ruler to the Center A, and 24 gr .17 m . in the Quadrane, there draw the end of \(\mathcal{F}\) ansary and beginning of \(F_{c}\) bruary, and fo the reft, which may be noted with \(J, F, M, A, M, J, G_{c}\) the firt Letters of each Month, and will here fall between I \(5 \mathrm{gr}_{\mathrm{o}}\) and 62 gr.

The fecond Table which you are to fit, may ferve for the drawingend dividing of the Horizon. For drawing of the Horizon,

As the Co-tangent of the Latitude, to the Tangent of the greatef Declination: So the Sine of 90 gr .
to the Sine of the Interfection where the Horizon fhall crofs the Tropick.

So in our Latitude of \(51 \mathrm{gr}\).30 m . we fhall find the Horizon to cut the Tropick in 33 gr .9 m . wherefore if you lay the Ruler to the Center A, and 33 gr .9 mb . in the Quadrant, the Point where the Ruler croffech the Tropick fhall be the Point where the Horizon croffech the Tropick. And if you find a Point at \(H\) in the Line A C, whereon ferting the Compaffes, you may bring the Point at E and this Point in the Tropick both into a Circle, the Point H fhall be the Center, and the Ark fo drawn fhall be the Horizon.

Then for the divilion of this Horizon,
As the Sine of 90 gr . to the Sire of the Latitade:
So the Tangent of the Horizon,
to the Tangent of the Ark in the Quadrant, which fhall divile the Horizon.

So in our Latitude of 51 gr .30 m . we fhall find 7 gr .52 m . belong. ing to 10 gr . in the Horizon, and 15 gr .54 m , belonging to 20 gr . And to the reft, as in chis Tablc.

Wherefore you may lay the Ruler to the Center A, and 7 gr .52 m . in the Quadrant BC, the Point where the Ruler eroffech the Horizon Thall be 10.gr. in the Horizon; and fo for the reft : But the Lines of diftinction between each fifth Degree will be beft drawn from the Center H .
The third Table for drawing of the Hour-lines muft be a Table of the Alcitude of the Sun above the Horizon at every Hour, efpecially when he. cometh to the Equator, the Tropicks, and lome other intermediate Declinations.
If the Sun be in the Equator, and fo have no Declination,
As the Sine of 90 gr . to the Co-fine of the Latitude:

\section*{So the Co- /ine of the Hour from the Meridian, to the Sine of the Altitude.}

Thus in our Latitude of 51 gr .30 m . at fro Hours from the Meridian the Sun will have no Alcitude, at five the' Alitude will be \(9 \mathrm{gr}, 17 \mathrm{~m}\). at four

\section*{To find the Altitude of the Sun.}
four 18 gr .8 ms . at three 26 gr .7 m . at two \(\mathbf{3 2} \mathrm{gr} .37 \mathrm{~m}\). at one 36 gr. 58 m . ac Noon it will be 38 gr . 30 m . equal to the Complement of the Latitude.

If the Sun have Declination, the Meridian Altitude will be found as before, for the Table of Days and Months.

If the Hour propofed be fix in the Morning or fix at Night,

> As the Sine of 90 gr . to the Sine of the Laticude:
> So the Sine of the Declination, to the Sine of the Altitude.

Thus in our Latitude the Declination of the Sun being 23 gr .30 mm . the Altitude will be found to be 18 gr . 11 m , the Declination being II gr . 30 m . the Altitude will be 9 gr .

If the Hour propoled be neither twelve nor fix,

> As the Co-jine of the Hour from the Meridian, to the Sine of 90 gr .
> So the Tangent of the Latitude,
> to the Tangens of a fourth Ark.

Soin our Latitude, and one Hour from the Meridian, this fourth Ark will be found so be 52 gr .28 m . at two 55 gr .26 m . at three 60 gr .39 m . at four \(68 \mathrm{gr}, 22 \mathrm{~m}\) 。 and at five Hours from the Meridian 78 gr .22 m .

Then confider the Declination of the Sun, and the Hour propoled; if the Latitude and Declination be both alike, as with usin North Latitude, North Declination, and the Hour fall berween Noon and fix, take the Declinationout of the fourth Ark, the remainder fhall be your fifth Ark.

But if either the Hour fall between fix and midnight, or the Latitude and Declination fhall be unlike, add the Declination unte the fourth Ark, and the fum of both fhall be your fifth Ark: or if the fum fhall exceed 90 gr . you may take the Complement unto 180 gr . This fifth Ark being known,

> As the Sine of the fourth eArk, to the Sine of the Latitude: So the Co-sive of the fifthe Ark, to the Sine of he Altitude.

Thus in our Latitude of \(5 \mathbf{I} \mathrm{gr} .30 \mathrm{~m}\). Northward, the Sun having \(23 \mathrm{gr} \cdot 30 \mathrm{~m}\). of North Declination, if it thall be required to find the Al titude of the Sun for feven in the Morning: here (becaufe the Latitude and Declination are both alike to the Northward, and the Hour propofed fallech between Noon and fix) you may take 23 gr .30 m . the Ark of the Declination, out of 78 gr .22 m . the fourth Ark belonging to the fifth Hour from the Meridian, fo there will remain 54 gr .52 m . for your fifth Ark: Then working according to the Canon, you thall find,

As the Sine of 78 gr .22 m . your fourth Ark, to the Sine of \(5 \mathbf{I}\) gr. 30 m . for the Latitude:
So the Sine of 35 gr .8 m . the Complemsent of your ffth Ark, to the Sine of 27 gr .17 m . the Altitude required.

If in the fame Latitude and Declination it were required to find the Altitude for five in the Morning, here the Hour falling between fix and Midnight, if you add 23 gr .30 m . unto 78 gr .22 m . the fum will be \(101 \mathrm{gr} . \mathrm{s}^{2} \mathrm{~m}\). and the Complement to 180 gr . will be 78 gr .8 m . for your fifth Ark. Wherefore,

\section*{In Rectangulo \(\odot \boldsymbol{D} \boldsymbol{H}\),}

> UO E Radins, ad EM Co-tan. Lat. Ita ODCOf. Hora. ad DHTan. D H.

\section*{Cajus equalis sf \(P\), cujus Compl. \(D\), novis dr. arcus quarime?}

Conferatur Arcus \(D\) H cum Arcu Declinationis DS, ita dabitur Arcws HS, сијus Complo. oft \(S\) R © prius dr. Arcus quintus. Unde crit,
\[
\begin{aligned}
& U_{t} C_{0} f_{1} P R \text {, Hoceff, Ut Sin. } D R \text {, } \\
& \text { ad Cofi.PZ: } \quad \text { ad Sin. } E Z \text { : } \\
& \text { Ita } C_{0} f i . S R, \quad, \quad \text { Ita } \operatorname{Sin} H S, \\
& \text { at Coff. } S \text { Z. ad Sin. } A S \text {. }
\end{aligned}
\]

Hine forte praftabit vocare \(H\) S Arcum quintum, ita fecinda operatio inffituetur per folos finus.

Vel filibet fubtractionem inu quarti Arcus evitare, inveniatur Angulus. © H D quod feri potef varits modis. Nam,
1. Ut Radius, ad Sin, Ang. 0 : Ita Cofi. Latt. O D, ad Cofi. An. OHD.
2. Ut Sin. DH: ad \(\operatorname{Sin} 0\) : Ita \(\operatorname{Sin}: D_{2}\) ad Sin. \(H\).
4. \(V t \operatorname{Sin} D R\), and Sin. \(E Z\); Ita Rad. ad Sin, \(H_{0}\)

Tnvento utcunque Angulo ad \(H\), erit in Rectangulo \(H A\) S:
Ut Sinus Recti Anguli \(H A S\),
ad Sinum arcus guinti:HS:
Ita Sinus Anguli ad Horiz. S \(H A_{\text {, }}\) Ad Sin. Solaris Altitudinis \(S\) A.

As the Sine of 78 gr .22 m .
to the Sine of 5 Igr .30 m .
So the Co-fine of 78 gr .8 m .
to the Sine of \(9 . \mathrm{gr}: 32 \mathrm{~m}\). for the Altitude required.
If in the fame Laticude of 5.8 gr .30 m . Northward, the Sun having 23 gr .30 mm . of South Declination, ir were required the Altitude for nine in the Morning: Here, becaufe the Latitude and Declination

\section*{To find the Altitude of the Singe}
are unlike, the one North, and the other South, you may add \(23 \mathrm{gr}^{\circ}\) 30 m . the Ark of Declinacion, unto 60 gr .39 m , the fourth Ark belonging to the third Hour from the Meridian; fo fhall you have 84 g . 9 m: for your fifh Ark. Wherefore,

As the Sise of 60 gr .39 m .
to the Sine of 51 gr .30 m .
Sothe Co. Fine of 84 gr .9 m .
to the Sine of 5 gr I s m . for the Altitude required.
And fo by one or other of thefe means you may find the Alcitude of the Sun for any Point of the Ecliptick at all Hours of the Day, and fet them down in fuch a Table as this.

A Table for the eAltitade of the Sun in the beginning of each Sign at all Hossrs of the Day, calcolated for 5 I gr .30 m. of North Latitude.

Laftly, You may find what Declination the Sun hath when he rifeth orifetrechat any Hour.

ばiwn
0002
As

\section*{The manner of drawing the Hour-linesa}

\author{
As the Sine of 90 gr . \\ to the Sine of the Howr from fix: \\ So the Co-tangent of the Latitude, \\ tothe Tangent of the Declination.
}

And to in the Latitude of 5 Igr .30 m . you fhall find that when the Sun rifech, either at five in the Summer, or feven in the Winter, his Declination is 11 gr .37 m . when he rifeth at four in the Summer, or eight in the Winter, his Declination is 21 gr .40 m . which may be allo fer down in the Table.

That done, you may there fee, that in this Eatitude the Meridian Altitude of the Sun in the beginning of \(\sigma\) is 62 gr . in III 58 gr .42 mm . in \(\gamma 50 \mathrm{gr}\). in \(\gamma 38 \mathrm{gr} .30 \mathrm{~mm} .8 \mathrm{c}\). But the begianing of 5 and wo is reprefented by the Tropick T D, drawn at 23 gr .30 m . of Declination, and the beginning of \(r\) and \(\leadsto\), by the Equator EF. If you draw an occult Parallel between the Equator and the Tropick, at II gr. 30 m . of Declination, it thall reprefent the beginning of \(\gamma\), , 㫣, \(m\), and \(\mathcal{H}\), if you draw another occult Parallel through \(20 \mathrm{gr}_{0} 12 \mathrm{~mm}\). of Declination, it fhall reprefent the beginning of \(I, \Omega, x\), and \(w\).

Then you may lay a Ruler to the Center A, and 62 gr . in the Quadrant B C, and note the Point where it croffeth the Tropick of \(\Phi\); then move the Ruler to \(5^{8} \mathrm{gr} .52 \mathrm{~m}\). and note where it croffeth the Parallel of IT: then to 50 gr a and note where it croffech the Parallcl of \(૪\); and again to 38 gr .30 m . noting where it crofleth the Equator: fo the Line drawn through there Points fhall thew the Hour of 12 in the Summer, while the Sun is in \(\gamma, \gamma\), II, \(\sigma, \Omega\), or \(\pi\). In like manner, if you lay the Ruler to the Center A, and 27 gr . in the Quadrant, and note the Point where it croflech the Parallel of \(\because\); then move it to 18 gr .18 m . and note where it croffeth the Parallel of ; and again to 15 gr . noting where it croffech the Tropick of ws, the Line drawn through thefe Points fhall thew the Hoor of 12 in the Winter, while the Sun is in \(\approx, \pi, x\), vp, me, and \(\nexists\) fo may you draw the reft of thefe Hour-lines: only that of 7 , from che Meridian in the Summer, and 5 in the Winter, will crols the Line of Declination at II gr .37 m . and that of 8 in the Summer, and 4 in the Winter, at \(21 . \mathrm{gr}_{0} 40 \mathrm{~m}\).

The fourth Table for drawing of the Azimuth-lines muft likewife be firted for the Altituds of the Sun above the Horizon at every Azimuth, efpecially

To find the Sans Altitude for the Azimuth and Latitude. 109 efpecially when he cometh to the Equator, the Tropicks, and fome other intermediate Declination.

If the Sun be in the Equator, and fo have no Declination,
As the Sine of 90 gr .
to the Co- ine of the Azimuth from the Meridian:
So the Co-tangent of the Latitude,
to the Tangent of the Altitude at tbe Equator.
Thus in our Latitude of 51 gr .30 mo . ac 90 gr . from the Meridian the Sun will have no Altitude; at 80 gr . the Altitude will be \(7 \mathrm{gr} .5^{2} \mathrm{mo}\) at 70 gr . it will be 15 gr .30 m . at 60 gr . it will be 21 gr .4 rm .
If the Sun have Declination, the Meridian Alcitude will be eafily found as before, for the Table for Days and Months. And for all other Azimuths,

\section*{As the Sine of the Latitude,} to the Sine of the Declination:
So the Co- ine of the Altitude at the Equator;
to the Sine of a fourth ark.
When the Latitude and Declination are both alike in all Azimuchs from the prime Vertical' unto the Meridian, add this fourth Ark unto the Ark of Altitude at the Equator:
When the Latitude and Declination are both alike, and the Azimuth more than 90 gr . diftant from the Meridian, take the Altitude at the Equatorout of this fourth Ark.
When the Latitude and Declination are unlike, take this fourth Ark out of the Ark of Altitude at' the Equator, fo fhall you have the Altitude of the Sun belonging to the Azimuth.
Thus in our Latitude of 51 gr .30 m . Northward; if it were. required to find the Altitude of the Sun in the Azimuth of \(60 \mathrm{gr}_{0}\). from the Meridian, when the Declination is 23 gr .30 m . Northward, you may find the Altitude at the Equator belonging to this Azimuth to be 21 gr .4 ll m . by the former Canon; and by this laft Canon you may find the fourth Ark to be 28 gr .15 mm . Then becaule the Latitude aud Declination are both alike to the Northward, if you add them both togecher, you thall have \(49 \mathrm{gr}, 56 \mathrm{~mm}\). for the Alticude required.

\section*{Io To find the Suns Altitude for the Azimuth and Latitude.}

OM 90.60. ME Comp. Lat. O A Com. Azim. AB Alt. efqua.

E Z Lat.
\(Z\) B Com. \(A B\). D \(S\) Deelin. S B Arc. 4.

If the Declination had been 23 gr .30 m . to the Southward, you fould then have taken this fourth Ark out of the Ark at the Equator; which becaufe it cannot here be done, it is a fign that the Sun is not then bove che Horizon: But if you take che Ark at the Equator out of this ourch Ark, you fhall have 6 gr .34 m . for the Altitude of the Sun when 1 c is in the Azimuth of 60 gr . from the North, and 120 gr . from the iouth part of the Meridian. The like reafon holdech for the reft of thefe Alitudes, which may be garhered, and fer down in a Table.
Laftly; when the Sun rifech or fectech upon any Azimuth, to find his. Declination.

\section*{As the Sine of 90 gr .}
to the Cofine of the Latituds:
So the Co-fine of the Azimsth fross the CMeridian, to the Sine of the Declination.

Table for the Altitude of the Sun in the beginning of each Sign for every tenth Azimuth, in 51 gr .30 m . of North Latitude.

And thus in our Latitude of \(5!\mathrm{gr} .30 \mathrm{~m}\). when the Azimuth is 80 gr . from

\section*{The Infoription of the Azimuths}
from the Meridian, the Declination will be found to be 6 gr . 12 m . if the Azimuth be 70 gr . the Declination will be found 12 gr .18 mm . if 60 gr . then 18 gr .8 m . And fo for the reft, which may be alfo fer down in the Table.

That done, if you would draw the Line of Eaft or Weft, which is 90 gr . From the Meridian, lay the Ruler to the Center A, and 30 gr . 38 m . numbred in the Quadrant from C toward B, and note the Point where it croffech the Tropick of \(\sigma_{\rho}\); then move the Ruler to 26 gr .10 m . and note where it croffech the Parallel of II; then to 14 gr .45 m . and note where it croffech the Parallel of \(\gamma\); then to \(0 \mathrm{gr} . \circ \mathrm{ms}\). and you thall find it to crofs the Equator in the Point \(F\) : fo a Line drawn through thefe Points fhall Thew the Azimuth belonging to Eaft and Weft. The like realcon holdech for all thereft.

Thefe Lines being thus drawn, if you fer two Sights uponthe Line A C, and hang a Thred and Plummer on the Center A, with a Bead upon the Thred, the Fore-fide of the Quadrant fhall be fully finifhed.
On the Back-fide of the Quadrant you may place the Noeturnal defrribed before in the ZIfe of the Seftor, which confifterh of two parts.

The one is an Hour-Plane, divided equally according to the 24 Hour: of the Day, and each hour into Quarters, or Minutes, as the Plane wil bear. The Center reprefenss the North Pole.; the Line drawn through the Center from XII to XII fandsfor the Meridian, and thelower XI] Itands for the Hour of XII at midnight.

The other part is a Rundle for fuch Stars as are near the North Pole togecher with the twelve Months, and the Days of each Month, fitted tc the Right Afcenfion of the Sun and Stars, in this manner,

Firft, confider where the Sun will be at the beginning of the 5,10 I5, 20, 25,30, and, if you will, every day of each Month, and finc the Right Afcenfion belonging to the place of the Sun, as I thewed before.

For example : The Sunat midnight, the laf of December, or begin ning of 于annary, will be conmminibus annis about 20 gr .40 m . of us whofe Right Afcenfion is 292 gr .20 m . At midnight, the latt of Jains. ary, or beginning of February, he will be about \(\mathbf{2 2} \mathrm{gr} .12 \mathrm{~m}\). of m , whof Right Afcenfion is 324 gr .35 m . and \(f \rho\) the reft, which may be fee dowr in a Table.

That done, confider the Longitude and Latitude of the Stars, and thereby find their Right Afcenfion and Declination as I hewed before, and fet them down in a Table. Thefe Tables thus made, let the uppermof

\section*{The ve of the Quadrant.}
part of the Rundle be made even with the innermoft Circle of the.HourPlane, and a convenient face allowed to contain the divifims. for the Days, and names of the Months. Then lay the Center of this Rundle upon the Center of fame other Circle divided into 360 gr . and by the Center and 292 gr 20 m . in that Circle, draw a Line for the beginning of Fanuary: In like manner, by the Center and 324 gr .35 m . draw a Line for the end of Fanuary and beginning of February; and fo the reft of the Days of each Month.

For the Infcription of the Stars, let one of the Lines from the Center, as that at the beginning of fuly, or rather let a movable Index be divided from the Center toward the inward Circle of the Months into 40 gr . more or lefs, which may be done for fpeed equally, but for exactnels in fach manner as the Semidiameter of the General Aftrolabe was divided before in the Ulfe of the Sector. So laying the Index to the Right Afcenfion in the outward Circle, you may prick down the Stars by their Dedination in the Index.
For example: If the Right \(\mathbf{A}\) feenfion of the Pole-ftar be 6 gr .28 m . and his Declination 87 gr .20 m . having fet the Center of the Index both to the Center of the Rindle and of the other Circle, turn the Index to 6 gr .28 m . in that outward Circle, and prick down the Star by 87 gr. 20 m . in the edge of the Index, that is, at the diftance of 2 gr .40 mm . from the Pole. The like reafon holdeth for the reft of the Scars, which may be diftinguifhed according to their Magnitudes, and then be reduced into their Forms, as in the Example. So the Quadrant will be fitted both for Day and Night.

CHAP. II.

\section*{Of the \(V\) re of the Quadrant, in taking the Alttude of the Sum,}

T\({ }^{3}\) He Quadrant is the fourth part of a Circle divided equally into 90 gr . and here numbred by \(10,20,30\), \& c. unto 90 gr . each Degree being fubdivided into 4.
Lift up the Center of the Quadrant fo as the Thred with the Plummer may play eafily by the Side of 11 , and the Sun-beams may pafs through both the Sights; fo fhall the Degrees cut by the Thred thew what is the Altitude at the time of oblervation, as may appear by this Example.
PPP Upon

\section*{The vfe of the Ecliptick:}

Upon the 14 day of April, about Noon, the Sun-beams paffing through both the Sights, the Thred fell upon 51 gr .20 m . and this was the true Meridian Altitude of the Sun for that day, in this our Latitude of 51 gr . 30 m . for which this Quadrant was made.

Again, towards three of the Clock in the afternoon the Thred fell upon \(38 . \mathrm{gr} .40 \mathrm{~m}\). and fuch was the Suns Altitude at that time.

CHAP. III.

\section*{Of the ECLIPTICK.}

\section*{1. The Place of the Sun being given, to find his Right Afcenfoin:}

T\({ }^{1}\) He Ecliptick is here reprefented by the Ark figured with the Characters of the 12 Signs, \(r, \gamma\), II, ơc. each Sign being divided unequally into \(3 \odot \mathrm{gr}\). and they are to be reckoned from the Character of the Sign.

Let the Thred be laid on the place of the Sun in the Ecliptick, and the Degrees which it cuttech in the Quadrant /hall be the Right Afcenfion required.

Asif the place of the Sun given be the fourth Degree of II, the Thred laid on this Degree fhall cut 62 gr in the Quadrant, which is the Righe Afcenfion required.

But if the place of the Sun given be more than 90 gr . from the beginning of \(r\), there muft be more than 90 gr . allowed to the Right Afcenfion ; for this Inftrument is but a Quadrant. And fo if the Sun be in 26 gr . of \(\sigma\), you thall find the Thred to fall in the fame place, and yet the Right Afcenfion to be 118 gr .
2. The Right. Afcenfion of the Sun being given, to find bis Place in the Ecliptick.

Let the Thred be laid on the Right Afcenfion in the Quadrant, and it fhall crofs the place of the Sun in the Ecliptick, as may appear in the former Example.

\section*{CHAP. IV. Of the Line of Declination:}

\section*{7. The Place of the Sunbeing given, to find bis Declination:}

THe Line of Declination is here drawn from the Center to the beginning of the Quadrant, and divided from the beginning of \(r\). downward into 23 gr .30 m .

Ler the Thred be laid, and the Bead fer on the Place of the Sun in the Ecliptick; then move the Thred to the Line of Declination, and there the Bead thall fall upon the Degrees of the Declination required.

As if the place of the Sun given be the fourth Degree of II, the Bead firt fer to this place, and then moved to the Line of Declination, Thall there hew the Declination of the Sun at that time to be 21 gr . from the Equator
2. The Declination of the Sun being given, to find bis place in the
Ecliptick.

Let the Thred and Bead be firft laid to the Declination, and then moved to the Ecliptick.

As if the Declination be 2 gr g. the Bead firft fet to this Declination, and then moved to the Ecliptick, thall there fhew the fourth of \(\boldsymbol{H}\), the fourth of 7 , the 26 of 5 , and the 26 of \(\%\) and which of thefe four is the place of the Sun, may appear by the Quarter of the Year.

\section*{CHAP. V.}

\section*{Of the Circle of Months and Days.}

His Circle is here reprefented by the Ark figured with thefe Letters;
 the number of the Days that are therein.

A Table for the Infoription of the cMonths in the Nyocturnal.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Dies. & \(\bigcirc\) & 5 & 10 & 15 & 20 & 25 & 30 \\
\hline Menf. & Gr. M. & Gr. M. & Gr. M. & Gr. M. & Gr. M & Gr. M. & Gr. M. \\
\hline fanuary & 29220 & 29746 & 3037 & 3082 & 31330 & 318.36 & 32336 \\
\hline February & 32435 & 32928 & 334 16 & 339 I & 34342 & 34821 & \\
\hline March & 35117 & 355 52 & \(\bigcirc 26\) & \(4 \quad 58\) & 930 & \(14{ }^{1} 4\) & 1834 \\
\hline - April & 1930 & \(24 \quad 4\) & 28421 & 3323 & 38 & \(42 \quad 52\) & 4742 \\
\hline May & 4742 & 5235 & 57.32 & 6234 & 6739 & 7245 & 77.52 \\
\hline June & 7855 & 84.5 & 8917 & 9428 & 9939 & 10448 & 10955 \\
\hline Tuly & 10955 & 1150 & 120 & 12458 & 12954 & 13445 & 13930 \\
\hline Auguft & 140.27 & \(145 \quad 9\) & 14948 & 15425 & 159. & \(1{ }_{163} 32\) & \\
\hline Septemb. & 16857 & 17326 & 17756 & 18226 & \(\mid 18656\) & 19128 & \\
\hline OCtober & 196 & 20045 & 20525 & 21012 & 215.3 & 220 & \\
\hline Novemb. & 226 & 23110 & 23623 & 24140 & 247 & 25230 & 258 \\
\hline Decemb. & 258 & 26335 & 2698 & 27442 & 28016 & 285 46 & 291 \\
\hline
\end{tabular}
1. The Day of the Month Veing given, to find the Altitude of the Sun at Reon.

Let the Thred be laid to the Day of the Month, and the Degrees which it cuttech in the Qnadrant thall be the Meridian Alcitude required.

As if the Day given be the 15 of May, the Thred laid on this day, hall cut 99 gr .30 m . in the Quadrant, which is the Meridian Altitude required.

\section*{2. The Meridlan-Altitude being given; to find the Day of the Month.}

The Thred being fet to the Meridian Altitades doth alfo fall on the day of the Month.

As if the Alcitude at Noon be 59 gr .30 m . the Thred being fet to his Alcitude, doth fall on the 15 of May, and the 9 of \(\mathcal{F u l y}\); and which of thefe two is the true day, may be known by the quarter of the year, or by. another days Obfervation. For if the Altitude prove greater, the Thred will fall on the 16 day of \(M a y\), and the 8 of \(\mathcal{F} u l y\); or if it prove lefler;
the Thred will fall on the 14 of May, and the 10 of faly; whereby the quettion is fully an(wered.

\section*{CHAP. VI.}

\section*{Of the Hour-lines.}

THat Ark which is drawn upon the Center of the Quadrant by the beginning of Declination, doth here reprefent the Equator: That Ark which is drawn by 23 gr .30 m . of Declination, and is next above the Circle of Months and Days, reprefentech the Tropicks: Thofe Lines which are berween the Equator and the Tropicks, being undivided, and numbred at the Equator by \(6,7,8,9,10,11,12\); at the Tropick by 1, \(2,3,4\), ef c do reprefent the Hour-circles: That which is drawn from 12 in the Equator to the middle of June, reprefenteth the Hour of 12 at Noon in the Summer; and chofe which are drawn with it to the right hand, are for the Hours of the Day in the Summer, and the Hours of the Night in the Winter: That which is drawn from 12 in the Equator, to the middle of December, reprefenteth the Hour of 12 in the Winter; and thofe which are drawn with it to the left hand, are for the Hours of the Day in the Winter, and the Hours of the Night in the Summer; and of both thele, that which is drawn from II to Iferves for II in the forenoon, and 1 in the afternoon; that which is drawn from 10 to 2 , ferves for 10 in the forenoon, and 2 in the afternoon: for the Sun on the fame day is about the fame height two Hours before Noon, as two Hours after Noon. The like realon holdech for the reft of the Hours.
1. The Day of the Month, or the Height at Noon being known, to find the Place of the Sun in the Ecliptick.

The Thred being laid to the day of the Month, or the height at Noon, (for one gives the other by the former Propofition) mark where it croffech the Hour of 1.2, and fet the Bead to that Interfection; then move the Thred till the Bead fall on the Ecliptick, and it fhall fall on the place of the Sun.
Asif the day given be the 15 of -May, or the Meridian Altitude \(\$ 9 \mathrm{gr}\). 30 m. lay the Thred accordingly, and put the Bead to the Interfection of the Thred with the Hour of \(\mathbf{1 . 2}\); then move the Thred till the Bead fall

\section*{IIS}

\section*{The Ure of the Hour-lines.}
on the Ecliptick, and it thall there thew the fourth of II, the fourth of \(\boldsymbol{x}\), the 26 of \(\Phi\), and the 26 of and which of thefe is the place of the Sun, may appear by the Quarter of the Year, or another days obfervation.

\section*{2. The place of the Sun in the Ecliptick being known, to find the Day of} the Month.

Let the Thred and Bead be firt laid on the place of the Sun in the Ecli ptick, and then moved to the Line of 12.

As if the place of the Sungiven be the fourth of II, the Bead being laid to this Degree, and then moved to the Hour of 12 in the Summer the Thred will fall on the 15 day of May, and the 9 of \(\mathcal{F s l y}\); or if it b moved to theHeur of 12 in the Winter, the. Thred will fall on the 60 Fanuary, and the 16 of November: which of thefe is the day of th Month required, may appear by the Quarter of the Year.

In this and the former Propofitions you have two ways to rectifie th Bead, by the place of the Sun, and by the day of the Month: the bette way is by the place of the Sun.; for in the other, the Leap-year may breet fome fmall difference.

There is yet a third way : For the Seamen having a Table for the De dlination on each day of the year, may fet the Bead thereto in the Line o Declination.
3. The Hour of the Day being given, to find the Altitude of the Sw. above the Horizon.

The Bead being fet for the time by either of the three ways, let th Thred be moved from the Hour of 12 toward the Line of Declination till the Bead fall on the Hour given; and the Degrees which it curs it the Quadrant, fhall thew the Altitude of the Sun at that time.

As if the time given be the 10 of \(A p r i l\), the Sun being then in th beginning of \(\Varangle\), the Bead being rectified, you thall find the Height a Noon 50 gr .0 m . at 11 in the morning 48 gr . 12 m . at io but 43 gr I2 2 m . at 9 but 36 gr . at 8 but 27 gr .30 m . ac 7 but 18 gr . 18 m . at 6 bu 9 gr . at 5 it meetech with the Line of Declination, and hath no Altitud at all, and therefore you may think it did rife much abour that Hour.
Then if you move the Thred again from the Line of Declination to ward che Hour of \(: \mathbf{2}\), you thall find that the Sun is 8 gr .33 m , belov
The ve of the Hour-lines?
the Horizon at 4 in the morning, and near 16 gr . at 3 , and 21 gr .51 mg . at 2 , and 25 gr .40 m . at 1 , and 27 gr . at midnighr.
4. The Altiitude of the Sun being given, to find the Hour of the Day.

The Alitude being obferved as before, lee the Bead be fet for the time, then bring the Thred to the Alcitude, fo the Bead Chall thew the Hour of the day.
As if the 10 of April, having fet the Bead for the time; you thall find by the Quadrant the Alcitude to be 36 gr . the Bead at the fame time will fall upon the Hour-line of 9 and \(3 ;\) wherefore the Hour is 9 in the fore noon, of 3 in the afternoon. If the Altitude be near 40 gr . you thall find che Bead at che fame time to fall half way between the Hour-line of 9 and 3, and the Hour-line of 10 and 2 ; wherefore ir mult be either half an Hour paft 9 in the morning, or half an Hour paft 2 in the afternoon; and which of thefe is the true time of the day, may be foon known by a fecond Oblervation : for if the Sun rife higher, it is the forenoon; if it become lower, it is the afternoon.

\section*{5. The Hour of the Night being given, to find how mach the Sun is below the Horizon.}

The Sun is always fo much below the Horizon at any Hour of the Night, as his oppofite Point is above the Horizon at the like Hour of the Day; and therefore the Bead being fer, if the queftion be made of any Hour of the Night in the Summer, then move it to the like Hour of the Day in the Winter; if of any Hour of the Night in Winter, then move it to the like Hour of the Day in Summer: fo the Degrees which the Thred cuttech in the Quadrant fhall fhew how much the Sun is below the Horizon at that time.

As if it be required to know how much the Sun is below the Horizon the 10 of April ar 4 of the Clock in the Morning, the Bead being fet to his place according to the time in the Summer-hours, bring it to 4 of the Clock in the afternoon in the Winter-hours, and fo hall you find the Thred to cut 8 gr . and about 30 m . in the Quadrant; and fo much is the Sun below the Horizon at that time.

\section*{6. The Depreflion of the Sun fuppofed, to give the Hour of the Night with kus, or the Hour of the Day to our Antipodes.}

Here alfo, becaufe the Sun is fo much above the Horizon at all Hours of the day, as his oppofite point is below the Horizon at the like Hour of the Night; therefore filf fet the Bead according to the time, then bring the Thred to the Degree of the Suns Depreffion below the Horizon, fo fhal the Bead fall on the eontrary Hour-lines, and there fhew the Hour of thi Night in regard of us, which is the like Hour of the Day to our Antipodes

As if the 10 of April, the Sun being then in the beginning of \(\forall\) and by fuppofition 8 gr .30 m . below the Horizon in the Eaft, it be re quired to know what time of the Night it is; firf, fet the Bead accord ing to the Day in the Summer-hours, then bring the Thred to 8 gr .30 m in the Quadrant, fo thall the Bead fall among the Winter-hours on th Line of 4 of the Clock in the afternoon: wherefore to our Antipodes it i 4 of the Clock in their afternoon, and to us it is then 4 of the Clock it the morning.
7. The time of the Year, or the place of the Sun being given, to fin the beginning of Day-break, and end of Twilight.

This Propofition differech litelle from the former: for the Day is fai to begin to break when the Sun comerh to be but 18 gr . below our Ho rizon in the Eaft; and Twilight to end, when it is gotten 18 gr . belov the Horizon in the Weft : Wherefore let the Bead be fet for the time, an then bring the Thred to 18 gr . in the Quadrant, fo fhall the Bead fall or the contrary Hour-lines, and there fhew the Hour of Twilighr, as before
So if it be required to know at what time the Day begins to break of the ro of April, the Sun being then in the beginning of ४ ; firft, fer th Bead according to the time in the Summer-hours, and then bring theThree to 18 gr . in the Quadrant, ,o fhall the Bead fall among the Winter hours a little more than a quarter before 3 in the morning; and that \(i\) the time when the Day begins to break upon the 10 of exprill.

\section*{CHAP. VII.}

\author{
Of the Horlzon.
}

T\({ }^{4}\) He Horizon is here reprefented by the Ark drawn from the beginning of Declination towards the end of February, divided unequally, and numbred by \(10,20,30,40\), occ.
1. The Day of the Month; or the Place of the Sun being known, to find the Amplitude of the Swns Rifing and Setting.

Let the Bead rectified for the time be brought to the Horizon, and there it thall thew the Amplitude required.

Asif the day given be the 15 of May, the Sun being in the fourch \(\mathrm{De}^{-}\) gree of II, the Bead rectified and brought to the Horizon, thall there fall on 35 gr .8 m . fuch is the Amplitude of the Suns Rifing from the Eaft, and of his feeting from the Weft; which Amplitude is always North when the Sun is in the Northern Signs, and when he is in the Southern Signs always Southward.
> 2. The Day of the Month, or the Place of the Sunbeing given, to find the \(A\) fcenfional Difference.

Let the Bead rectified for the time be brought to the Horizon, fo the Degrees cut by the Thred in the Quadrant fhall hew the difference of Afcenfions.

As if the day given be the 15 of May, the Sun being in the fourch Degree of II, let the Bead be rectified and brought to the Horizon; fo fhall the Thred in the Quadrant thew the Afcenfional difference to be 28 gr . and about 50 m .

Upon the A fcenfional difference depends this Corollary.
To find the Hour of the Rifing and Setting of the SuA, and thereby the length of the Day and Night.

The time of the Suns Rifing may be gueffed at by the 3 of the laft Chapter: buthere by the Afcenfional difference it may be better found,

> Qqq

\section*{122 To find the Hour of the Night by the Stars:}
and that to a minute of time. For if the Alcenfional Difference be converted into time, allowing an Hour for 15 gr . and 4 Minutes of an Hour for each Degree, it fheweth how long the Sun rifech before fix of the Clock in the Summer, and after fix in the Wincer.

As if the day given be the is of May, the Sun being in the fourth of II, and his Afcenfional Difference found as before 28 gr .50 m . this converted into time, maketh i ho. and fomewhat more than 55 m . of an Hour: wherefore the Sun ar that time, in regard it was Summer, rofe 1 bo. and full 55 m . before 6 of the clock; and fo having the quanity of the Semidiurnal Ark, the length of the Day and Night need nor be unknown.

\section*{CHAP. VIII.}

\section*{Of the Five Stars.}

IMight have put in more Stars, but thefe may fuffice for the finding of the Hour of the Night at all times of the Year: And firft I make choice of Ala Pegaf, a Star in the extremity of the Wing of Pegafus, in regard it wants but 6 minutes of time of the beginning of \(\gamma\); but becaule it is but of the fecond magnitude, and not always to be feen, I made choice of four more, one for each quarter of the Ecliptick, as Oculur ४, The Bulls Eye, whofe Right Afcenfion converted into time, is 4 ho .15 mo then of Cor \(\Omega\), The Lions Feart, whofe Right Afcenfion is 9 ho .48 m .
 Aquila, or The Valtures Heart, whofe Right Afcenfion is 19 ho. 33 m . Thefe five Stars have all of them Northern Declination; and if any others, fome of thefe will be feen at all times of the Year. The ufe o them is,

\section*{The cAltitude of any of thefe five Stars being known, to find the Hour of the Night.}

Finft, put the Bead to the Star which you intend to obferve, take his Alcitude, and find how many Hours he is from the Meridian by the fourth Prop. of the fixch Chap. then out of the Right Afcenfion of the Star, take the Right Afcenfion of the Sun converred into Hours, and mark the dif. ference; for this difference being added to the oblerved Hour of the Stan from the Meridian, thall theiw how many Hours the Sun is gone from the Meridian, which is in effect the Hour of the Night.

\section*{The efe of the Azimuth-lines.}

Asif the 15 of May, the Sun being in the fourth of II, I Hould fet the Bead to Arcturus, and obferving his Alcitude, hould find him to be in the Weft about 5 : gr . high, and the Bead to fall on the Hour-line of 2 afternoon, the Hour would be 1 I bo. 50 m . paft noon, or 10 m . fhort of midnight.

For, \(\mathbf{6 2} \mathrm{gr}\). the Right Afcenfion of the Sun, converted into time, makes 4 bo .8 m . which if we take out of 13 ho .58 m . the Right Afcenfion of Arcturus, the difference will be 9 ho. 50 m . and this being added to 2 ho . the oblerved diftance of Arcturus from the Meridian, fhews the Hour of the Night to be 11 ho. 50 m . Another Example will make all more plain.

If the 9 of July, the Sun being then in 26 gr . of \(\Phi\), I thould fer the Bead of Oculus \(૪\), and obferving his Altitude, thould find him to be in the Eaft about 12 gr . high, and the Bead to fall on the Hour-line of 6 before Noon, which is 18 ko . paft the Meridian, the Hour of the Night would be better than a quareer paft 2 of the clock in the morning.
For, 118 gr . the Right Afcenfion of the Sun, converted into time, make 7 ho .52 m . this taken out of 4 bo .15 min . the Right Afcenfion of Oculess \(\Varangle\), adding a whole Circle, (for ocherwife there could be no fubtraction) the difference will be \(20 \mathrm{ho},-23 \mathrm{~m}\). and this being added to 18 ho . which was the obferved diftance of Oculus of from the Meridian, thews that the Sun (abating 24 ho . for the whole Circle) is 14 ho. 23 mo paft the Meridian, and therefore 23 m . paft 2 of the clock in the morning.
If the Nocturnal be placed on the back fide of the Quadrant, you may avoid this Equation of Right Afcenfions. For knowing the time of the Year when the Staf will be in the South at midnight; you may bring that time to the Hour obferved, then will the Day of the Month wherein you made the Obfervacion point ar the Hour of the Night required.

As in the firft Example, where, on the 15 of May, the Bead fet to Ar Eturus fell on the Hour-line of 2 afernoon, becaufe Arcturies will be in the Souch the 14 of October complete at midnight, you may place the 14 of Ottober at the Hour of 2 , fo the 15 of May will point to 11 ho. 50 m .

In the fecond Example, where the 9 of fuly the Bead fer to the Balls Eye fell on the Hour-line of 6 before Noon, becaufe the Bulis Eye will be in the South the 16 of May complete at midnight, you may turn the 36 of May to the Hour of 6 , and fo you fhall find the 9 of \(\bar{f}\) wh to point \(2 h o .23 m\), as before.

> CHAP. IX.

\section*{Of the Azimuth-lines.}

THofe Lines which are drawn between the Equator and the Tropicks, on that fide of the Quadrant which is neareft unto the Sights, and are numbred by \(10,20,30\), © \(c\). do reprefent the Azimuths; the uttermoft towards the left hand reprefenterh the Meridian; that which is nambred with 10, the tenth Azimurh from the Meridian ; and that which is numbred with 20, the twentieth : and fo the reft. Thofe Lines which are drawn from the Equator to the left hand, do Thew the Azimuth in the Summer; and thofe other to the right hand do Thew the fame in the Winter. The Ule of them is:
1. The Azimuth whereon the Sun beareth from us being known, to find the Altitude of the Sun above the Horizon.

Firf, let the Bead be fet for the time, as in the former Chapter ; then move the Thred until the Bead fall on the Azimath: fo the Degrees which the Thred cuttech in the Quadrant hall fhew the Altitude of the Sun at that time. Where you are to obferve, That feeing the Azimuths are drawn on the right fide of the Quadrant, you are allo to begin to number the Degrees of the Suns Altitude from the right hand toward the left: Asif the Sights had been fet on the Line A B, and you had turned your right hand towards the Sun in obferving of his Altitude, concrary to our prae Etice in the,former Chapter.

As if the cime given were the 2 of \(A u g a f t\), when the Sun hath about 15 gr . of Norsh Declination, you may fer the Bead for the time, ,o you fhall find the Height at Noon, when the Sun is in the South, to be 53 gr . 30 m . when he is 10 gr . from the South 53 gr .10 m . when 20 gr . then about 52 gr .8 m . when 30 gr . then 50 gr .20 m . when 40 gr , then 47 gr . 48 m . when 50 gr . then 44 gr .12 m . when 60 gr . then 39 gr .35 m. when 70 gr . then 33 gr .50 m . when 80 gr . then 27 gr . when he is in the Eaft or Weft 90 gr . from the Meridian, then is the height near 19 gr .20 m . when he comes to be 100 gr . then 11 gr .15 m . when 110 gr . then 3 gr .20 m . and before he cometh to the Azimuth of 120 gr , he hath no Altitude. For the Sun having 15 gr . of North Declination, will rife and fet at 114 gm . 34 m . from the Meridian.
2. The
2. The eAltitwde of the Sun being given, to find on what Azimuth be beareth from zu.
Let the Bead be fet for the time, and the Alcitude obferved as before; then bring the Thred to the Complement of that Altitude, fo the Bead thall Ghew the Azimath required.

As if the fecond of Augnff, having fet the Bead for the time, you fhall find the Altitude of the Sun to be 19 gr .20 m . remove the Thred unto \(70 \mathrm{gr}: 40 \mathrm{~m}\). the Complement of the Altitude; or, which is all one, to \(19 \mathrm{gr}\).20 m . from the right hand toward the left, and the Bead will fall on the Line of 90 gr . from the Meridian; and therefore the Point whereon the Sun beareth from us is one of thefe two, either due Eaft, or due Weft : And which of thele is the true Point of the Compals, may be foon known by a fecond Obfervation; for if the Sun rife higher, it is the forenoon ; if it be lower, it is the afternoon.

By knowing the Azimuth or Point of the Compals whereon the Sun beareth from us, it is eafie to find,

A Meridian Line, and thereby The Coafting of the Countrey,

> The Site of a Building,

The Variation of the Compafs.
As if the fecond of Auguff in the afternoon I hould find by the Height of the Sun that he bears from me 60 gr . from the Meridian toward the Weft; then there being 90 gr . belonging to each quarter, the Weft will be 30 gr , to the right hand; the Eaft is oppofite to the Weft, the North and South lic equally between them.

CHAP. X.

> Of the Quadkat.

THe Quadrat hath two Sides divided ; the other two Sides next the Center may be fuppofed to be divided each of them into 100 equal parts: That which is next the Horizontal line contains the parts of Right Shadow ; the other next the Sights, the parts of Contrary Shadow. The Ule of the Quadrat is,

\section*{The vje of the Quadrat.}
I. Any Point being given, to find whether to be level with the Eye.

Lift up the Center of the Quadrant, fo as the Thred with the Plummet may play eafily by the Side of it: then look through the Sighrs to the Place given; for now if the Thred thall fall on A B the Horizontalline, then is the Place given level with the Eye: But if it fhall fall within the laid Line on any of the Divifions, then it is higher; if without, then it is lower than the level of the Eye.

2. To find an Height above the Level of the Eye, or a Diffance at one
Obfervation.

Look through the Sights to the Place, going nearer or farcher from ir,' till the Thred fall on 100 parts in the Quadrat of 45 gr . in the Quadrant; fo fhall the Height of the Place above the Level of the Eye, be equal to the Diftance between the Place and the Eye.

If the Thred fall on 50 parts of a Right Shadow, the Height is but half the Diftance: If it fall on 25 , it is a quarter of the Diftance; if on 75 , it is three quarters of the Diftance. For as oft as the Thred fallech on the parts of Right Shadow,

As 100, to the Parts on which the Thred falleth:
So is the Diffance, to the Height reguired.
And on the contrary,
As the Parts cut by the Thred are to \(200:\)
So the Height, sinto the Difancfo

But when the Thred thall fall on the parts of Contrary Shadow, if it fall on 50 parts, the Height is double unto the Diftance; if on 25, it is four times as much as the Diftance. For as oft as the Thred fallech on the. parts of Contrary Shadow,

\section*{As the Parts cuitby the Thred, are unto 100 :}

So is the Diftance, wnto the Height. And on the contrary,

As 100, are unto the Tparts cut by the. Thred:
So is the Height, wnto the Diftance.
And what is here faid of the Height and Diftance, the fame may be underttood of the Height and Shadow.

\section*{3. To find a Heigbt or a Diffance at two Obfervations.}

As if the Place which is to be meafured might not otherwife be aṕproached, and yet it were required to find the Height BC and the \(\mathrm{Di}_{\mathrm{i}}\) ftance: Firft, I makechoice of a Station ar A, where the Thred may fall on 100 parts in the Quadrat, and 45 gr . in the Quadrant, the Diftance \(A B\) will be equal to the Height \(B C\) : then if \(I\) go farther in a direct \(L\) ine with the former Diftance, and make choice of a fecond Station at \(D\), where the Thred may fall on 50 parts of Right Shadow, the Diftance BD fhould be double to the Height BC; wherefore I may meafure the difference berween the two Stations A and D; and this difference D A will be equal both to the Diftance, A B, and the Height B C.

Or if I cannot make choice of fuch Stations, I take fuch as I may, one at \(D\), where the Thred fallech at 50 parts of Right Shadow; the fecond at E , where it fallech on 40 parts; and fuppofing the Height B C to be \(\mathbf{1 0 0}\), I find that,

As so Parts are unto 100, the side of the Quadrat: So 100 the fuppofed Height, unto 200 the Diftance D.B.
And as 40 Parts at the fecond Station, winto 100 :
So 100 the fuppufed Height, unto \(25^{\circ}\) the Diffance B E.
Wherefore the difference between the Stations \(D\) and \(E\) fhould feem to be 50; and then if in the meafuring of it I fhould find it to be either more or lefs, the Proportion will hold, As from the fuppofed Difference,

\section*{The Use of the Quadrat.}
\(r_{0}\) the mealured difference; fo from Height to Height, and from Diftance to Diftance.

As if the difference between the two Stations \(\mathbf{D}\) and E being mealured, were found to be 30 ,

As 50 the fuppofed difference, unto 30 the true difference:
I So 100 the fuppofed Height, unto 60 the true Heigbt:And 200 the fuppofed Diffance, unto 120 the tree Diffance:
And 250 at the fecond Station, unto 150 the Diffance BE.
The like reafon holdeth in all other Examples of this kind. And if an Index with Sights were fitted to turn upon the Center, it might then ferve by the fame reafon for the finding of all other Diftances.

\section*{FINIS.}

\section*{A SECOND}

\title{
APPENDIX CONCERNING THE
}

\section*{Description and Uses} OF ANOTHER

\title{
QUADRANT,
} Fitted for Daily Practice;

For finding the

\section*{HOUR and AZIMUTH, A N D}

Other things of the Suns Courre, in reference to the Fliorizon; with New Lines, ferving to the forementioned, and other Purpoles, more accurately.

Invented by Mr: SAM. FOSTER, fometime Profeffor of Afronomy in Grefbam-College.

The Defcription of the QUADRANT.

0Oncerning the Making and Ule of this Quadrant, you are to underftand, Thar the Hour and Azimuth-lines are like thofe that are feen upon the former Quadrant, and the Ufes are (moft part) the fame; anid therefore we lightly pafs them over, as is feen in the Rry
fecond

\title{
The Forefide of the QUADRANT.
}

The Backfide QUADRANT.

\section*{The Ufes of the Quadrans.}
fecond Propofition: But the diftance between the Equinoctial and the Tropicks is here fhortned, to the end that more room might be gained above, for the better placing, and the more exact dividing of the Equinoctials; which in fmall Inftruments may be divided to each fecond Degree; and in larger, to each fingle Degree.

If it be required to make thefe yet larger, then may the forementioned Azimuch-lines be left quire out : for the ufe of them, as they are here defribed, is of fmall moment, very hardly making good the Suns Coaft to one entire Degree; and for ferious Pragtice, the new Lines added are far more fufficient. If this be granted, then may the Equinoctial ftand below, by which means they fhall become large enough, even in fmall Inftruments. Efpecially this may moft fairly be done, if the Hour-lines be reverted, by changing the Places of the Equinoctial and Tropicks; that is, if the Equinoctial Altitudes be inferted below, on the Circle neareft the Limb, and the Tropical Alcitades above, in the Circle neareft to the Center. Thus becoming more large, they will fupply all intended purpofes very well.

There is no Scheme given of this change now mentioned, nor of the Vulgar Hours and Azimuths, becaufe thofe Lines are well enough known already, and this mutation is eafie to be underftood : But for the infribing of the new additional Lines, take thefe following Tables and Directions.

\section*{How to infrribe the Additional Lines upon the QUADRANT. \\ 1. For the Limes on the Forefide.}
\(T\) He two Equinoctials DC and EB, the one for the Hours, the other for the Azimuths, are to be divided from the equal Limb by help of the following Table; and are beft to be numbred from the clofeft parts of them to the wideft, as is done in the Figure.

\section*{132 Toinfcribe the Additional Lines on the Quadrant.}

A Table of Equinoctial Altitudes, both for Hours and Azimuths, which are to divide the Equinoctial.

The two Equinoctial being divided,
1. Make \(E N\) parallel to \(A C\), and \(O\) D parallel to \(A B\).
2. Make E N a Tangent of 45 deg . or Radiwn ; then Ghall AM be the Co-tangent of the Latitude, viz. in our Example 38 deg. 30 m .
3. Make N A Radius ; then fhall A P be the Tangent of 23 deg. 30 mo and the Linc A P to be fo divided into \(23 \frac{1}{2}\) Parts.
4. Making A M equal to the Co.fine of the Latitude, \(A \odot\) thall be the Sine of the Latitude.
5. Make A X equal to A M on both fides.
6. Make \(a \omega\) perpendicular to \(A\) a 60 ; and \(A\) equal to AN.
7. A ris the half Tangent of 75 deg .
8. M A being made the \(\mathrm{C}_{0}\)-lecant of the Latitude, find the Radirs thereunto belonging, which Radius make a Tangent of 45 deg. then are the Hour-points upon the Side AC the refpective Tangents of \(1.5,30\), 45 , and 60 deg .
9. Draw rs from the middle Point of MA, and draw the fifth Hour from \(M\) parallel to is : And all the reft of the Hour-lines maft be drawn from their feveral Points to M as their Center. The Line of 6 is drawn from the Center \(M\), perpendicular to \(A B\), or parallel to \(A C\) : And all the orher Hours beyond 6 may be tranfferred by a Bevel Square.
10. The double Square of \(23 \frac{1}{2}\) equal \(g r\) r. is done thus :

Add 20 gr . to the Equinoctial Altitude; infert the Sum, and the Equinoctial Altitude : Divide the intercepted Arks into 20 equal parts, to which add 3 and a half of the fame parts. This is to be fet both ways from the Equinoctial, upward and downward, which the inferted Tables will help you to do.

\section*{11. For the Lines on the Back fide.}
1. On the Back-fide, let the Points \(M\) and © change Places (or be fet contrary to what they are on the Fore-fide) and thein all the other Work (for the manner of it) is the fame as on the Forefide.
2. For the reverted Hours, take every Hour-point (upon A C) from \(A\), and turn it twice upon the 6 a clock Line from \(M\), through which Points. (and their Correfpondents on the Line A C) draw the reverted Hours.
3. The Scales for the Suns Declination, and Months, are inferted from: fuch Tables as are common.
4. The Limb for the Slope-hours may be about a feventh or eighth part of the Radius; and the Marginal Divifions numbred \(1,2,3,4,5,6\), , \(\sigma\) c. for Stars, mult be put in by that Scale of Declinations according to which you put in the Hours and Azimuths: And the Stars may be fuch as in the following

\section*{134 To infcribe the Additional Lines on the Quadrant.}
following Table, or fuch other as any thall defign to ule; but thofe were conceived by the Author to be as felect as any, they being (one or more of them) always in view, and fir for obfervation.
\begin{tabular}{|c|c|c|c|c|}
\hline N & Names. & R.Afc. \({ }^{\text {d }}\) & Declin. & M \\
\hline 5 & Exira ala Peg. & \(0 \quad 26\) I & 13 137 & 2 \\
\hline 6 & Cauda Leonis & \begin{tabular}{lll}
3 & 28 \\
\hline
\end{tabular} & \(16 \quad 25\) & I \\
\hline 5 & Cor Leonis & \(\frac{16}{16}\) & \(\begin{array}{ll}13 & 27\end{array}\) & I \\
\hline 3. & Os Pega/i & 1 \begin{tabular}{ll}
18 & 58 \\
\hline 3
\end{tabular} & 8 8-14 & 3 \\
\hline 3 & Aquila & \begin{tabular}{|l|}
33
\end{tabular} & 8 I 4 & 2 \\
\hline I & Procyon & \(\begin{array}{ll}34 & 43\end{array}\) & \(6 \quad 3\) & 1 \\
\hline 2 & Dex. Hum. Orion & \(47 \quad 49\) & \(\begin{array}{ll}7 & 24\end{array}\) & 1 \\
\hline 4 & Cap. Ophiu. & \(50 \quad 21\) & \(12 \quad 52\) & 3 \\
\hline 2 & Med. Nex. Coll. Serp. & \begin{tabular}{|ll}
63 & 58
\end{tabular} & \(\begin{array}{ll}7 & 24\end{array}\) & 2 \\
\hline 9 & Lucida Pleiad. & \[
64 \quad 0
\] & \(23 \quad 3\) & 4 \\
\hline 8 & ArEturus & \(\begin{array}{ll}74 & 53\end{array}\) & 20-58 & 1 \\
\hline 7 & Corns \(r\) prec. & & 17.40 & 4 \\
\hline
\end{tabular}

T T He Coniftruction of this Quadrant, as it is thus metamorphofed, mas communicated by Edward Page, living at the Sign of ths Sugar-loaf in Hofier-lane, who maketh this and all other \(M \mathrm{M}\). thematical Inftruments.

I- otherQuadrants were thought complete in ufe, this will be found much more copious: For it fervech not onely to find the Hour of the Day by the Sun, of the Night by the Stars, and what elfe belongs to their Ri. fings, Sertings, Amplitudes, ofc. but is very well fitted alfo to defrribe al the moft ufual Yorts of ftanding Dials; that is, all that are upright, of elfe reclining or inclining to the full Eaft and Weft; which two forts wil furnifh many kinds of fuch Bodies as are regularly formed. Thefe ar here performed by very eafie and familiar ways of working. The No Eturnal for the Hour by the Stars, is more expedient in this than in othe Quadrants: For in judging of Time onely by the Appulfe of the Star to the Meridian, and finding that Meridian teo onely by a rude conje cture from the North-Star, an errour of a quater or half an Hour is cafily unawares committed. This cannot be fo here, if any ordinary care \(b\)
had in taking the Stars Altitude. For this purpefe there are twelve felect Stars inferted, all of them of North Declination, lying between the Equinoctial and the Tropick of Cancer; and in fuch difference of Right Alcenfions, as that one or other of them will be always in fuch convenient place of the Heavens, as from whence the Hour may very fully be collected every Night throughout the whole Year. Since therefore they are fo convenient for ufe, there would be a litele more diligence ufed to come to the knowledge of them in the Heavens, that due Obfervations may be made whenfoever any of them thall be in view. If any defire that other Stars (fuch as are better known to them) Ahould be inferted, they may have their defire caflly fulfilled: Onely they mult take care, that the Stars be fuch as fall berween che Tropicks in che Heavens, and chiefly between the Equinoctial and Norch Tropick, becaufe fuch Stars are longeft in view, and their Hours beff found. - The Propofitions that are here fet down, might have been encreafed both in number and in variety of performance, if perplexity had been affected; but fuch of them, and fuch ways of effecting them, are here pitched upon, as feemed moft conducible for daily ufe. And for the fame reafon it is, that the feveral Lines upon the Quadrant are denored by Letters onely, that by fuch brevity all unneceflary circumlocution might be taken off, which, by impofition of Names to each of them, could not fo eafily have been avoided.
If the former Quadrant have heretofore found good acceptance; becaufe it is of fome good ufe, I doubt not but a greater proportion of thanks will be given from the Ingenious, for making publick this larger Improvement of this Inftrument.

\section*{The USES of the QUADRANT.}

\section*{I. To find the Sxns Declination.}

IAy the Thred to the Day of the Month upon the back-fide of the Quadrant, and it will thew you the Declination of the Sun in that unequal Scale, which is numbred with twice 3. If your Day fall in the upper Scale of Months, (which may be called the Summer-\{cale) then is the Dectination North : If it fall in the lower (or Winter) Scale, the Dedination is South from the Equinoctial.
Thus upon April 20. you thall find the Sun to decline 15 gr . Northo ward; and Fansary 30 . it declines about 4 gr .30 m . Southward.

\section*{The Ufes of the Quadrant.}

II The contrary Work is eafie; by affigning the Suns Declination, to know on what Day of the Month the fame thall be. For the Thred may be laid to the Declination in two Places, in both which it will crofs the two half years, Thewing two feveral days on which the Sun fhall have fo much Declination North; and two days more, on which it thall have that Declination Southward. It will be eafie to diftinguifh which of thefe days ferves your purpofe, by the two Seafons of the Year, unto which the two Scales of Months do anfwer.
II. To rectifie the Bead for Obfervation of Hosr or Aximuth; and to perform thofe things that are done by the ufual Lines upon the Quadrant.

HAving found the Suns Declination for your Day, you muft count the fame upon the double equal Scale which is on the fore-fide of the Quadrant, namely, from the middle of it towards the right hand, if the Declination be North, or towards the left hand if it be South. The Thred being laid thereto, you mult move the Bead till it fall juftly upon the Hour of 12 , fo fhall it be fee right for the intended ules of that day As,
1. For the Hour. If you oblerve the Suns Altitude (by letring the Sunbeams to thine through the Sights, and the Plammet to hang at full liberty clofe to the Plane of your Quadrant) the Bead will (hew the Hour : if you have refpect to the time of the Year: That is, If the Suns Declination be North, the Bead fhews the time of the day among the Summerhours, thofe which Spread from the Equinoctial towards the right hand If the Sun dedine South, the time mult be accounted in the crofs Lines which are the Winter-hours. And in this Oblervation you thall fee th Thred to cut (in the equal Limb) the Suns Altitude above the Horizon -Thus at London, if the © decline 15 gr . Norchward, and the Alci tude were \(9 i^{\frac{3}{2}} \mathrm{gr}\). the Hour would be about a quarter before 6 in th Morning, or a quarter paft 6 in the Evening. But if the Sun had th fame Declination Southward, and the fame Altitude alfo, then would th rime be half an Hour paft 8 in the morning, or half an Hour paft 3 in th evening. The former of theere times is thewed by the Bead among th Summer- hours, the latter among the Winter-hours.
2. For the Azimsth. If the Suns Altitude be numbred the concrar way in the equal Limb, and the Thred be laid chereto, the Bead will the thew the Azimuch of the Sun, if you account is according to the time \(C\)
the Year ; that is, among the Summer-azimuths when the Sun harth North-declination, and among the Winter-azimuths when the Siun dedines South. The Summer-azimuths are thofe that fpread from the Equinoctial towards the leff hand ; the other croffing them are the Win-ter-azimuths. Thus if the Suns Declination were 8 gr . Norchward, and the Altitude 18 gr . the Azimuth would be 80 gr . trom the South: But if the Sun had 8 gr . of South Declination, and 18 gr . Altitude. the Azimuth would be sogr. from the South here at London. This way may ferve for grofs works, when the Azimuth is required onely within one or two whole Degrecs. You thall find it done more accurately, and for better parpofes, in the chirteenth following.
3. For the \(A f\) cenfional Difference. The Bead being reatified as before, and applied to the leff fide of the Quadrant, gives the Afcenfional Difference, or the time of Sun-rifing and ferting, before or after 6 a clock, mong thofe Hours and Quarters which interfect each other upon the fame left fide of the Quadrànt, if you count them agreable to the time of the Year : And from the Bead to the Line of 12, rightly taken, according to your time of Summer and Winter, gives the Semidiurnal Ark of the Sun, or half the Days length: As allo, frem the Bead to the other Line of 12, which ferves for the contrary time of the Year, gives she SemineCturnal Ark, or half. the length of the Night.-Thus if the Suns Declination were \(14^{\frac{1}{3}} \mathrm{~g}\) r. the Afcenfional Difference would be 1 Hour and \(\frac{1}{4}\) of an Hour : And if the faid Declination were North, then the Sua rifech that day \(\frac{1}{4}\) of an Hour before 5, fetiech \(\frac{1}{4}\) affer 7 . The Semidiurnal Ark (from the Bead to the Summer 12) is \(7 \frac{1}{4}\) Hours. The Seminoturnal Ark (from the Bead to the Winter 12) is \(4 \frac{3}{4}\) Hours. Thefe doubled make the day \(14 \frac{1}{2}\) Hours long; the night \(9 \frac{1}{2}\) long.
4. For the Amplitade. The Bead applied to the right fide of the Quadrant, gives the Amplitude of Sun-rifing and ferting in all variectes: Namely; From the Bead to that South-azimuth which is proper to the eazon of the Year, is the Amplitude from South; asallo, to the contrary South-azimuth, gives the Amplitude from North: 斤hewing how many Degrees of the Horizon the Sun rifech and fettech any day from the jult iouth or North. So from the Bead to the Eaft and Weft-zzimuth (which sthe ninetieth Azimuch) gives the Amplitude from Eaft or Weft.
Thusif the \(\mathcal{O}\) decline \(14 \frac{1}{3} \mathrm{gr}\). the Amplitude is here \(23 \frac{1}{2} \mathrm{~g}\) r. almoft. If he Declination be North, then is this Amplitude from Eaft and Weft owards the North \(23 \frac{1}{2}\) Degrecs. The Amplitude from the North it elf is then \(66 \frac{3}{2} \mathrm{gr}\). From the South point of the Horizon it is \(113 \frac{1}{2} \mathrm{gr}\).

\section*{138 To find the beginning and end of Twilight.}

You may eafily (in fuch manner) account it for South Declinations of the 0 .
V. To find when Twilight begins in the Morntng, and ends at Evening; which Moments are the two utmoft Termis of Dark Night.

AFrer the Bead is rectified for your Day, the Thred laid to 18 gr . in the equal Limb, will thew the Hour or pare required. Only here remember to take your Hour aright: Namely, in Winter time look among the Summer-hours, where is is that the Bead refteth; for that i the Morning or Evening Hour of Twilight : So in Summer time you muf look among the Winter-hours. Thus when the Sun declines II \(\underset{i=g r}{r}\). Southward, the Twilight begins ae \(L_{o n d o n}\) at 5 in the morning, and end at 7 a clock at night, as the Bead fhews among the Summer-hours: Bu if that Declination were North, the Twilight would begin at \(\frac{1}{4}\) of at
 Suns depreffion 18 gr . under the Horizon, is the ufual Term whereon t, begin and end the Twilight. You may as well do this to any Degreeo Light, as to 12 or 13 Degrees depreffion; at which time in the mornin all things begin to be vifible, and the Light to be of fome ufe. As if th Sun decline \(3 \frac{1}{2} \mathrm{gr}\). Southward, if you fet the Bead thereto, and thenla the Thred at 12 gr . in the equal Limb, you fhall fee the Bead (amon the Summer-hours) fall upon 5 in the morning, and 7 at nighe; fo the at \(\zeta\), and till 7 , there is a reafonable degree of Light. Or if in Summ the © had declined \(7 \frac{1}{2} \mathrm{gr}\). Northward, the faid degree of Lighe woul begin at 4 in the morning, and end at 8 in the evening: Near 1 the longelt days you thall find no Twilight at all, according to 18D grees depreffion of \(\bigcirc\) under the Horizon; for then the Bead will fall b yond the Winter 12 a clock Line.

IT Thefe are the chief Ules of the Hour and Azimuch-lines, as the are here, and in all Quadrants commonly inferted. There are oth things, concerning the Suns place in the Ecliptick, the Suns Declinatio: the Suns Right Afcenfion: Namely,-How by having any one of the! to find out the reft.-Thefe are here omitted, as matters onely of curi fity, being of no furcher ufe in this Inftrument, than that they may tno Nn : Yet if any thould defire them, they may have a Scale of the : Signs infcribed on the back fide, by help of which, the fore-named requ frites may be atrained.

The Parciculars that follow are moft aimed at, (as being more

\section*{To find the Afcensfonal Difference, and Amplitude.}
them, and more accurate) and therefore the precedent things are thus briefly paffed over.

\section*{III. To find the Suns Afcenfonal Difference, \&ec.}

\(C\)Ount the Declination in the equal Limb from F to K : The Thred there laid gives BS the Afcenfional difference:- The faid Afcenfional difference gives the times of Sun-rifing and ferting before and after \(\sigma\), widh the lengehs of Day and Night. - The fame may be done for all Stars whofe Declinations are known.

I So by having che Afcenfional difference, you may find the Suns Dedination thereunto belonging.
Here at London, if the Declinntion be 20 gr , the Afcenfional difference is 27 gr .14 mm . that is I ho. 49 m . And if this Declination be North, the Sun rifech I ho. 49 m . before 6, and fetrech fo much after 6: that is, it rifech II m. after 4 in the morning, and fettech 49 m . after 7 a clock at night: And the time of fetting being doubled, gives 15 bo .38 m . for the days length: The time of rifing being doubled, gives 8 ho .22 m . for the length of the night. But if the Declination had been South, the Sun Thould rife I ho. 49 m . after 6 , (that is, at \(7,49 \mathrm{~m}\).) and fhould fet I hoo 49 m . before 6 , (that is,at 4 , and II m .) and the day would be \(8 \mathrm{ho}\).22 m . long; the night, 15 bo .38 m .

\section*{IV. To find the Suns Amplitude, \(8 x\).}

\(C\)Ount the Declination in the equal Limb from G to H ; The Thred there laid gives CR for the Amplitude.-The fame may be done forStars whofe Dedinations are known.
So by having the Amplitude, you may find the Declination: For if the Amplitude be counted from \(C\) to \(R\), the Thred laid at \(R\) gives the Declination GH.

Ac London, if the Declination be 20 gr , the Amplitude is 32 gr .20 mm from the Eaft and Welt Points of the Horizon.
V. Having the Declination of any upright Plane, to find the Elivation of the Style, \&c.
LAy the Thred to the Planes Declination, counted from D to R : fo will GH be the Elevation.
\[
\text { Sff } 2
\]

I So by having the Elevation G H, you may find D R the Declination If an upright Plane (here) decline 20 gr . the Styles Elevation will be \(35 \mathrm{gr} .4^{8} \mathrm{~m}\) 。

\section*{VI. To find the Deflection, ofoc.}

\(C\)
Ount the Declination from B to S: The Thred there laid gives F K the Deflexion.
-I So by having F K the Deflexion, you may find BS the Planes De: clination.
If a Plane declining 20 gr . the Deflexion is 15 gr .13 m .

\section*{VII. To find the Difference of Longitude, © © \(c\).}
1. \(C\) Ount the Elevation from \(F\) to \(K\) : ES is the Difference of Longitude.
2. Count the Deflexion from G to \(\mathrm{H}: \mathrm{CR}\) is the Difference of Longitude.
- By the contrary Works, having the Difference of Longitude, you may find the Elevation and Deflexion.
A Plane declining \(20^{\circ} \mathrm{gr}\). hath 25 gr . difference of Longitude.

\section*{VIII. To make an Horizontal Dial.}
3. Ount the Hour from \(E\) to \(S\); the Thred laid at \(S\) gives \(F K\). Then count \(G H\) equal to \(F K\); the Thred at \(K\) laid gives \(D R\), the ppace of that Hour from 12.
2. Count the Hour from \(C\) to R, and by help of the Thred you fhall have GH. Then count \(F K\) equal to \(G H\); the Thred laid at \(R\), gives BS for the fpace of that Hour from 12.
3. With a pair of Compaffes take the Hour from C to R,and fet it from B to S: B S is the Space or Angle of that Hour from 12.
4. Take with your Compaffes the Hour from E to S, and fet it from D to R : So the number D R Chews how many Degrees that Hour mult be from 12.

By all thefe ways (here at London) the third Hour will be found about 38 gr . from 1 2. The reft will be in like manner found according to their true quantities.
IX. To find what Angle any Hour-circle maketh with the Horizons or any Azimuth makes with the Equinoctial.

LEt the number of the Hour-circle (or Azimuth) from South, be counted from \(C\) to \(R\); the Thred laid at \(R\) will cut the equal Limb in \(H\), and \(F H\) will be the Angle required.

IT By the Angle known, it will be eafie, by the contrary Work, to find the Hour (or Azimuth) to which that Angle belongeth.

The third Hour (or 45 Azimuth) makes with theHorizon (or with the Equinoctial) an Angle of 36 gr .55 m . here at London.
X. To find what Ark of any Hour-circle is intercepted between the Equinoctial (or any Parallel), and the Horizon.

\(C\)Ount the number of the Hour-circle from South, from Eto S, or, if it be above 90 ,from \(E\) to \(B\),and back again to \(S: S o F K\) in the equal Limb will be the Ark required, berween the Equinoctial and Horizon.

The Ark intercepted between any Parallel and the Horizon, may hence alfo be found.-If the Declination of the Parallel be North, and the Hour be between 12 and 6 , add the Declination to the Ark found by the former Work: In other Hours beyond 6 fubtract the former Ark out of the Declination, the refult will be the Ark' required. Upon the Hour of \(\sigma\) it felf, the Declination of the Parallels is the Ark intercepted. - If the Declination be South, fubtract it out of the Ark found before, (namely, the Ark intercepted between the Equinoctial and Horizon)what remains is the Ark intercepted between that Parallel and the Horizon.

Thus at London, the Ark of the third Hour intercepted between the Equinoctial and Horizon is 29 gr .21 m .-And if the Declination be 18 gr . North, the Ark intercepted between that Parallel and the Horizon is 47 gr .21 m .-If the Parallel be 18 gr . Sourh, the Árk will be 11 gr .21 m 。

The firf Work will alfo thew what Ark of any Azimuth from Sourh is intercepred berween the Horizon and Equinoctial, if in fead of the Hour-circle from South, you ufe the Azimuth from South This intercepred Ark is the Equinoctial Altitude of that Azimurh.

So in the 45 Azimurh from Souch, the Equinoctial is 29 gr .21 magh. In the 135 Azimuth from Soath, the Equinoctials deprefion under the Horizon is \(29 . g \mathrm{gr} .21 \mathrm{~m}\).

This is made ufe of afterwards.

\section*{T42 To find the Height of the Sun upon any Azimuth.}

\section*{XI. How high the Sun frall be upon any Azimuth, and in any DecliHation.}

THe Azimuth is beft numbred from the South: And this Propoficion (with moft of thofe that follow) is done by help of Compaffes.
I If the Sun be in the Equinoctial, the firt. Work of the laft Propofition gets the Equinoctial Altitude or Depreffion, by counting the Azimuth from E to \(S\), whereby the Ark F K will be found. This Ark (if she Azimuth be lefs than 90) is the Alritude; if more than 90 , it is the De preffion.

But if the Sun have Declination, then firf lay the Thred from \(\mathbf{F}\) towards K , according to that Declination, and take the leaft diftance from the Point B to your Thred, and keep this extent. Then,
- If the Suns Declination be South, count your Azimuth from E to S, and lay the Thred chere, which will cut the Line EN in T: Ser one Fcot of the former extent in \(T\), and turn the other about toward the Side A \(B\), applying the Thred to the remoteft diftance of that Circuit: The Thred fo laid will give the Altitude required, if you count the Degrees from F. Thus the Sun declining Souch 11 gr .30 m . will have \(16 \frac{\mathrm{x}}{2} \mathrm{gr}\). 30 m . of Altitude in the 45 Azimuch.

IIf the Suns Declination be North, and the Azimuth lefs than 90 from South, count your Azimuth from \(E\) to \(S\), and lay the Thred at it, and let it cut EN in T: Then fet one Foor of your former Extent in T, and with the other Foot turned abour, lay the Thred at the remoteft diflance from \(\mathbf{T}\) towards the Side A C: The Thred folying, thews from F in the equal Limb the Altitude required. Thus if the Sun decline 11 gr . 30 m . North, his Altitude upon the 45 Azimuth will be \(42 \frac{1}{3} \mathrm{gr}\). -But if the Azimuth be more chan 90 , count from \(B\) to \(S\), the excefs above 90 ; and applying the Thred thereto, fee what Degrees of the equal Limb the Thred cuts from F. Count that number of Degrees from 60 (in the equal Limb) forwards, towards 70, 80, 90, and lay the Thred there, which fuppofe to cut the Line \(\alpha \omega\) in \(\pi\). Set your Compaffes (keeping Itill their firft excent) upon \(x\), and tuin the other Foot towards the Side A C, laying the Thred as che remoreft turn. If now, to the Thired fo laid, you number the Degrees in the equal Limb from 60, the fame fhall be the Altitude required. Thus if the Sun decline II gr. 30 m . North, and the Azimuth be 101 gr .15 m . from the South, the Alitude mult be 5 gr .45 m . in our Larcude of 51 gr .30 m .

\section*{Another way for this Propaftion.}

BY the firf Work in this ryth, get the Equinoctial Altitude or Depreffion for your Azimuth: Then lay the Thred at E, and in CD, from \(D\), count che faid Altitude or Depreffion; from which Number, or Point, take the leaft diftance to the Side A C. Enter this length between the Side AC and the Thred, keeping one Font upon the Line A C, and removing it thereon too and fro, till the other Foot turned about may juftly touch the Thred: Then keeping your Compaffes there fer, remove the Thred from G toward H , according to the Suns Declination, and take the leaft diftance from your former ftanding to the Thred. This length meafured in the Scale C D (fo as one Foot ftanding upon the Scale, the other curned about may juftly touch the Side. A C) fhews an Ark, which,
If the Suns Declination be South, muft be fubiracted from
If the Suns Declination be North, the Azimuths Equinoctial Altitude. and the Azimuth lefs than 90, muft be added to
If the Suns Declination be North, and the Azimuth more than 90 , the: Azimuths Equinoctial Depreffion mull be taken out of this Ark. The refult is the Altitude looked for.

Thus if the Azimuth be \({ }_{10}^{70}\) from South, thie Equinoctial \(\begin{gathered}\text { Altitude will be } 25 \frac{2}{4} \mathrm{~g} \text {. } \text {. } \mathrm{Depreffion} \text {. }\end{gathered}\) The Ark found will be \(14 \frac{3}{4^{\circ}}\). Then,

If the \(O\) decline in \(\frac{1}{2}\) Soath, the Alcitude upen the 70 Azimuth will be I Degree.
If the \(\odot\) decline \(11: \frac{1}{2}\) North, the Alcitude upon the 70 Azimuth will be-29 \(\frac{1}{2}\) Degrees.
If the Suns Declination were 20 gr . North, that forementioned Ark would be 25 gr . whence taking \(15 \frac{1}{4}\), there remains \(9 \frac{3}{4}\) for the Altitude of the Sun upon the 110 Azimuth from South, at that Dedination of 20 gr . North.
- By this Work may a Table of Altitudes be made, by which the former Azimuth-lines upon the Quadrant may be inferted.

\section*{144 To find the Height and Cazimuth of the Surn.}

\section*{XII. To find bow bigh the Swn Baill be at any Hour, and in any Dem clination.}

FIrf, find the intercepted Ark of your Hour Hour, between the Parallel of Declination and the Horizon, by the tenth.
Secondly, Find what Angle your Hour circle maketh with the Horizon, by the ninth.

Thirdly, Count that Angle from \(C\) towards \(D\), and from thence take the leaft diftance to the fide A C: Meafure this length upon the fide A C (from A) and there fer your Compaffes: Then keeping that ftation of your Compafles, lay the Thred to the intercepred Ark, counted in the equal Limb from \(G\), and take the leaft diftance from your ftanding to the Thred. Set one Foot of this lengeth in the Scale C D, fo as that the other being turned about may touch the fide AC; fo fhall that Foot in the Scale CD give the Degrees of Alritude required, if you number them from C .

Let the Hour be 3 from Noon: The intercepted Ark between the Equinoctial and Horizon will be 29 gr .22 m . And if the Sun decline North \(11 \frac{2}{3} \mathrm{gr}\), the intercepted Arks will be 40.52

South \({ }^{11}{ }_{3}^{2} . \mathrm{gr}^{2}\) the intercepted Arks will be 17.52 And the Angle of the chird Hour with the Horizon is 63 gr .53 . So that the Altitude for North Declination of \(11 \frac{\pi}{2} \mathrm{gr}\). will be \({ }_{16}^{36}\) Degrees.

बI By this Work you may make a Table of the Suns Alcitudes upon any Parallel of Declination : And by thofe Altitudes you may infert thofe Summer and Winter-hours which are upon the Quadrant.

\section*{XIII. To find the Sums Azimuth.}

HIrt, Lay the Thred to the Suns Declination, counted in the equal Limb from F to K , and take the leaft diftance from the Point B to the Thred, and keep your Compaffes at that extent: Then count the Suns Alcitude in the equal Limb from \(F\), and lay the Thred to it. This being done,
- If the Sun decline South, keep one Foot of your Compaffes always upon the Line E N, beyond the Thred, towards E, and remove it ftill upon that Line, till the other Foor being turned about may touch the Thred precifely. Obferve then where the Foot of your Compals ftandech upon the Line EN; fuppofe at \(V\) : Bring the Thred to \(V\), and it fhews (from E) the Azimuth from the South.
- If the Sun decline North, keep one Foot of your former cxtent, upon the Line \(E N\), on chis fide the Thred towards \(N\), and remove ic ftill upon that line, until the Foot that is turned about do touch upon the Thred. And obferve where your Compals Foor then ftandech, upon the line EN (fuppofe it fand at W) Lay the Thred at W, and it will cut the Scale E B; the parts whereof, from E to the Thred, are the Azimuth from South.

But if it fo fall out in North Declinations, that when the Thred is laid to the Altitude, you cannot find room upon the line E N, whereon to fet your Compaffes fo as to keep the conditions before required; then work in this manner: Add always 30 degrees to the Suns Altitude, and lay the Thred at that compound Altitude, numbred in the equal limb from F. To the Thred fo laid, enter the former extent of your Compaffes between the Thred and the line \(\alpha a\), keeping one Foot always upon that line. And look where the Foor of your Compaffes reftech upon that line, fuppofe at \(\pi\). Take then the length from \(\pi\) to \(a\), and fer it upon the line \(N E\) (from \(N\) towards \(E\)) and to the point where is refts, apply the Thred, obferving what parts it cuts upon the Scale from B. The number of thofe parts gives the quantity of the Azimuth above 90 from the South. Or the partscut from E, give the Azimuth from the North.
If the Sun decline net at all, but is in the Equinoctial, then the fole Alritude from F to K (by help of the Thred thereto applied) gives ES the Azimuth from South.
If the Altitude of the Sun be \(21 \frac{2}{3}\) in the Equinoctial, the Azimuth from South is 60 degrees.

If the Sun decline South 5 gr . and the Altitude were \(15 \frac{3}{4} \mathrm{gr}\). the Azimuth would be found 60 gr .
If the Sun decline North 20 gr . and the Alitude were 50, the Azimuth would be 50 gr .

If the Sun decline North 20 gr . and the Altitude were \(9 \frac{3}{4} \mathrm{gr}\). the Azimuth would be 310 gr . from the South.
I If you fappofe the Sun to have no Alcitude and do work by theife by thefe Rules, you rhall find the Suns Amplitude, Ortive and Occafive, from the South. As if the Sun decline 20 gr . North, you will find 123 gr .20 m . for the Amplitude from the South. Tafind the Hour of the Day.

\section*{XIV. To find the Hour of the Day by the Sun.}

COunt the Suns Altitude in the equal limb from \(F\), and to the Thred there laid, take the leaft Diltance from the point B , and keep this D ftance.

Then count the Suns Declination (which is had eafily by the firt Propofition :) from \(\mathbf{F}\) in the equal limb, and apply the Thred to ir. Then furthér,

II If the Declination be South, fet one Foot of your former extent; upon the line EN (always on that fide the Thred on which E fandeth from it) and remove it thereon, till the other (turned about) may juftly touch the Thred A K. Suppofe (in fo doing) the Compals Foot flayech at V. The Thred applied to the poine V, will cut the hour from Noon, if you count the intercepted parts upon E B, from E. -Thus if the Sun decline 20 degrees South, and the Altitude were 13 gr .50 mo , the hour at Lonidon would be io or 2 .

II If the Declination be North, fet one Foot of your former extent upon the fide A C, removing it thereon to and fro, till the other Foot turned about, will only touch the Thred. When it is fo fitted, let that Foot upon the fide A C, keep its Atation, and from thence extend the other Foot to the Suns Declination counted in the Scale A P. This laft extent muft be applied to the line N E from N : and where it ftays, lay the Thred. So the parts cut upon the Scale E B, will give the hour. _But this maft be done with caution. For if that Foot that kept its ftation, ftood from A, beyond the Suns Declination in the Scale AP, then the intercepted Ark from E to the Thred, gives the hour from Noon. But if the fore-named Foot flood between A and the Declination, then the whole Ark EB90, with the Ark from B back again to the Thred (thefe two put together) give the hour from Noon.

Thus if the Sun decline 15 gr . Northward, and be it gr , high, the hour is 7 before or 5 afternoon. Or if the Altitude were \(-\frac{2}{3} \mathrm{gr}\). the hour mult have been 5 in the morning, or \(j\) in che evening: namely, 90 and 15 degrees from Noon.

\section*{XV. On an upright declining Plane, to find the Angle between I 2 asd 6.}

Ount the Planes Declination from \(C\) towards \(D\) : From that point take the leaft Diftance ro the fide C A. Set that length from M to Y, upon the line M Y. The Thred laid at Y gives GK for the Angle between 12 and 6 .

Or count the Declination of the Plane from B towards E, and lay the Thred at it. The Thred will cut . N E. Takefrom N to the interfection, and apply is to MY.; the Thred put to Y gives G K, as before.

If a Plane decline 20 gr . this Angle will be \(66 \frac{3}{4}\) at London.

\section*{XVI. To find the Declination of a Plane.}

FIrf, draw an Horizontal line upon your Plane (which you may do by your Quadrant.) Then apply one fide of the Quadrant to that line, fo as the limb may be toward the Sun, and the Plane of the Quadrant may lie Horizontally flat. Thirdly, having a loofe Thred and Plummer, you mult hold that Thred clofe by the edge of the limb (letting the Plummer hang down at liberty) till the fhadow of the Thred paffech directly through the Quadrants Center. Which done, you thall fee what degrees of the limb the fhadow cuts from that fide of the Quadrant which is perpendicular to the Horizontal line. This is called the Horizontal Diftance. At the fame moment of time, obferve the Suns Alcitude. By this Alcitude you may get the Suns Azimuth from South, by the thirteenth.

After this Preparation, take diligent notice, whether the fhadow of the Thred fall betwixt the South, and the perpendicular fide of the Quadrant. Or whether the fame Chadow fall fo, as to leave both the South and the faid perpendicular fide (both of them) upen one coalt of the fhadow.

In the firft cafe you mult add the Horizontal Diftance to the Azimuth. In the latter cafe, you muft fubtract the leffer out of the greater. The refulc (whecher it be Sum or Difference) gives the Planes Declination from the South.

Note here in the fecond cafe. That if the Horizontal Diftance be greater than the Azimuth, then doth the Plane decline to that coalt (Eaft or Weft) which is contrary to the coaft on which the Sun food from the South. This fallech our very frequsatly.
* Note alio in the firt cafe: That if the Sum of the Horizontal Diftance and Azimuth do exceed 180 gr . then the Planes, Declination from Sourh is contrary to that eoalt whereon the Sun ftood. And it is found by fubtracting the fore-mentioned Sum out of 360 degrees. This happens more feldom ; that is, only upon fome North Planes; and on them, only then, when the Suns Azimuth is more than 90 from the South; and the Horizontal Diftance more than is the Azimuth from the North.

Examples are here omitted for Brevities fake. Only add chis; that if the Planes Declination from South be above 90 gr . you muft fubduct it out of 180, and the remainder is the Declination from the North. - By this accounting from North and South, you may always make that your Plane decline not above 90. And as when it declines nothing, it is a full South or North Plane; fo if ir decline juft 90 , it is chen a full Eaft or Weft Plane.

\section*{XVII. How to draw any upright declining Dial.}

FIrft, draw a Perpendicular or Plumb-line A B, and crofs it at right Angles with the Horizontal line BC, and make B A equal to AO in your Quadrant.
2. Upon the equal limb of your Quadrant, count the Planes Declination (from North to South) from G, and there keep the Thred: which will cut fome of thofe Lines that are drawn within the upper Square.
3. Obferve firft, chofe Interfections which the prickt lines make with the Thred at \(b, d, m\), - Take then the Length from A, the Center of the Q-adrant to \(b\), and fet it. here upon the Horizontal Line from \(B\) to \(I\), (always on that fide of \(B\), which looks to the fame coaft whereunto the Plane declinech.) So take from the Quadrants Center A, to the fecond pricke Lines Interfection with the Thred, atd; and fet it here from B to 2. So likewife the third A \(m\), muft be fee from B to 3.
4. Obferve again all fuch Interfeetions as are made with the Thred, by the reft of thafe lines whofe common Concurrence is in the point M , namely, at \(a, c, e, b\) : and take their feveral lengths from the Qaadrants Center \(A\), and prick them here down on the other fide B (contrary to the coaft of Declination) namely, at II, 10, 9,8. Then for the ncxs line upon thic Quadrant (which doth not, but would interfect the Thred, if it were drawn out far enough) obferve, where the Thred cuts the

\section*{To draw upright declining Dialso}
extravagan line \(r s\), namely in \(s\) : and take from \(A\) to \(s\), and turn that Length twice from \(B\), fo thall it defign the point 7 . Afterwards at the point 7, draw the infinite line CD parallel to B A. Alfo fet off the hour of 6 , on that fide \(\mathbf{B}\) which is conitrary to the coaft of Declination; namely, from B to E, according as the Angle between 12 and 6 .hall be found by the fifteenth.

\section*{Diclination 28 deg. S. Eaff.}

5. Draw all the Hour-lines from A, the Center of your Dial, through the points \(3,2,1,12,1\), \(10,9,8,7\), in fuch wife, that as many as well can, may curche line D C, as is here done, in \(p\) and \(q\).
6. Make 6; 5, equal to 6,7 : and 6,4 , qual to \(6, p\), and 6 , 3 , equal to 6,9 ; and draw the reft of the hours \(A 5, A 4, A 3\). Thus you may get 12 hours, and if youesrend them beyond the Center, you thall have the whole 24. Oat of which you may make choice of fuch as will ferve your ufe.

\section*{T) For placing the Siyle.}

Seek the Elevation and Deflection by the fifth and fixth. And make BF equal to the Deflection; fetting the Subitylar line FA always on that fide F, , which is contrary to the coaft of the Planes Dechna-1 tion, Make allo \(F G\) equal to the Elevation: So \(F A G\) will be the pattern of he Style.

Or the Thred lying fill at the Planes Declination upon the Qua: drant as it: did, Take the leaft Diftance from the point \(X\) to the Thred, and fet that Length from B to \(H\), and draw A H for the Subftylar. Then making A HK a right Angle, take the leaft Diftance from M to the Thred, and make H K equal to this Diftance: So is KAH the pattern of your Style.

In In all Dials, The Style muft ftand juft over the Subltylar, elevated fo much above it, as the Elevation (before found) cometh to.

In South upright Declinersthe Center of the Dial is above (as in the former figure) and the Sryle poines downward. But in North Decliners, the Center muft be low, and the Style muft point upward.

\section*{XVIII. Of the upright full South-Dial.}

THe Declination of the fưll South-Dial is nothing. Whence it is, That The Angle between 12 and 6 is 90 degrees.
The Line of 12 is the Subftylar.
The Styles Elevation is the Complement of your Latitude.
The way of pricking down the Hours is in a manner the fame with that before for Decliners. No more needs to be faid of it.

The Erect full North Plane is the fame with this South. Only the Style of this points upwards toward the North Pole, as the former downwards towards the South Pole.

\section*{XIX. Of upright far declining Planes.}

THefe Dials are more difficulc than thofe other Decliners mentioned in the feventeenth, becaufe here the hours have no Center or Point of meecing upon the Plane. It will nor be amifs therefore to fer down the whole work in all parts of it.
1. Draw a Perpendicular or Plumb-line A B, and cross it at right Angles with the Horizontal line B C. And make B A equal tô A \(O\) in your Quadrant, fetting A above B if the Plane decline from the South, or below \(B\) if ir decline from North.
2. Count the Planes Declination from South or North, upon the limb of your Quadrant, from G; and there keep the Thred.
3. Among thofe Lines on the Quadrant (whofe common Concurrence is ar M) obfervechat Interfection which is made by the sfixth Hour from the Quadrants Center with the Thred: Take the length

\section*{of upright far declining Planes.}
from the fame Center to that Interfection, and prick it down here from B to C (and on that fide B which looketh toward the South, if the Plane decline from South; or toward the North, if the Plane decline from North.) And draw out the Line C D E parallel to B A.

4 Obferve again upon that Quadrant the Interfection which the fecond line from the Center makes with the Thred and take the length from the Center of the Quadrant thereunto and prick it down towards \(C\), pamely from \(B\) to \(F\).

\section*{152} Of Forming and placing the Stile.
the Thred at the remoteft Diftance, and keep it there.
8. From every point on the fide A C of your Quadrant, take the leaft Diftances to the Thred folaid; ferting them down from A to 7 and 5 , from A to 8 and 4 , from A to \(9: A\) io was put on before. Then the leaft Diftance from \(r\) to the Thred being iwice curned from A towards B, will give the Length from A to II.
9. For the finifhing then of the hours you have no more to do, but draw right lines through each couple of correfpondent points, namely, from 4 to 4,5 to 5 ; from \(C_{\text {to }} A\), or 6 to 6 ; from 7 to 7,8 to 8,9 to 9,10 , 0 , and from II to 1 I .

\section*{I Coiscerning the forming and placing of the Stile.}
10. RY the precedent feventh Propofition you may find the Planes Difference of Longitude, which (for this Plane that declines 82 gr .) will be (here at London) 83 gr .43 msim. and that from the South, becaufe the Plane declines from the South. The Complement of which Longitude (83 gr .43 min .) is 6 gr .17 min . Take then firft, the Lengch from C to 7 the next hour point upon C E, and carrying that extent to your Quadrant, fet one Foor of it upon 15 in the Scale AP : and lay the Thred fo, that the other Foot turned about may juft touch or pais over it, and keep the Thred there. Then (in the Scale A P) count the fore-mentioned Complement, 6 gr . 17 min . and taking the leaft Diftance from that Point to the Thred, fer it from 6 a Clock at \(C\), towards E if the Plane decline from South, (or towards \(\mathbf{D}\) if the Plane decline from North) as you fee it done here, at G. Secondly, do the fame work again upon the line A B; That is, take from A to 7 the neareft Hour point, and fet one Foot of that extent upon 15 in the Scale AP, and with the other Foot turned about, lay the Thred as before. Then in the fame Scale A P, count the fame Number \(6 \mathrm{gr}: 17 \mathrm{~min}\). and taking the leaft Diftance from thence to the Thred, fer that Lengch from A to \(K\), anfwering to \(C\) G. And laft of all, draw the Right Line G K. This thall be the Line of Deflection over which the Stile muft fand.

1i. Furthermore, Through the Points \(G\) and \(K\) (or any ocher two points of the fame Line) draw the two Lines G O, K P, both perpendicular to the Deflection Line G K. Then confidering, that every Hour comprehends is Degrees of Longitude (that is, that

\section*{Of Eorming and Placing of the Style.}
from \(C\) to 7 is 15 , and from 7 to 8 is 15 , of c.) and fince that \(C G\) is 6 gr .17 min . If C G be taken out of \(\mathrm{C}_{7}\) which is 15 gr . there will remain G7,8 gr. 43 min. To which, it you add from 7 to 9 , which is two hours or 30 degrees, the Sum will be 38 gr .43 min . whole Complement is 51 gr .17 min . If now you make the Angles \(G M R\), and K.NS, each \({ }^{1} 1 \mathrm{gr} .17 \mathrm{~min}\). they will cut the Deflection Line GK, in \(R\) and \(S\). And if further, to the Radius GR you defrribe the Ark RT; and to the Radius KS you defrribe the Ark R T; and to the Radius KS you defcribe the Ark S Y; and draw the, Line TV, a Tangent to both thefe Arks, the Trapezium GTKV fhall be the pattern of your Stile. In placing which, you muft te careful that thefe perpendicular Lengths GT and KV (perpendicular I fay to TV the fiducial Edge) be jufly placed upon the two affamed points at \(G\) and \(K\).-Or having found \(G 7\) to be 8 gr .43 min . you may add to it from 7 to 10, which is (cturee hours or) 45 degrees. The Sum will be 53 gr . 43 min . whole Complement is 36 gr .17 min . If now from the points 0 and \(P\) (where the faid hour of 10 cuis the two fore-mentioned Perpendiculars GO and KP) you make the Angles GOR and KP S, each equal to 36 gr .17 min . they will cut the Deflection Line GK in the fame two points \(R\) and \(S\). Afer which you may proceed to make the patrern of your Scile, as before.
9.1. Nore, That in performing the fifth Section of this Propofition, intead of taking thofe Hour points from the Center of your Quadrant upon AC the fide for your Quadrant (if thofe Diftanices fhould be too great of your Plane) you may lay the Thred any where upon the Quadrant, and inftead of taking from the Center to the fore-named Points, you may take the leaft Diftances from the faid Points to the Thred, feverally, and fet them down from \(C\) to 7 and 5 , and from C to 8 and 4 , and fo to 9,10 ; and for 11 , you muft take from the Point \(r\) to the Thred, and fet it twice from C ; by which means they will be all of lefs \(\mathrm{D}_{\mathrm{i}}\) ftance from C. And then all the work is to be continued, as is before prefcribed. Orif the faid Diftances fhould be too little, you may double, triple, or, ofc. to make them greater.
2. Note again, That in Decliners from the North, that Difference of Longitude which you find by the Seventh, is to be reckoned from the North, and fo the Complement of it is Uии
to be accounted froin C (or 6 a Clock) towards D. And that the widefl part of the hours in thefe North Planes maft point apwards, and the clofeft parts downwards; contrary to what is exprefled here in this Plane, which hath irs Declination froin the Sourh.
- 3. Nore laftls, that chis Direation here given for enlarging the Hours in far Decliners, may eafily be applied to fuch Direct or Horizontal Dials (as are mentioned in the 26 . following) upon which the Pole hath but fmall Elevation. For the Dial (or only fome chicf Hours of ic) being defcribed in its natural ftreightnef, may be enlarged by the fame means that this leaft was. Which will not be hard to do, but would be redious here to run over again.

\section*{XX. Of full Eaft and weft apright Dials.}

THefe are more eafie than the former fort were. For having drawn the Plumb-line AB, and affumed the Point A for the Hour of 6; go to your Quadrant, and take from the Center of it to all the Hourpoints upon the fide AC; and prick the firf of them down in the Line A B, from A to 5 and 7, the fecond from A to 4 and 8, the third from A to 3, the fourth from A to 2 ; and for the fifth, take from the Center of your Quadrant to the Point \(r\), and fer that Lengeh twice from \(A\), , 0 it fhall limit out the point \(\mathbf{1}\). -Having thele points, draw Lines through them, all parallel one to the other, and all pointing up to the North; namely, fo as to make the acute Angles B A C equal to the Complemene of your Latitude.

\section*{- For the Stile.}

IT muft always fand over the Line of 6 a Clock, parallel toit, and diftant every where from it according to the Length of A D. Which Length is foon found, by drawing A D perpendicular to the Hour-Lines, cutting the third hour from 6 , in \(D\). By which Line you may make the pattern of your Stile. For the fiducial Edge lies parallel to the Line of 6 , A C; and at the Diftance of that Line A D.
1. Note here too, that if your Lengths from the Qaadrants Center to the Hour-points be too long, you may fhorten them by laying the Thred upon the Quadrant, according as your Conve-
nience fhall direet, and taking the leaft Diftances from thofe Hour-Points to the Thred; and fo pricking then on from A to 6 , to \(5,4,3\), \(\mathcal{F}^{\circ}\). as was before mentioned in the firt Note upon the former Propofition. -Or if they be too lictle they may be doubled, © © \(\sigma_{c}\) as is thiere exprefled.

ब 2. Note further, that what is here done for defcribing thefereaf and Weft Dials, may be applied to the Direct Polar Plane. Only remember that you are not tied (if thit Polar) to make the Hours to any fet Aingle with the Line B A , but they are beft at righr Angles; for then the Line A B may be taken for, and placed as the Hotizontal Line of the faid Plane ; all the Hours lying as vertical Lines unto it. And allo the Line of 6 here mult be taken (in the Direct Polar) for the Line of 12 , and the reft of the Hours are to be drawn alike on both fides 13: nothing in fubftance differing from thele Eall and Weft Planes.

\section*{XXI. In Eaft and Weft Re:incliners, to get the Deffection.}

Ount the Re-inclination from D towards C . Take the leaft Diftance from thence to the fide A C. Ser that Length from \(M\) to \(Y\), and lay the Thred at \(Y\). The Degrees \(F K\) will give the Deflection.

The Subflylar Line muft afcend in Recliners and defcend in Incliners, from the Line of 12, according to the Quantity of this Deflection.

The Line of 12 lies always parallel to the Horizon.

\section*{XXII. To find the Angle between 12 and 6.}

Count the Re-inclination from E towards B , the Thred there laid C will cut the equal Limb. The Degrees whereof from \(G\) to the Thred, are the Angle required.

\section*{XXIII. To get the Stiles Elevationo}

L
If Ay the Thred to the Re-inclination numbred in the equal Limb - from \(\mathbf{F}\), and rake the leaft Diftance from \(\mathbf{N}\) to the Thred. Set one Foot of that length in B, and lay the Thred fo as to touch the other Foot when it is turned about. The Thred folaid, gives the Elevation in the equal Limb, from \(F\).

\section*{XXIV. To find the Difference of Longitude.}
1. NOunt the Deflection in the equal Limb from F, and lay Che Thred to it; and take the leaft Diftance from \(B\) to the Thred. Put one Foot of this length in N , and apply the Thred to the remotell Diftance of the other Foot. The Thred will then fhew in the equal Limb, the Difference of Longitude, if you count from \(F\).
2. Count the Deflection in the equal Limb from \(G\) : and to the Thred there laid, take the leaft Diftance from B. Meafure that length upon the fide A B from A; keeping one Foot there fixed. Then lay the Thred to che Planes Re-inclination counted alfo from F in the equal Limb, and take the leaft Diftance from your ftanding to the Thred. Set one Foot of chis kength in B, applying the Thred to the other

Foot furned about. The Thred folaid, gives the Difference of Longitude in the equal Limb, from G.

Thus if an Eaft or Weft Plane re-incline, here at Londen, 30 degrees, it will have in

Deflection - 47 deg. 26 mm .
Angle from 12 to 6-5 55
Elevation - 02 ,
Difference of Longicude-70, 14

\section*{XXV. How to draw the Dial.}

UPon the Back-fide of your Quadrant, in the upper part of it, you have Lines drawn altogether like thofe on the Fore-fide placed near the Quadrants Center, the ufe of which was fhewed before.

The manner of work in this Propofition is in moft things fuitable to that in the feventeenth, and will need no orher direetion.

Only for placing the Lines, Take norice, that
The line of 12 in thefe Eaft and Weft Re-incliners, lieth always parallel to the Horizontal line of the Plane. So that if we fuppofe the former Figure of the feventeenth to reprefent one of thefe Dials, then \(A B\) muft be conceived to lie Horizontal, and BC Vertical. All other works will be like to thofe in the feventeenth.

The Stile in Recliners pointeth upward, and the Subftilar and the hour of 6 do afeend above che line of 12 , fo much as the Deflection and Angle from 12 to 6 come to. The Center of the Dial is on the South end of the line of 12 .

The Stile in Incliners pointech downward, and the Subfeilar and the hour of 6 do defend below the line of 12, fo much as che Deflection and Angle from 12 to 6 come unto. The Center of the Dial is on the North. end of the 12 a clock line.
Thefe things being obferved, you muft count the Re-inclination of your Plane in the equal Limb on the Back-fide from the lefe hand coward the right, according as the Figures are fet: and there lay the Thred and keep it. Then obferve how it curs the Lincs next to the Center, and proceed in all things as in the fevenceenth before.

I Note, That you may find the Inclination of a Plane by applying one fide of your Quadrant to the Planes Verrical line : for fo the Thred

\section*{158 To draw Eaft and weft re-inclining Dials.}
will cut the quantity of Inclination in the degrees of the equal lims being numbred from that fide of the Quadrant which toncheth the Plane. - And for finding the Reclination, you may lay a Ruler to the Vertical line of the reclining face, and take the Inclination of the under-fide of that Ruler. That Inclination will be the fame with the Reclination.

Note alfo, that this here delivered for Eaft and Went Re-incliners, is intended chicfly for drawing hours upon thofe kinds of Planes when you meet with them upon Bodies cut regularly. For ocherwife you will hardly ever find any fuch juft Plane upon 2 fixed Building.

Laftly, for a Scale of Chords, which here, and in fome of the precedent Precepts is required, you may make ule of che equal limb of your Quadrant.

\section*{XXVI. To make an Horizonstal Dial to any Latitude.}

FIrft, draw the right Line B C, and erect the Perpendicular A H. Then take from the Center (on either fide of your Qaadrant) to the third hour upon the fide AC; and make AH equal thereto: And draw FH parallel to B C; and the line 5 K 7 alfo jult in the midft of them. - After this lay the Thred to the Latitude of the place counted in the equal limb: and take from every point of the fide A C, the leaft diftance to the Thred, and fet each of them down both ways, namely, from A to 4 and 8, from A to 3 and 9, to 2 and 10, and from A to \(\mathbf{I}\) and \(\mathrm{It}^{1}\). Then take from the point \(r\) upon the fide AC, to the Thred, and fet that length from \(K\) to 5 and 7 both ways. - You have now nothing more to do, but only from H to draw the Hour-lines to all the fore-named points: fo the draughe is eafily finifhed.

The Stile mult ftand upon the Line of 12, and is to be elevated according to the Planes Latitude : as the manner is in all Horizontal Dials.

IT The ufe of this Propofition is to draw all Dials in any Latitude for any direct re-inclining Plane. For, the Re-inclination compared (in Norch Re-incliners) with the Poles Elevation: or (in South direct Re-incliners) with the Equinoctials Altitude, will eafily give the Planes Latitude : in the former the Difference was the Elevation it felf: in the later', the Complement of the Poles Ele-

\section*{To make an Horizontal Dial.}
vation. -And this Propofition, with the feventeenh for upight Planes; the twentieth for upright Eaft and Weft, and fo alio for Polar Planes on which the Pole hath no Elevation: the twenty fifth

for Eaft and Weft Re-incliners: the sighteenth for full North and South erect, will furnih you with ways to draw Dials upon fuch regular Bodies, whofe Planes have any fuch of the fore-mentioned Afpects.
XXVII. To find the Hour of the Night by the Stars.
\({ }^{-1} \mathrm{HE}\) Stars upon the Quadrant (one or other of them) will always be in a convenient place of the Heavens: that is, of two or more choice of that Starthat is fitten, look what number is annexed to the name of it. Seek that number in the left margin of the fore-fide of your Quadrant, clole by the Hour-lines, and rectifie the Bead to ir. -Then hold up the Quadrant feadily, with the fights levelled to the Scar, as if you were to take the Stars Altitude: and you thall find the Bead to fhew (among the Summer hours of the Quadrant) the Motion of the Star in Hours, Quarters, and parts of a Qarter. This is called the Stars Hour; but this is not the Hour of the Night till ir be curned into the Suns Hour : which thing is to be done in this manner.

Look upon the back-fide of the Quadrant for your Star, and lay the Thred upon it; nlipping the Bead down to the flope hours below, till it Itand upon the fame quarter and pare (from fome jult hour on the left hand of the Bead) with the Scars hour before found. Then note the faid hour on the left hand which goeth next before the Bead, for that mult be fuppofed to reprefent the Stars hour, and mult cherefore be called by the fame name or number that the Stars hour was. And the following hours (from the Bead towards the right hand) muft fucceffively take their numbers unil you come to be under the day of your Month. Unto which day if the Thred be laid, the Bead will (by keeping of your former account) Shew the true hour, quarter, and part of the Night.

Example I. On January the 20th. the hour of Cor Leonis was obferved Eaftward of the Meridian, to be 9 and \(\frac{5}{3}\) part of a quarter. The Thred laid upon that Star, on the back-fide of the Quadrant, will crofs the flope hours as doth the Line A B, and the Bead put down to the fore-mentioned parts of the hour, will ftand at the point B. So that the hour C muft be called 9 a Clock, which is the obferved hour of the Star. Then the Line D mult be called io a clock: and the Thred being put to Fanuary 20. (taken in the lower circular Line of Months) will lie in the line A E; and the Bead at E fhews the time of the Night to be paft (the line D, that is paft) 10 a clock about \(\frac{1}{2}\) and \(\frac{1}{3}\) part of a quarter, which is 15 and 5 min . or 20 min . paft 10 at Night. - But if this Obfervation had been made upon the fecond day of Novimber: then the Thred laid upon the day given in the lower Circle of Months, Noyember 2, would lie in the line A F: and the Bead would be upon the full Hour-line that paffech through F, which would be 4 a Clock in the morning. For if the line \(C\) be \(g\), the line \(D\) is 10 , the next line
is II, and fo forward till your account fall upon \(F\) : which muft be 4 a clock paft (12 or) Midnight.

Example II. Upon the 8 of Awguft, the Star Aquila was feen on the Weft fide of the Meridian, and the hour of it was found 3 and \(\frac{1}{2}\) an hour and \(\frac{1}{2}\) a quarter. The Thred therefore being laid upon that Star would be as the line A G, and the Bead (rectified to the \(\frac{2}{2}\) hour and \(\frac{1}{2}\) quarter) would fand at the point G. So that the next Hour-line on the left hand of \(G\), muft becalled 3 a clock, and the line \(F\) muft be 8 a clock. Then, the Thred being removed to the day of your Monch (Auguft 8, in the upper circular line of Months) will lie in the line AB; and the Bead at B will thew the Hour of the Night (if you keep your former account) to be \(\frac{1}{4}\) and half patt 1 a dock. For if F be 8 a clock (as is before expreffed) then the laft hour of the limb is 11 , the firf is 12, the fecond 1 ; beyond which the Bead B is about 22 m . of an hour. Therefore the hour of the Night is 1 a clock 22 min .

By thefe Examples the manncr of the work will fufficiendly appear in all cafes.

\section*{The Use of the AltimerrickScale.}

THE Scale on the Fore-fide of the Quadrant next to the equal Limb is here called the Altimetrick Scale. It is numbred by \(r\), 2, 3, ©ra. to 10, 20, 30, © c. to 100. Each of which numbers are beft luppored to be roo fold, viz. 100, 200, oc. to 1000, 2000, * c. to 10000: and all the leffer pares cttimated accordingly. The ground on which you fand to make your menfuration, is alfo fuppoled to be a juft Level.

\section*{1. Tofind any Height at one Olfervation.}

LEt your Station be at E ; and the fights \(D A\) directed to the point \(F\) : the Thred \(A B\) cuts off the parts CB in the meafuring Scale: which parts mult be remembred. - Then meafure from your Station \(E\), to the point H , which is juft under F . And always in this cafe multiply this diftance E H by the fore-named parts of C B, and from the Prom duct cut off three figures toward the right hind. The Remainder is the Altitude G F. To which you muft add H G, or D E, the height from youreyear \(D\) to your foor at \(E\).

\section*{To take Altitudes and Diftances.}

Thus if the Thred A B hould cut off C B 1500 parts, and the Diftance \(E\) were 59 feet, the height \(G F\) would be 88,5000 or \(78 \frac{1}{3}\) fees.

\section*{II. To find part of an Altitude.}

LEt che length of \(\mathbf{F X}\) be only required. Standing then at \(E\), you , may find the Alcitude G F. Keep ftill the fame Standing at E, and find the Alcitude G X by the laft Precedent. So G F taken from G X, gives FX required.

\section*{111. Sianding apos a known Height to fond a Diftance.}

LEt the height \(\mathrm{FH} H\) be known, and the Diftance HK be required, \(\mathrm{O}_{\text {t }}\) der yeur flanding \(\mathrm{lo}_{0}\), that the two fights \(\mathrm{P}, \mathrm{S}\), the point F , and the Diftance K , may all appear in one right line. Then look what degrees the Plummet cuts off in the equal limb from \(Q\). Count the fame number in the fame limb from \(S\); and there lay the Thred, as PT. Nore then what parts it cuts upon the meafuring Scale from \(Q\) to \(T\). Mulciply thofe parts into H the known Alcitude: and from the Product cut off three Figures the Remainder or Quotiens is the Difrance \(H\) K

\section*{To take different Altitudeso}

Thus if the Fhred \(P R\) thould cut off \(Q R\) in the equal limb, \(56 \frac{1}{3}\) dez gres, the fame counted the other way from \(S\) to \(T\) in the equal limb, and the Thred laid thereto would give 667 in the meafuring Scale. Then FG being \(88 \frac{1}{2}\) feet and GH (fuppofe) five feet, FH muft be \(23 \frac{1}{2}\) feet. This mulciplisd into 667 , makes 62364: from whence cutcing away the chree right hand figures; there remains 62.364 or \(62 \frac{2}{3}\) feet for the Diftance H K.

\section*{IV. To find part of a Diftasce.}

\(\mathbf{I}^{\mathrm{F}}\)\(F\) the Diftance of \(K\) from \(Z\) were required. Finf, find \(H K\), then HZ , by the third precedent : their Difference is KZ . If \(\mathrm{K} Z\) were 2 Trench, you might from the Tower \(F\), find the bredch of it without any approach unto it.

\section*{V. To fird a Height at two Obfervations.}

IF FH were to be meafared, and the way from E to H were unpaffable, fo that the Dintance of \(E\) from \(H\) could not be meafured. You mult in this cale make two Oblervations. For which purpofe, take your firt flationat \(E\), and direct the fights \(D, A\), to the point \(F:\) noting whiat parcs the Thred cuts upon the equal limb. from \(C\) to \(B\). Then go backwards in a righr line, to a competent Diftance, as to \(M\); and there making a fecond ftation, oblerve (as before) whar degrees the Thred cuts upon the equal limb from N to O : (the two fights L, I, being juffly directed to the point F.) Then count thefe two Arks in the equal limb from the contrary fide of the Qaadrant, namely from \(D\) to \(Y\), and from \(\mathbf{L}\) to \(s\) and applying the Thred thereto, look what parts it cuts from the meafuring Scale ar Y and V . Take the leffer number of parts out of the greater, noting the Difference. Meafure alfo the Diftance of your two ftations, namely, from E to M , and add three ciphers to that meafure ; This laft number muft (in this kind of work) be divided always by the fore-noted Difference : and the Quotient will give the Alticude of \(F\) above \(G\).

\section*{Example.}

Let the firf Obfervation cut off \(3 \frac{8}{3} \frac{\mathrm{gr}}{}\). in the equal limb. The fecond \(56 \frac{2}{3} \mathrm{gr}\). Count the firt Ark from D to Y : the Thred there laid gives 1250 in the meafuring Scale. The fecond fo counted from L to V , gives 667 : The Difference of thefe two is 583 . Let the DiX X X 2

\section*{To take Altitudes, axd Difances.}
ftance of the fations meafured from E to M, be 5 x .60 feet. This number, with three siphers added, is 5160000 . Which divided by 583 (the former Diference) gives in the Quotient 88.50 or \(88 \frac{1}{3}\) feer for the Height GF. And if GH be 5 foot more: The whole Heighth HF will be \(9.3 \frac{1}{2}\) feet.
- Note, That in thefe Menfurations, the point \(G\) is fuppofed to to ftand in the fame Level with the corner of your Quadrant D and L. So that GH, D E, L M are all of one Heighth. And note too, that the two flationary points are E and M , namely, thole which are juft under the corners \(D\) and \(L\).

\section*{FINIS.}

\section*{THE}

\section*{GENERALUSE}

\section*{OF THE}

C A N O N,

\section*{AND}

\section*{Tables of Loogarithms.}

Ogarithmetick is a Logical kind of Arithmetick, or artificial ufe of Numbers invented for the eafe of the Calculation, wherein each Number is firted with an Artificial, and thefe Artificial Numbers fo ordered, that what is produced by Múltiplication of nacural Numbers, the fame may bee effected by the Addition of thefe their Artificial Numbers; what they perform by Divifion, the fame is here done by Subtraction : and fo the hardeft part of Calculation avoided by an eafic Profthapharefis.

All this fhall be made plain by applying that to thefe Artificial Numbers, which I have fet down before, for the ufe of my Lines of Numbers, Sines and Tangents in the Ule of the Seator and Crofs-Staff. Wherein the Reader is to oblerve, that what is to be, wrought by round Nambers only, is beft doue by Mr. Brigges his Legarithms, bue the Aftronomical part concerning Arks and Angles, by my Canon of Axrificial Sines and Tangents.

CHAP.

\section*{CHAP.I.}

Concerning the Ufe of the Line of Numbers, I have fet down ten general Propojitions in the firf Book of the vje of the Crofs. Staff, Chap. VI. and thofe may be applied to the Tabic of Logarithms.

\author{
PROP. I.
}

To multiply one Number by another.

\(T\)His is the fixch Propofition of the ten; but I begin with the eafieft, add the Logarithm of the Multiplicator, to the Logarithm of the Multiplicand, the Sump of both fhall befbe Logarithm of the Peoduct.

As when when we multiply 25 by 30 , the Produe is 750
So here, add the Logarichm of 2.5 , vie,
To the Logarithm of \(3^{\circ}\)
1.39794001

The Sun of both will be
1.47712125

And this is the Logarichm of 750 .
In like manner, if we multiply \(\mathbf{1 0}\) by 10 , the Produet is
2.87506126 If roo by 10 , the Product is 1000 To here

The Logarithm of 10 being
1.00000000

The Logarithm of 300 thall be
2.00000000 1000 10000 100000
3.00000000
4.00000000 5.00000000

And fo forward: All intermediate Numbers which have intermediare Logarithms.

If we multiply 101 by 10, the Product is 1010 ; of 102 by 10, the Product is 1020:

The Logarithm of 10 , viz.
Added to the Logarithm of 101
Gives the Logarithm of 1010
fo here
1.00000000
2.00432137
3.0043213 .7

The fame Logarithm of 10
Added to the Logarithm of 102
Gives the Logarithm of 1020
1.00000000
2.00860017
3.00860017

\section*{and Tables of Logaritbens.}

The Difference being only in the firt Figure, and that is always lefs by one than the number of Places, in the Numbergiven. As when we find the Logarithm to be 2,00860017 the fift Figure 2 is Characteriftical, i.e. the Index, thewing that the whole number 102 belonging to this Logarithm, confifts of three places. If the Logarithm had been 1,0086001 , the whole Number malt have been 10.2 confifting of two places, and the reft a Fraction \(\frac{2}{1}\).

If the Logarithm were 0.00860017 the Number belonging to it would be 1.02. \(\mathrm{r}_{\mathrm{B}}\) 1 and \(\frac{22}{10} 0\). And this is one of the reafons why the Differences were omitted in the firt hundred Logarithms. All thofe Logarithms may be found afterwards under a larger Index.

Again, if we maltiply 201 by 5 , the Product is 1005: 50 here: If we add the Logarithm of 5 unto the Logarithm of 201, the Sum of both fhall be the Logarithm of 1005 , and the Sum of the Logarithms of 5 and 203: Thall be the Logarithm of 1015 . Thus the moft pant of die. Table may be continued beyond 1000 .

\section*{PROP. II.}

To divide one Number by anotber.
Cubtract the Logarithm of the Divifor, out of the Logarithm of the Dividend, the Remainder thall be the Logarithm of the Quotient. As when we divide 750 by 25 , the Quotient is 30 fo here From the Logarithm of 750 , viz. \(\quad 2.87506126\) Suburact the Logarithm of 25 3.397.94001

There remains the Logarithm of \(3^{\circ}\)
1.47712125

In like manner, when we divide 11 by 4 , the Qaotient is \(2 \frac{3}{4}\), 60 here the Logarithm of 4, viz.
0.60205 .999

Taken from the Logarithm of in
1.04139 .269

Leaves the Logarithmof \(2 \frac{3}{4}\)
0.43933270

Whercfore, if it were required to find the Logarithm of a whole Number with a Fraction annexed (as of \(2 \frac{3}{4}\)) we might firf reduce it into an improper Fraction of \(\frac{11}{4}\) (or rather of \(\frac{2325}{25}\)) and then fubrract as befors.
If it were required to find the Logarithm of a fingle Fraction, as of \(\frac{4}{5 \pi}\), we may fubtract as before: Bat this Fraction being lefs than \(z_{3}\)

\section*{168}

\section*{The geseral \(v\) ve of the Canon}
the Logarithm muft be lefs than \(O\), and therefore noted with - a defective fign.

So the Logarithm of \(1 \frac{1}{4}\) or \(2 \frac{3}{4}\) is \(f\)
0.43933270

And the Logarithm of \({ }^{4}\) T.
0.43933270

> PROP. III.

To find the Square of a Nwmber.

HAlf the Logarithm of the Number given is the full Logarithm of the Square Roor.
So the Logarithm of 144 being \(\quad 2.15836249\)
The half thereof is
1.07918124
the Logarithm of 12, and fuach is the Square Root of 144.
Then by converfion, having excracted the Square Roor, we may foon find the Logarithm.

As the Logarithm of 10,0000 being
1.00000000

The Logarichm of the Square Root 316227, is
0.50000000

And for the Root of that 177827
0.25000000
PROP.IV.

\section*{To find the Cubigue Root of a Number.}

THe third part of the Logarithm of the Number given, is the fall Logarithm of the Cubique Root.
So the Logarichm of 125 is
2.09691001

And \(\frac{\pi}{3}\) the Logarithm of 5
0.69897000

By the fame reafon we may find the Biquidrate Root, by dividing the Logarithm of the Number given by 4 : the folid Root, by dividing by 5 , and fo forward.

And by converfion, having extracted the Root, we may foon find the Logarithm.

As the Logarithm of 10.000 , © \(c\). is
1.00000000

The Logarithm of the Cubique Root, 21544
0.33333333

The Logarithm of 100.000, ©6.
2.00000000

The Logarithm of the Cubique Root 4641
0.66666666

Then multiplying the Square and Cubique Roots one by another, we may produce infinite other Numbers, and have all their Logarichms.

\section*{and Tables of Logarithms.}

\section*{PROP. V.}

Three Numbers being given, to find a fourth Troportional.

THis Golden Rule the moft ufeful of all others may be wrought feveral ways, as it appears by this Example:
As 12 anto 24 : So 4 to a fourth number.
The ordinary way in Arithmetick is by Multiplication and Divifion. For firft they mulciply the fecond into the third, and then divide the Product by the firft Number given. As here, multiplying 24 by 4 , the Product is 96 , then dividing 96 . by 12 , the Quotient will be 8 , the fourch number here required.
According to this way we add the Logarithms of the fecond and third, and fubtract the Logarichms of the firft, fo that which remainech thall be the Logarithm of the fourth Number required.

Thus the Logarithm of the firft Number 12 is
The Logarichm of the fecond
The Logarithm of the third
1.07918125

1 38021124
0.60205999

The Sum of the fecond and third Logarithms
1.98227123

Subrract the firt, and there remainech
-90338998
And chisis the Logarithm of 8, the fourth Proportional.
A fecond way in Arithmerick is by Divifion and Multiplication. For where the fecond Number is greater than the firft, they may divide the fecond by the firft, and then multiply the third by the Quotient. As here, dividing 24 by 12 , the Quotient is 2 : then multiplying 4 by 2 , the Product will be 8.

According to this way we take the Logarithm of the firf out of the Logarithm of the fecond, and then add the difference to the Logarithm of the third. So the Sum of this Addition fhall be the Logarithm of the fourch required.

Thus the Logarithm of the firt Number 12 is
The Logarithm of the fecond
The Difference between the increafing
1.07918125

Added ro the Logarithm of Gives the Logarithm of
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { nber } 12 \text { is } \\
& 24
\end{aligned}
\] & \[
1.07918125
\]
\[
1.38021124
\] \\
\hline g & 30102999 \\
\hline 4 & \[
\begin{aligned}
& 0.60205999 \\
& 0.90308998
\end{aligned}
\] \\
\hline Yy y & A \\
\hline
\end{tabular}

\section*{170}

\section*{The generalve of the Canoon}
III. A third way in Arichmetick is by Divifion and Divifion, for where Quotiens the fecond Number is lefs than the firt, they may divide the firf by \({ }^{1}\) per r , fit the fecond, and then again divide the third by the Quotient. As divifor 3: here, dividing 13 by 4, the Quotient is \(3:\) : then dividing 24by 3, the Quocient is 8:

According to this way we take the Logarithm of the fecond out of the Logarithm of the firft, and then take the Difference out of the Logarithm of the third: fo that which remaineth fhall be the Logarithm of the fourth Number required.

Thusthe Logarithm of the firt Number 12 is
The Logarithm of the fccond
1.07918125 0,60205999

47712126
I. 38021124
0.90308999
y be confider:

Subtracted from the Logarithin of Gives the Logarithm of

24
8

Thefe two latter ways by Difference of Eogarithms, may be confider ed as the fame. Though there be fome difference between them, yet that may eafily be reconciled, if we have regard to the nature of shequeftion. For three numbers being given in direct proportion, if the fecond be greater than the firft, the fourth muft be greater than the third: If the fecond be lefs than the firf, the fourth muft be lefs than the third, and their Logarithms accordingly. But in reciprocal proportion, confidering the fult and fecond numbers to be of one denomination, we are so obferve the contrary.

If we defire to turn Subtraction into Addition, we may take the Logarithm which is to be fubtracted out of the Radius, and add the Complement. So the Sum of this Addition, the Radius being fubtracted, thall give the required Logarithm as before.

Thus in the laft Example : where fubtracting the Difference 4.7712126 out of 1.38021124 , the Logarithm of 24 , we found the Remainder to be 0.90308998 the Logarithm of 8.

The Radius being
The Logarithms to be fubtracted
The Complement to the Radius is
This added to the Logarithm of 24 .
10.00000000
0.47712126
9.52287874
1.38021124

Givesus a sompound torarithm

\section*{and Tables of Logarithmes.}

From this, if we fuberaet the Radius, (chat is, if we cancel the firft figure to the left hand) the reft is
0.90308998 the Logarithm of 8, the fourch Proportional, as before.
By help of this fourth Proportional we may come fomewhat near to find a Logarithm for a number of 6 places.
As if ir were required to find a Logarichm for this number 868624, the Table will afford us Logarichms for a leffer and a greater number; and then the intermediate may be found by the part proportional in this manner.
\begin{tabular}{|c|c|}
\hline Here we have the Logarithm of 868 And the Logarithm of che next following 869 & \[
\begin{aligned}
& 2.93851975 \\
& 2.93901978
\end{aligned}
\] \\
\hline And the tabular Difference between & 500 \\
\hline If the Index be fitted to the number of places, & \\
\hline The Logarithm of 868000 hall be & 5.93851973 \\
\hline And the Logarithm of 869.000 & 5.93901978 \\
\hline The Difference being 1000 & 50005 \\
\hline
\end{tabular}

Then taking 868000 our of 868624 , (the number given) the third Difference will be 624. And having thefe three Differences the Pro: portion will hold.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{array}{r}
\text { As } \\
\text { so } \\
\text { tional to }
\end{array}
\]} & 1000 & 3 H & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{50005
31203}} \\
\hline & 624 & \(3{ }^{1}\) & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{tional to be added to the leffer Logarithm fo Shall we have 5.93883176 for the Logarithm required.}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{In like manner, having 2 Logarithm given, we may find the value} \\
\hline \multicolumn{5}{|l|}{of it in a number of fix places.} \\
\hline \multicolumn{5}{|l|}{As if the Logarithm given} \\
\hline
\end{tabular} and it were required to find the Number to which it belongeth:

This Logarithm is not to be found in the Table; but changing the Index and making it

The next leffer Logarithm of 868 is 2.93883182

And the tabular Difference following
2.93851973 And the proper Difference
Asthetabular Difference 50005 into
So the proper Difference \(\quad 31209 \quad 62411\) the part proportional to be joyned to the end of the former number 868: Yy \({ }^{2}\)

172 The general vfe of the canon
fo thall we have 868624 II for the value of this Logarithm. But the Index of the Logarichm being 3, the Number required muft confift of four places, viz. 8686, and the reft a Fraction of \(\frac{204}{0.0}\).

This I fay is fomewhat near the Truch. For this number here propofed 868624 is the Square of 932.

The true Logarithm of the Root 932 is 2.9694159 .1
The true Legarithm of the Square 868624
PROP. VI.

> Three Numbers bsing given, to find a fourth in a duplicated Proportion.

IN Queftions that hold in a duplicated Proportion between Lines and Superficies, the Logarithms for Lines given may be doubled, the Logarishms for Lines required may be halfed, and then the work will be the fame as in the firft part of the former Propofition.

Suppofe, the Diameter being 14, the content of the Circle was 154, the Diameter being 28, what may the content be?

Here the Queftion concerns both Lines and Superficies, I double the Logarithms of the two Lines given, and then work as before in this manner:

The Logarichm of
The Logarithm of The fame again
The Logarichm of
The Sum of thefe laft
Subtract the double of the firft There remains the Logarithin of 616
1.14612803
5. 44715803
1.44715803
2.18752072
\(5: 08183678\)
2.29225606
2.78958072 And fach is the content of the Circle here required.

Suppofe the content of a Circlebeing 154; the Diameter of it was 14; the content being 6:6, what may the Diamerer be?

Here being one Line given, and one Line required, I double the Low garithm of the Line given, and then working as before, the half of the remainder /hall be the Logarithm of the Line required...

Thus the Logarithm of 154 is
The Logarithm of
616
The Logarithm of The fame again

Thie Sum of there three laft
Subtract the Logarithm of the firft
The Remainder will be
The half thereof is
The Logarithm of 28 the Diameter required.
Or according to the fecond manner of operation, the difference between the Logarithms of Lines given may be doubled; the difference between the Logarithms of the content given may be halfed, and then the work will be the fame as in the latter part of the former Propofition.
So in the firt Queftion, where the Diameers were given and the content required.

The Logarithm of 14 is
The Logarithm of \(28^{\circ}\)
The Difference increafing
The double of this Difference
Added to the Logarithm of 154
Gives the Logarithm of 616
1.14612803
1.44715803

30103000
60206000
2:18752072
2.78958072

In the fecond Queftion; where the content of both the Cixcles was known; and the Diamerer of the one required.
\[
\begin{array}{ll}
\text { The Logarithm of } & 154 \\
\text { The Logarithm of }
\end{array}
\]

The Difference increafing

The half of this Difference Added to the Logarithm of Gives the Logarithm of
2.18752072
2.78958072

60206000
30103000 :
1.14612803
I. 44715803

PROP.

\author{
PROP: VII.
}

\section*{Three Numbers being given, to fiad a fourth in a tripligated Proportion.}

IN Queftions concerning Proportion between Lines and Solids, the Logarichms for lines.given may be tripled; the Logarithms. for lines required may be divided into three parts, and then tho work will be the fame, as in the firft way for the Rule of Three.

Suppofe the Diameter of an Iron Bullet, being four inches, the weight of it was nine pound, the Diameter being eight inches, what may the iweight be?
 And fuch is the Weight required.
1.85733251

Sappofe the Weight of an Iron Bullet being nine pound, the \(\mathrm{D}_{\mathrm{ia}}\) meter was four inches; the Weight being feventy two pound, what may the Diameter be?

The Logarithm of \(\quad 9\) is 0.95424251
The Logarithm of 72
The Logarithm of
4
1.85733250

The double of this again
0.60205999
1.20411998

The fum of thefe laft
The fiff Logarithm fubtracted, there remains
3.66351247

The third pare chereof is
2.70926996 The Logarithm of 8 , and fach is the Diameter required.

\section*{and Tables of Logarithmenso.}

Or according unto the fecond manner of operation in the Rale of Three, the Difference between Logarithms of lines given may be tripled ; the Difference between the Logarithms of the Solidity or Weight given may be divided into three parts.

So inche firt Queftion, where the Diameters were known, and the Weight required.

The Logarithm of
The Logarithm of.
4. is \(0.6020599{ }^{\circ}\)

090308999
The Difference increafing
30103000
90309000
The triple of this Difference
Added to the Logarithm of
9
0.95434254

Gives the Logarithm of
\[
1.8573325 \mathrm{I}
\]

In the fecond Queftion, where the.Weight was known, and the Di-: ameter required.

\section*{PROP. VIII.}

Having two Nambers given, to find a third in contisalal Proportion, a fowth, afifth, afixth, and foformard.

\(A\)
Ccording to the firt way in the Rule of Thiree, we may fubtrač the Logarithm of the firt number, our of doable the Logarithm of the fecond, the remainder thall be the Logarithm of the third, then fubtracting the Logarithm of the firft Number again, out of the Logarithms of the fecond and third, that is, out of triple the Logarithm of the fecond, the remainder thall be the Logarithm of the fourth, and fa forward.

\section*{The general \(v\) fe of the Canos}

As, when we fay: As 1 usito \(2, \int 0-2\) unto 4 , and 4 unto 8, and 8 unto 16, \&c. Becaule the firt Number is 1 , there is no need of Divifion, but only to multiply 2 the fecond Number into it felf, the Product gives the third Proportional Number to te 4 : then mulciplying 2 into 4 , the fourth Propertional is 8 : and mulciplying 2 into 8 , the fifth Proportional is 16 ; and fo forward. So here the Logarithm of the firf number being \(\mathbf{I}\), there is no need of Subraction. But finding the Logarithm of 2 to be
0.30102999

The double gives the Logarithm of 4
0.60235999

The Triple gives the Logarithm of 8
0.90308999

The Qaadruple give the Logarichm of 16
1.20411998 and fo forward in infinitum.

In all other numbers that begin not with r , we may either fubrract the Logarithm of the firf Number or add the Complement unto the Radius.

As when the Numbers given are 100 and 108. The Logarithm of the firft Number 100 is
2.00000000 The Lcgarithm of the fecond 108
2.03342276 From the double of this fecond Logarithm \(4.0668475^{2}\) Subtract the firft Logarithm, there remains
\(2.0668475^{2}\) the Logarithm of \(116^{64}\) the third Proportional. Again, fubtract the firf Logarithm
2.00000000 Out of the Sum of the Logarithms of
2.03342376

The fecond Number and the third Proportional
2.06684752

There remains the Logarithm
2.09927128 antwering unto \(125^{2 ? 1}\) the fourth Number in continual Proportion.

According to the fecond manner of Operation we may take the Difference between the Logarithms of the two Numbers given; fo this Difference applied to the Logarithm of the fecond Number, fhall give the Logarithm of the third Proportional : the fame Difference applied to Logarithm of the third Proportional, fhall give the Logarithm of the fourth Proportional, or the double of this Difference applied tothe Logarithm of the firft Number, thall give the Logarithm of the third Proportional : the treble of this Difference applied to the Logarithm of the firt Number, fhall give the Logarithm of the fourth Proportional; and fo forward.

As in the former Example where the two Numbers given were 100 and 108, fuppofe 100 increafing to 108, and fo yearly in continual Proportion after the Rate of 8 in the 100, and that it were required to find what this 100 would grow anto by the end of 20 years.
and Tables of Logarithms. 177
2.00000000

The Logarithm of the firt Number 100 is
The Logarichm of the fecond 108
The yearly difference increafing
2.03342376

3342376
2.06682752

Added to the Logarithm of the fecond, gives the Logarithm of \(116^{164}\) for the third Proportional; And fuch is the increale at the end of the fecond year.

Again, the fame yearly Difference added to the Logarichm of the third Proportional, gives
2.10025128 the Logarithm of \(125^{611}\) for the fourch Proportional, and the increafe at the end of the third year, and fo the reft.

But becaule the Queftion is only of the 20ch. year without knowing the ref,we may mulciply the former yearly Difference

By 20: fo the Difference of 20 years
66847520
Added to the Logarithm of the firf Number 100, viz. 2.00000000 Gives the Logarithm of 466 O2 \(\quad 2.66847520\) that is 466 l . 1 s . 11 d . fere, the Sum that 100 would grow unio by the end of 20 years \(2 t\) the race propofed.
In like manner if the two firft Numbers given were 108 and 100: Suppofe 108 decreafing to the 100 , and fo yearly in continual proportion and that it were required to find what 100 would decreafe unto by the end of 20 years: Or (which is all one) lappofe 100 to be due 20 years hence, and that ir were required to find the worth thereof in ready money according to the former rate.

The Logarithm of the filft Number 108 is 2.03342376
The Logari hur of the fecond
100
The Differences for the year decrealing
Taken from the L.ogarithm of 100 leaves the Logarithm of 92 ²2 for the third Propotional, and fuch is the prefent wort of \(100 \%\) due at the yearsend.
The fame difference fubrracted once more laves 1.93315248
The Logaristim of \(85^{311}\) for the fourt Proportional, and the prefene worth of \(100 \%\). due at the end of two years.

The fame Difference mulciplied by 20 makes
66847520
And fubcracted from the I.ogarithm of 100 , leaves 1.33152480 the Logarichm of \(214\{4.9\) that is 21 l .9 s . 1 d , and luch is the prefent
\[
2.7 .2
\]
worth of \(100 \%\). due at the end of 20 years; So that this prefent worth being taken forth of the 100 l . principal debr, there remains 781 . 10 s . 112. for the prefent worth of the continued gain that may be made either of the loan of \(100 \%\). or of \(8 \%\). Anauity after 20 years according to the former rate.

If a Leafe of \(100 \%\). by the year, or fuch other yearly Penfion were to contimue for 20 years, and that it were required to find the worth thereof in ready money. This might be found upon che fame ground of continual proportion, and that feveral ways.
1. It appeareth before, that \(100 \%\). due at the years end is worth but \(92^{22 z}\) in ready money: If it be due at the end of two years, the prefent worth is 851.233 : then adding thefe two together, we have \(178 \% .325\) for the prefent worth of 100 l . Annuity for two years, and fo forward.
2. It appeareth before that the prefent worth of \(8 \%\). Annuity for 20 years is \(78 \% .5452\) : and then it follows by proportion.
\begin{tabular}{|c|c|c|}
\hline As an Annxity of Is to the worth therroof & \[
\begin{aligned}
& 81.0000 \\
& 78.5452
\end{aligned}
\] & \begin{tabular}{l}
0.90308999 \\
1.89511953
\end{tabular} \\
\hline & & 9.9202954 \\
\hline So an Annxity of Unto the zrorth thereof & \[
\begin{aligned}
& 100.0000 \\
& 981.8147
\end{aligned}
\] & 2.00000000
2.99202954 \\
\hline
\end{tabular}
3. As the yearly Loan of \(\mathbf{r o o l}\). includes an Annuity of \(8 \%\). So there is a Sum equivalent to \(\mathbf{1 0 0}\). Annuity.

This Sum equivalent may be diminifhed according to the Number of years as before: to the Complement of the Sum diminifhed to the Sum equivalent fhall be che prefent worth of the Annuity.
\begin{tabular}{lrr}
As the yearly gain of & 8 & 0.90308999 \\
To the Loan of & 100 & 2.0000000 \\
So an Annaity of & 100 & 2.0000000 \\
To the Sums equivalent & 1250 & 3.09691001
\end{tabular}

\section*{and Tables of Logarithms:}

Then for diminiohing of this Sum equivalent, we may multiply the former yearly Difference

By 20, fo the Difference for 20 years
Taken from the Logarithm of 1250
There remains the Logarithm of \(268.1853 \quad 2.4284348 \mathrm{t}\) Whore Complement to 1250 is 981.8147 , that is 98 I l .16 s .3 d .06 . and fuch is the prefent worth of 100 l . Annuity for 20 years, at the rate of 8 in the 100 per annum.

The like reafon holderh for any other rate and time propofed.

\section*{PROP. IX.}

\section*{Having two extreme Numbers given, to find a mean Proportional between them.}

A
Dd the Logarithms of the two extreme Numbers: the one half of the Sum thall be the Logarithm of the mean Proportional.
As if the two extreme Numbers given were 8 and 32.
The Logarithm of \(8 . \quad\) is 0.90308999
The Logarithm of \(3^{2}\)

\section*{The Sum of both Logarithms}
1.50514998

240823997
The half of this Sum is
I. 20411998

The Logarithms of 16 : and fuch is the mean Proportional here required.
PROP. X.

Having two extreme Numbers given, to find tro mean Proportionals between them.

\(I^{N}\)N the ordinary way of Arithmerick we commonly multiply the greater Extreme by the Square of the leffer, fo the Cubique Roor of the Product thall be the leffer mean: then mulciplying the leffer Mean into the greater Exrreme, the Square Root of the Product thall be the greater Mean Proportional: Or having found the leffer Mean, we may find the other Mean by continual Proportion.

Accordingly we may add the Logarithm of the greater Extreme, to double the Logarithm of theleffer, fo the third part of the Sum thallbe
\[
\mathrm{ZzZ}_{2}
\]

\section*{The general Ufe of the Canon}
the Logarithm of the leffer Mean. Then adding this Logarithm of the leffer Mean, to the Logartothm of the greatre Extreme, the one half of the Sum thall be the Logarithm of the greater Mean Proportional.

As if the two extrome Numbers given were 8 and 27.
\begin{tabular}{lll}
Add to the Logarithm of & \(8, v i z\). & 0.90308999 \\
The fame again & 0.90308999 \\
And the Logarithm of & 27 & 1.43754374
\end{tabular}

The Sum of thefe will be
The third part of this Sum is
3.23754374
the Logarithm of 12 the leffer Mean Proporional. Add to this Logarithm of the leffer Mean-
The Logarithm of thegreater Extreme
1.07918123
I. 43136736

The Sum of both Logarithm will be
And the half of this Sum is
2.51054501
2.15527250 The Logarithm of i8, the greater of the two Mean Proportionals here required.

Or according to the fecond manner of Operation in the Rule of Three, (which is the work that I always follow in the line of Numbers) we may take the Difference between the Logarithms of the two ex:reme Numbers, and divide this Difference into three equal parts, fo the Sum of the Logarithm of the leffer Exrreme and \(\frac{x}{3}\) part, Thall be the Logzrithre of the lefier Mean: the Sum of this Logarithm of the leffer Mean and the fame \(\frac{1}{3}\) part, fhall be the Logarichm of the Greater Mean proportional.

\section*{and Tables of Logaritbons.}
 portionals, we might divide che former Difference into four equal parts and fo forward.

As if ir wore required to find the firft of eleven Mean Proportionals berween 100 and ro8. Or (which is allone) (uppofing 100 \% increafing in continual Proportion, foas that by the end of 12 months it came to \(108 \%\) and that it were required to find what this \(100 \%\) did grow unno by the end of the firft Monch.

\section*{The Logarithm of the firft Extreme}

100 is
2.0000000

The Logarithm of the fecond
108
\(2.0334^{237}\)
The yearly Difference between them 334237
The i 2. part or monchly Difference 27853 Added to the Logarithm of 100 gives 2.0027053 The Logarithm of 100.64340301 the firft of the eleven Mean Proportionals: and the growth required.

Then having thefe two, 100 and 100.64340301 , togecher with 108, the latt of twelve, the other Intermediate may be found by continual Proportion as before.

This Explication of my ten former Propofitions may ferve for the frugal Ule of the Table of Logarithms. Thofe which require more may have recourfe to that Treatife which is mentioned before in the Front of the Table.

CHAP.

\section*{CHAP. II.}

Concerning the \(U\) le of the Liwes of Sines and Tangents in the refolving of Spherical Triangles.

COncerning the Ufe of the Lines of Sines and Tangents I have fhewed ingeneral, in the feventh and eighth Chapters of the fift Book of the Croß-faff, how they might ferve for the Refolution of all Spherical Triangles. More particularly in the Ule of my Sector, Chap. 5. I reduced that which is commonly required in a Spherical Triangle into 28 Cafes. And for thefe they may be all refolved by my Tables of Arcificial Sines and Tangents without the help of Secants or verfed Sines.

This manner of the work will be always fuch as in the ordinary Rule of Three, For, here we have three Numbers given, whereby to find a fourch Proportional. And therefore either we may add the Logarithms of the fecond and third, and fubtract the Logarithm of the firft:

Or we may take the Difference between the Logarithms of the firft - and fecond, and apply that Difference to the Logarithm of the third.

The firf of thefe ways is beft for the refolution of right angled Triangles where the Radius, viz. \(\mathbf{1 0 . 0 0 0 0 0 0}\) is one of the three Numbers given, but the fecond way by Differences is more convenient for the reft.

The like manner of work may be obferved when we are to confider the Sines or Tangents of Degrees, Minutes and Seconds. For the Seconds, not expreffed in the Canon, will be found by the Part Proportional: as I will hew in the Examplesfollowing.
1. If it were required to find the Sine of 51 gr .32 min . 15 fec . I fhould find,

The S :ne of 51 deg. \(32 \mathrm{~m} . \quad\) is 9.8937452 The Sine of 5 Ieg. 33 m . 9.8938455
The Tabular Difference between them
1003 Then the Difference between 32 m . and 33 m . being 60 Seconds, the Proporrion will hold,

\section*{and Tables of Logarithms.}
\begin{tabular}{llr}
As 60 Seconds anto & 1003 \\
So 15 nnto & 25 I
\end{tabular} the part Propertio- nal to be added unto the Sine 51 deg. 32 min.
So fhall we have 9.8937703 , for the Sine of 51 deg. 32 min. 15 fec.
2. If it were required to find the Degrees, Minutes and Seconds belonging to this Tangent If hould find by the Canon that this is fomewhat more then the Tangent of 51 deg. 32 min .
Lef's than the Tangent of 52 deg .33 min .
10.0999134

The tabular Difference between thefe is
10.1001728

And the proper Difference is between the leffer of thefe Tangents, and the Tangent given: therefore,
\begin{tabular}{ccccc}
As unto & 2594 & 60 Secondso \\
So & 648 & unto & 15 & And fo, I find
\end{tabular} this to be the Tangent of 51 deg .32 min .15 f 6.
3. If it were required to find the Sine belonging to this Tangent \(10.09997^{82}\), I thould find the Ark to be fomewhat more than 51 gr 31 min. and the Sine correfpendent fomewhat more than \(9.8937452_{5}\) then raking out the Differences as before, I find, that
 gives \(989377^{\circ} 3\) for the Sine required.

Thefe Premiffes confidered, I come to the 28 Cafes before-mentioned; wherein I fer down a Canon and an Example for each Cafe, and thefe for the moft part the fàme which I ufed before.
Thofe which have no further ufe but of Degrees and Minutes, may take that Sine or Tangent which they find to be newt in the Canon, and negleat the Seconds.

\section*{The general vje of the Canon}

\section*{In a RECTANGLE TRIANGLE.}
1. To find a Side by knowing the Bafe and the Angle oppofite to the enguired Side.

As in the Rectangle Triangle A C B, wherein A ftands for the Equinectial point; A B, an Ark of the Ecliptick reprefenting the Longitude of the Sun in the beginninf of \(\gamma, \mathrm{BC}\) an Ark of the Declination og the Sun from the Equator, and AC an Ark of the Equator reprefenting the Righe Afcenfion of the Sun in B: Knowing the
 Bafe AB to be 30 gr . and the. Angle B A C 23 gr . 3 I min . \(z \circ \mathrm{fec}\). if it were required to find the Side. BC.

As the Radius, the Sine of
d. m. Sec.

Is to the Sine of the Bafe
So the Sine of the oppojite Angle
\(3000 \quad 00\)
\(23 \quad 31 \quad 30\)
Tothe Sine of the Side required II \(30 \quad 43\)
19.3001052

And fo writing the Sine 9.6001052 in a Paper by iffelf and holding to the Sine of the Bafe in the Canou \(1 \mathrm{gr} .2 \cdot 3 \cdot 4 \cdot 5\). and to forward, it would be no long work to write the Sum in a Column by irfelf, and fo find the Declination for each- Degree and Minute of the Ecliptick.
2. To find a Side by knowing the Bafe and the other Side.

A in the Rectangle A C B having A B 30 gr . and B C II gr. 30 m . 43 foc. to find the Side A C.
\begin{tabular}{lllll}
As the Cofine of the Side given & It & 30 & 43 & 9.9911740 \\
Is to the Radius & 90 & 00 & 00 & 10.0005000 \\
So the Cofine of the Bafe & 30 & 00 & 00 & 9.9375306 \\
To the Coine of the Side required & 27 & 52 & 43 & \begin{tabular}{l}
9.9463566 \\
3.
\end{tabular}
\end{tabular}
3. To find a Side by knowing the two Oblignt Angles.

As in the Rectangle A C B having C A B for the firt Angle 23 gr . 31 min .30 fec. and \(A \mathrm{BC}\) for the fecond 69 gr .20 m .35 fec , to find the fide AC.
\begin{tabular}{lrllr}
As the Sine of the next Angle & 23 & 31 & 30 & 9.6011352 \\
\begin{tabular}{c}
Is to the Radius
\end{tabular} & 90 & 00 & 00 & 10.0000000 \\
So the Cofine of the oppofite Angle & 69 & 20 & 35 & 9.5474918 \\
\hline To the Cofine of the Side required & 27 & 53 & 43 & 9.9463566
\end{tabular}
4. To find the Bafe by knowing both the Sides.

As in the Rectangle ACB, having A C 27 gr .53 m .43 fec. and BC, \(11 \mathrm{gr}, 30 \mathrm{~m} .43 \mathrm{fec}\), to find the Bafe A B.

\section*{Asthe Radime}

To the Cofine of the one Side So the Cofine of the other Side

To the Cofine of the Bale
\begin{tabular}{llll}
90 & 00 & 00 & 10.0000000 \\
& & & \begin{tabular}{l}
9.9463566 \\
11
\end{tabular} \\
53 & 30 & 43 & 99911640
\end{tabular}
\(30 \quad 00\) 00. 9.9375306
5. To find the Bafe by knowing one Side and the Angle oppofite to that Side.

As if in the former Triangle A C B we draw B D and Ark of the Horizon for the Latitude of \(5^{1} \mathrm{gr} .30 \mathrm{~min}\). reputing the Amplitude of the Suns Rifing from the Eaft, we hall have two Triangles more, one Rectangle \(B C D\), the other Obliquadrangled \(A B D\), and fo in the \(^{\circ}\) Reqtangle DC B, having BC if gr. 30 m .43 fec . and B DC 38 gr . 30 min . if it were required to find the Bate D B. As the Sine of the Angle

To the Sine of the Side Sois the Radius
\(\begin{array}{llllll}\text { To the Sine of the Bafe } & 18 & 4^{2} & 56 & 9.5059556 \\ & \text { A } 2 \text { a } 2 & & & 6 . T_{0}\end{array}\)
9.7941495
\begin{tabular}{r}
9.3001052 \\
10.0000000
\end{tabular}
\begin{tabular}{r}
9.5059556 \\
6.70
\end{tabular}

\section*{The geseral vpe of the Cazon}
6. To find an Angle by knowing the otber Obligue Angle, and the Side oppofite to the Angle required.

As in the Rectangle A C B, having B A C 23 gm .31 min .30 fec . and A C 27 gr .53 min. 43 fec. to find the Angle A B C.

As the Radtus
\begin{tabular}{llll}
90 & 00 & 00 & 100000000 \\
23 & 31 & 30 & 9.6011352 \\
27 & 53 & 43 & 9.9463566 \\
69 & 20 & 35 & 19.5474918
\end{tabular}
7. To find an Angle by knowing the other Obliqute Angle, and the Silie oppofite to the eAngle given.

As in the Rectangle A C B, having B A C 23 gr . 3 I min. 30 fec : and BC II deg. 30 min . 43 fec . to find the Angle A B C.

As the Cofine of the Side
To the Cofine of the Angle given So is the Radiins
\begin{tabular}{|c|c|c|c|}
\hline 11 & 30 & 43 & 9.9911740 \\
\hline 23 & 31 & 30 & 9.9623153 \\
\hline 90 & 00 & 00 & 10.0000000 \\
\hline 69 & 20 & 35 & 9.9711413 \\
\hline
\end{tabular}
8. To find an eAngle by knowing the Bafe, and the Side appofite to the Angle required.

As in the Rectangle BCD , having \(\mathrm{BD} 18 \mathrm{gr} .4 \mathrm{Im} .56 / e \mathrm{c}\), and SC 11 gr .30 min .43 fec , to find the Angle BDC.

A Ab the Sise of the Bafe
Is to the Radius
So the Sine of the oppofite Side
\begin{tabular}{rrrr}
18 & 41 & 56 & 9.5050000 \\
90 & 00 & 00 & \(\underline{10.0000000}\) \\
11 & 30 & 43 & 9.3001052
\end{tabular}

To the Sins of the Angle
\(38 \quad 30 \quad 00\)
9.7.941495

Thefe eight Propofitions have been wrought by Sines alone ; the eight following require joynt help of Tangents.

\section*{and Tables of Logarithms.}
9. To find a Side, by knowing the other Side, and the Angle oppofite to the Side required.

As in the Rectangle AC , having \(\mathrm{A} \mathrm{C}_{2} 7 \mathrm{gr} .53\) min. 43 fec. and BAC 23 gr . 3 I min. \(3 \oplus\) fec. to find the Side \(B \mathrm{C}\).

As the Radius

To the Sine of the Side given So the Tangent of the oppofite Angle
\begin{tabular}{llll}
90 & 00 & 00 & 10.0000000 \\
27 & 53 & 43 & 9.6701112 \\
23 & 31 & 30 & 9.6388199
\end{tabular}

To the Tangent of the Side required II \(\begin{array}{llll}30 & 43 & 19.308931 E\end{array}\)
10. To find a Side by knowing the other Side, and the Angle next the Side required.

As in the Rectangle BCD, having BC II gr. 30 min. 43 fec.and B D C 38 gr .30 min . to find DC .

As the Tangent of the Argle
To the Tangent of the Side given So the Radius

To the Sine of the Side reguired
\begin{tabular}{lllr}
38 & 30 & 00 & 9.9006052 \\
11 & 30 & 47 & 9.3089311 \\
90 & 00 & 00 & 10.000000 \\
14 & 50 & II & 9.4083259
\end{tabular}
ix. To find.a side by knowing the Bafe and the eAngle next the Side required.

As in the Rectangle \(A \subset B\), having \(A B 30 \mathrm{gr} .00 \mathrm{~min}\). and BAC 23 gr .3 Im .30 jec , to find the Side A C.

As the Radius
To the cofine of the Angle So the Tangent of the Bafe

12. To find the Bafe by knowing both the Obliguse Angles.

As in the Rectangle ACB, having B A C 23 gr .3 I min. 30 fec. A BC 69 gr .20 m . 35 fec . to find the Bafe A B.
exsthe Tangent of the cwe Angle
- To the Cotangent of the other

So the Radiras
To the Cofine of the Bafe
\begin{tabular}{cccc}
23 & 31 & 30 & 9.6388199 \\
69 & 20 & 35 & \(\frac{9.5763505}{10.0000000}\) \\
90 & 00 & 00 & \(\frac{9.9375306}{30}\)
\end{tabular}
13. To find the Bafe by knowing one of the Sides and the Angle next that Side.

As in the Rectangle ACB, having A C 27 gr .53 min .43 fec . and B AC 23 gr .3 x min. 30 Sec. to find the Bare A B. As the Cofine of the Angle

Is to the Radius So the Tangent of the Side
\begin{tabular}{llll}
23 & 31 & 30 & \(9.962315 y\) \\
90 & 00 & 00 & 10.0000000 \\
27 & 53 & 43 & 9.7237547 \\
30 & 00 & 00 & 9.7614394
\end{tabular}

Totbe Tangent of the Baje
\(30 \quad 00 \quad 00\)
9.7614394
14. To fund an Angle by knowing both the Sides.

As in the Rectangle A C B, having A C 27 gr .53 min .43 fec , and BC 11 gr .30 min .43 fec . to fird the Angle A BC.
\begin{tabular}{lllll}
As the Sine of the next Side & 11 & 30 & 43 & 9.3001052 \\
\begin{tabular}{c}
Is to the Radius
\end{tabular} & & & & \\
So the Tangenf of the oppofte Side & 20 & 00 & 00 & 10.0000000 \\
To the Tangent of the Angle & 69 & 20 & 43 & 9.7237547 \\
\end{tabular}
15. \(T_{B}\)

\section*{and Tables of Logarithms.}
15. To find an Angle by knowing the Bafe, and the Side next the A:gle required.
As in the Rectangle BC D, having B D 88 gr .41 m .56 fer. and BC. 11 gr .30 m .43 fec . to find the A mgle B DC. As the Tangent of the Bafe \(1841 \quad 569.5295063\)

To the Tangent of the Side So is the Radius

To the Cofine of the Angle
16. To find an Angle by knowing the Bafe and the other Ollique Angle.

As in the Rectangle A C B, having the Bare A B 30 gr . and B.AC 23 gr .31 m .30 fec . to find the Angle B A C.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 30 & 00 & 00 & & 9370000 \\
\hline Is to the Redius & 90 & -0 & 00 & & 00000 \\
\hline So the Cotangent of the Amgle given & 23 & 3 I & 30 & & 60180 \\
\hline
\end{tabular}

To the Tangent of the Angle required \(\begin{array}{llll}69 & 20 & 35 & 10.4236495\end{array}\) Thefe 16 Cafes are all that can fall out in a Rectangle Triangle. Thole which follow do hold in any Spherical Triangle wharfoever.

\section*{In any \(S P H E R I C A L T R I A N G L E\) whatfoever.}
17. To find a Side oppofite to an Angle given, by knowing one Side and twe Angles, the one oppofite to the Side given, the other to the Side required.

As in the Triangle A B D, having A B 30 gr. B D C 38 gr .30 m. and B A D \({ }^{23 \mathrm{gr} .} 3 \mathrm{I} \mathrm{m}\). 30 fec. to find the side \(B \mathrm{D}\), which here re prefentech the Amplitude.
\begin{tabular}{lllll}
As the Sine of the next Angle & 38 & 30 & 00 & 9.794149 .5 \\
To the Sine of bis oppofite Side & 30 & 00 & 00 & 9.6989700 \\
& & & & \\
\hline
\end{tabular}

\section*{The general Use of the Canow}

Or.changing the Site of the two middle Terms. As the Sine of the next Angle \(\quad 38 \quad 3000\)

To the sine of the oppofite Ang'e \(\begin{array}{llll}33 & 31 & 30 & 9.7941495 \\ 9.601 r 352\end{array}\)
So the Sine of the Side given
\(\begin{array}{lllll}\text { To the Sine of the Side required } & 18 & 41 & 56 & 9.5059557\end{array}\) And fo writing this Difference 1930143 in a Paper by itfelf, and holding it to the Sine of the Side in the Canon \(\mathbf{I} \mathrm{gr}_{\mathbf{0}} .2,3,4,5\), and fo forward, it would be no long work to fubtract, and write the Remainder in a Column by itfelf, and to find the Amplitude for each Degree and Minute of the Ecliptick.

Or inftead of fubtracting this Difference, we might firt take the fame out of the Radius, and then add the Complement as I fhewed before, in the general explication of the Rule of Three.
18. To find an Angle oppofite to a Side given, by knowing one Axgle and two Sides, the one oppofite to the Angle given, the other to the Angle regrired.

As in the Triangle Z PS reprefenting the Zenith, Pole, and Sun: where Z P is the Complement of the Latitude, P S the Complement of the Declination, Z S the Complement of the Sans Altitude, P Z S the Azimuth, Z PS the hour of the day from the Meridian, and PSZ the Angle of the Suns Pofition in regard of the Pole and Ze .
 nith; having P Z.S, 130 gr .3 min . 11 Sec. PS 70 gr . and ZS 40 gr . to find the Angle ZPS.

As the Size of the next Side Is to the Sine of his oppofite Angle
\begin{tabular}{rlll}
70 & 00 & 00 & 9.9729858 \\
130 & 03 & 11 & \(\frac{9.8839153}{890705}\) \\
40 & 00 & 00 & \(\frac{9.8080675}{97189970}\)
\end{tabular}
19. To find an Angle by knowing the three Sides.

As in the Triangle ZPS, having ZP 38 gr .30 min . PS 70 gr and ZS 40 gr . to find the Angle ZPS, fubrending the Bafe Z S.

\section*{and Tables of Logaritbmes.}

As the Rectangle conteined wader the Sines of the Sides, is 10 the Square of the Radius:

So the Rectangle conteined ander the Sines of the Half-Sum of the three Sides, and the Difference between this Half. Sum and the Bafe,

Tothe Square of the \(C_{\theta}\) ine of half the Angle required.
The Bale fubtended is
The two Sides including the Angle
The Sum of the three Sides
The Half-Sum of thefe three
The Difference between this and the Bafe
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(40 \mathrm{gr}\).} \\
\hline S38 & 30 \\
\hline \(\{70\) & 09 \\
\hline \(14^{8}\) & 30 \\
\hline 74 & 15 \\
\hline 34 & 15 \\
\hline
\end{tabular}

Here for the Square of Radius we take 20.0000000 , to this we add 9.9833805 the Sine of 34 gr . 15 min . and 9.7503579 the Sine of 34 gr . 15 min. which make 39.7337384.
Then for the Rectangle of the Sides, we add 9.7941495 the Sine of 38 gr . 30 msin . and 9.9729858 , the Sine of 70 gr . which make 19.7671353. This we take out of 397337384 , and there remains for the Logarithm of the Square 19.9666031, the half thereof 9.9833015 we find to be the Cofine of 15 gr .47 min .13 fec . And fo the whole A ngle required is 31 gr .34 min .26 fec.

Or for fuch Numbers as are to be fubtracied, we may take them out of the Radius, and write down their Complements, and then add them togecher with the reft, the manner of the work in either way will be fuch as followerh.

\section*{192}

\section*{The gesseral ufe of the Canon}

In the like manner we may find the Angle PZS to be 130 gr .3 m . 11 fec. and the Angle ZSP 30 gr .28 m . 11 Sec.

\section*{20. To find a Side by knowing the three Angles.}

If for either of the Angles next the Side required, we take the Complement to 180 gr . thele Angles will be turned inte Sides,' and the Sides into Augles. Then may the work be the fame as in the former Propofition.

As in the Triangle Z P S, knowing the Angle Z PS to be 3 rgr .34 mm . 26 fec . P Z S 130 gr .3 m . 11 fcc . and ZSP 30 gr .28 m . It fec. if it were required to find the Side Z S oppofite to the Angle ZPS, I would take 130 gr .3 m . 11 ece. out of 180 gr . the Remainder will be 49 56: 49.

Then, as if I had a Triangle of three known Sides, one of 31 gr .34 m . \(26 / \mathrm{fcc}\). another of 30 gr .28 m . 11 fec . and the third of 49 gr . 56 m . 49 fec. I would feek the Angle oppofite to the firtt of thefe Sides by the laft Propofition.

So the Angle which is thus found would be the Side which is here required.
Thus here the Angle oppofite is
\(31 \quad 34 \quad 26\)

The leffer of the next Angles
\(30 \quad 28\) II
9.7050790

The Complement of the other
\(49 \quad 56 \quad 49\) 9.8839153

The Sum of thefe three
\(\begin{array}{lll}111 & 59 & 26\end{array}\)
\(\begin{array}{llll}\text { The Half Sum } & 55 \quad 59 & 43\end{array}\)
\(\begin{array}{lllll}\text { The Diff. from the opp. Angle } & 25 & 25 & 17\end{array}\)
The Sum of double the Radius and
9.9185490

The Sines of Half Sum and Difference is
Takehence the Sines of the next Angles
There remains for the Square
The half whereof is
the Cofine of 20 gr .00 mm . and to the Side required, 40 gr .00 m .
The other Sides may be found in the feme iorr ; but when we know eidher chree Sides and one Angle, on three Angles and one Side, the reft may be found more readily by the 4 or \(\&\) Propofition.
21. To find a Side by baving the other two Sides and the Angle comprehended.

This and the Proportion following are beft refolved by reducing the oblique-angle Triangles given, into two Rectangles.

As in the Triangle ZP S, having ZP \(38 \mathrm{gr} .30 \mathrm{~m} . \mathrm{PS} 70 \mathrm{gr} .00 \mathrm{~m}\). and ZPS 31 gr .34 m .26 fec, to find the Side \(Z\).

In that we have ZP and ZPS, we may fuppofe a Perpendicular \(Z \mathrm{R}\) to be let down from the Angle at Z upon the greater Side P S: So if Z P S the Angle given be lefs than \(90 g r\). it will fall, within the Triangle; if more than 90 gr . it will fall without the Triangle, upon the Side produced, and divide the Triangle given into two Rectangles Z R S and ZRP. Whercin
1. We may find the quantity of this Perpendicular by the firf Propofition of Spherical Triangles.
2. We may find the Side \(P R\) either by the fecond or tenth, or rather by the eleventh Propofition: which Side PR will give the Side R.S.
3. Having ZR and RS, we may find the Bafe Z S, by the fourth Propofition, as I fhew in the ule of the Sector.

But here for variety I will thew how the fame may be done at two Operations, both in this and the reft of the Cafes following, wichous knowing the quantity of the Perpendicularo

\section*{194 \\ The general Ufe of the Camos}
1. As the Radimu or Sine of ZR P . 900000
10.0000000
\(\begin{array}{llllll}\text { To the Cofine of the Angle } & \text { Z PR } & 3 \mathrm{~J} & 34 & 26 & 9.9304233 \\ \text { O the Tangent of the Side } & \text { Z P } & 38 & 30 & 00 & 9.9006052 \\ \text { To the Tangent of the Ark } & \text { PR } & 34 & 07 & 30 & 19.8310275\end{array}\)
2. As the Cofine of
To the Cofine of

PR
Z

R
Z
0307.30
\(9.917934^{2}\)
To the cofine of
So the Cofine of
To the Cofine of
\(35 \quad 52 \quad 30\)
0
9.908 \(\overline{643}{ }^{8}\)
\(40 \quad 00 \quad 00 \quad 9.8842539\)
2:2. To find a Side by knowing the other two Sides and one Angle next the Side required.

As in the Triangle ZP S, having ZP, 38 gr .30 m . and ZS 40 gr . 00 m . and Z P S, 3 Igr .34 m .26 fec . to find the Side PS.
x. Find the Ark PR by the eleventh Propefition as before.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2. As the Cofine of To the cofine of & \[
\begin{aligned}
& \text { P } \mathrm{P} \\
& \mathrm{P}
\end{aligned}
\] & \[
\begin{gathered}
38 \\
34
\end{gathered}
\] & \[
\begin{array}{r}
30 \\
07
\end{array}
\] & 00
3.0 & \[
\begin{array}{r}
9.893 .5443 \\
9.9179342 \\
\hline
\end{array}
\] \\
\hline & & & & & 243899 \\
\hline So the Cofine of To the cofine of & \[
\begin{aligned}
& \text { ZS } \\
& \text { SR }
\end{aligned}
\] & 40 & & -00 & \(\frac{28842539}{}\) \\
\hline & & 35 & 52 & 30 & 9.9086438 \\
\hline
\end{tabular}
23. To find a Side by knowing one Side and the two Angles
next the fecond Side.

As in the Triangle ZPS, having ZP 38 gr .30 m . Z PS 31 gr. 34 m .26 fec . and Z SP 30 gr .28 m . \(11 / \mathrm{fec}\). to find the Side P S.
1. Find the Ark \(P R\) as before.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2. As the Tangent of Tothe Tangent of & \[
\begin{aligned}
& \text { ZSP } \\
& \text { ZRS }
\end{aligned}
\] & 30
31 & 28 & 11 & \[
\begin{array}{r}
907696236 \\
9.7885746 \\
\hline
\end{array}
\] \\
\hline & & & & & 189510 \\
\hline \begin{tabular}{l}
So the Sine of \\
To the sine of
\end{tabular} & PR & 34 & 07 & 30 & 9.7489617 \\
\hline & & 35 & 52 & 30 & 9.7679127 \\
\hline
\end{tabular}
24. To find a Side by knowing two Angles and the Side inclofed by them.
As in the Triangle ZPS, having Z P \(38 \mathrm{gro} 30 \mathrm{~m} . \mathrm{ZPS} 31 \mathrm{gr} .34 \mathrm{~ms}\). 26 fec . and PZS 130 gr .3 m . 11 fec . to find the Side Z S .
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1. As the Cofine of & PZ & 38 & 30 & 0 & 9.8935443 \\
\hline & & 90 & 00 & 00 & 10.0000000 \\
\hline So the Cotangent of & ZPS & 3 I & 34 & 26 & 10.2114253 \\
\hline To the Tangent of & P Z R & 6.4 & 18 & 50 & 10.3178810 \\
\hline 2. As the Cofine of & SZR & 65 & \[
44
\] & 52 & \[
\begin{aligned}
& 9.6137228 \\
& 9.6369311
\end{aligned}
\] \\
\hline To the Cofine of & PZR & & & & 232083 \\
\hline & & 38 & 30 & 00 & \(9.90060{ }^{2}\) \\
\hline So the Tangent of To the Tangent of & ZS & 40 & & 00 & 9.9238135 \\
\hline
\end{tabular}
25. To find an Angle by knowing the other two Angles and the Side inclofed by them.

As in the Triangle ZPS having ZP 38 gr . 30 m ZPS 3 gr . \(34 \mathrm{~m} .26 \mathrm{fecoc}_{0}\) and P ZSI 30 gr .3 m . II fec. to find the Angle Z S \(\mathrm{P}_{0}\)
1. Find the Angle PZR by the fixteenth Propofition as before.
2. As the Sine of PZR

To the Sine of SZR
So the Cofine of
To the cofine of \(\quad\) ZSS
26. To find an Angle by knswing the other two Angles and one Side next the Angle required.

As in the Triangle Z PS, having ZP \(3^{8} \mathrm{gr} .30 \mathrm{~m} . \mathrm{ZPS} 31 \mathrm{gr} .34 \mathrm{~m}\).

1. Find the Angle P Z R as before.
2. As the Cogine

ZBS
To the Cosine of Z S P
\(\begin{array}{lll}31 & 34 & 26\end{array}\)
\(30 \quad 28\) II
\begin{tabular}{r}
9.9304223 \\
99354554 \\
\hline \(\begin{array}{r}5033 \mathrm{I}\end{array}\) \\
\hline 9.9548122 \\
9.9598453
\end{tabular}
27. To find an Angle by knowing two Sides and the Angles contained by them.

As in the Triangle ZPS, having ZP 38 gr .30 m . PS 70 gr and 2 PS \(3!\mathrm{gr} .34 \mathrm{~m}\). 26 fic . to find the Angle ZSP.
x. Find the Ark PR as before.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2. As the Sine of To the Sine of & \[
\begin{aligned}
& \text { SR } \\
& \text { PR }
\end{aligned}
\] & \[
\begin{gathered}
35 \\
34
\end{gathered}
\] & \[
\begin{gathered}
52 \\
07
\end{gathered}
\] & \[
\begin{aligned}
& 30 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& 9.7679127 \\
& 9.7489617
\end{aligned}
\] \\
\hline & & & & & - 189510 \\
\hline So the Tamgent of & ZPS & 3 I & 34 & 26 & \\
\hline To the Tangent of & ZSP & 30. & 28 & II & 9.7696236 \\
\hline
\end{tabular}
28. To find an Angle by knowing two next Sides, and one of the other asingles.

As in the Triangle Z PS having Z P \(38 \mathrm{gr} .30 \mathrm{~m} . \mathrm{ZS} 40 \mathrm{gr}\). and ZPS 31 gr .34 m .26 fec . to find the Angle PZ S.
I. Find the Angle P Z R as before.
2. As the Tangens of

To the Tangent of
Z S
Z 9
\(\begin{array}{ccc}40 & 00 & 00 \\ 38 & 03 & 00\end{array}\)
9.9238135
9.9006052
232083

So she Cofine of
To the Cofine of

PZR
\(S Z R\)
\(\begin{array}{lll}64 . & 18 & 50 \\ 65 & 44 & 21\end{array}\)
9.6369311
9.6137.228

Thefe 28 Cafes are thofe which \(I\) fee down in the ufe of the Sector, and all that are commonly required in a Spherical Triangle. I will here add two more, to thew how that which is found before by the 22,23 , 26, and 28. Propofitions may fometimes be found more eaffly, viz.
29. To find a Side, by knowing the other tuvo Sides, and their oppofite Angles.

A's in the Triangle ZP S, having PS 70 gr . and P Z S 130 gr .3 mo 11 fec. togecher with Z S 40 gr . and ZPS 31 gr .34 mo 26 fec . to find the third Side Z P.

As the Sine of half the Difference of the Angles given,
T'o the Sine of half the Sum of thofe Angles:
So the Tangent of half the Difference of the Sides given,
To the Tangent of balf the Side required.
30. To find an Angle by knowing the other two Angles, and their oppofite Sides.

As in the Triangle Z P S, having the former parts \(P S, P Z S, 2 S_{3}\) and ZP S, to find the third Angle Z.S P.

As the Sine of half the Difference of the Sides given, To the Sine of half the sum of thofe Sides:
\(S_{\theta}\) the Tangent of half the Difference of the Angles given,
To the Cotangent of half the Angle required.

\section*{198}

\section*{The general Ufe of the Camen}

\section*{CHAP. III.}

Concerning the joynt \(v\) 在e of the Lines of Numbers; Sincs axd Tangents.

COncerning the joynt Ule of the Lines of Numbers, Sines and Tangents, I hewed how they might ferve for the Refolution of Right-lined Triangles, whereof I fer down five Propofitions in the nineth Chapter of the firft Book of the Crop-ftaff. And thefe alfo may be applied to the Table and Canon of Logarithms.

The Sides of thefe Triangles are meafured by abfolute Numbers, and fo reprefented by Logarithms.

The Angles are meafured by degrees and minutes, and fo to be found by Sines and Tangents in the Canon.

\section*{PROP. I.}

Having three Angles and one Side, to find the other two Sides.

IF it be a Rectangle Triangle, wherein one Side about the right Angle being known, it were required only to find the other, this might be readily done by Sines and Tangents. As in the Rectangle A I B, knowIfig the Angle B A I to be 43 gr .20 m . and the Side A I to be 244 , if ir were required to find the other Side A I.
A

As
Is to the Tangent of the Angl So. is the Side given.

To the Side required
B I

230
45 gr .00 m.
\(43 \quad 30\) 244 으으

230 292
10.0000000
9.9749195
2.3873898
12.3621093

But where both the other Sides ave required, it is bef done by Logarithms and Sines. As in the fame Rectangle A I B, having the three Angles and the Side A I, to find both BI and A B.

\section*{asd Tables of Logaritbms:}

As the Sinne of the oppofite Angle A BI \(46 \quad 40 \quad 9.8617575\) Is to the Side given

AI \(\quad 244000\)
2.3873898

So the Sine of the focond Angle
To his oppofite Side
\begin{tabular}{llll}
B A I & 43 & 20 & 9.8364770 \\
B I & 230 & 202 & 2.3621093
\end{tabular}
\begin{tabular}{lllll}
And the Sine of the third Aingle A I B & 90 & 00 & 10.0000000 \\
243 & 2.525032
\end{tabular}
To his oppofite Side AB \(\quad 335 \quad 243 \quad 2.5256323\) The like holdech allo in Oblique-angled Triangles.
As in the Triangle A BD (which I propofed formerly as an example for the finding the Dittances) where knowing the Diftanee between A and \(D\), to be 100 paces; the Argle B A C to be 43 gr .20 m . the Angle B D A. 122, or the outward Angle B DC 58 gr r and confequently the Angle A B D oppofite to A D the Side given, to be 140 gr .40 m. it was required to find the Diftances A B and D B.
\begin{tabular}{|c|c|c|c|c|}
\hline As the Sine of the oppofite Angle Is to the Side given & \[
\begin{aligned}
& \text { ABD } \\
& A D
\end{aligned}
\] & 14
100 & - & \[
\begin{aligned}
& 9.4034554 \\
& 2.0000000
\end{aligned}
\] \\
\hline & & & & 7.4034 .554 \\
\hline So the Sine of the fecond Angle & A D B & 58 & - 00 & \[
\begin{aligned}
& 9.9284204 \\
& 25249650
\end{aligned}
\] \\
\hline To bis oppofite Side & AB & 334 & & 25249650 \\
\hline And the Sine of the third Angle & DA.B & 43 & 26 & 9.8364770 \\
\hline To bis oppofite Side & D B & 271 & 03 & 2.4330216 \\
\hline
\end{tabular}

\author{
PROP. II.
}

Having two Sides and one Angle oppofite to cither of thofe Sides, to find the other two Angles and the third Side.

ASin the Triangle ABD, having the two Sides A B 335 paces; And Angle be 58 gr . if it were required to find the or the ouw Angles at \(A\) and \(\mathrm{B}^{2}\) and the third Side \(B D\), I may fiuft find an Angle \(A B D\) oppofite \(B^{\circ}\) the other known Silde A D.

Then knowing thefe two Angles at \(\mathbf{D}\) and \(\mathrm{B}, \mathbf{I}\) take the inward Angle A BD 14 gr .59 m .50 fec . out of the outward Angle B DC 58 gr .00 m. and fo find the third Angle BAD, cobe 43 gr .20 m . io fec. So having three Angles and two Sides I may well find the third Side B D by the former proportion.
\begin{tabular}{|c|c|c|c|c|}
\hline As the Sine of the firf Angle Is to bis oppofite Side & \[
\begin{aligned}
& \text { ADB } \\
& \text { AB }
\end{aligned}
\] & \[
\begin{array}{r}
58 \\
335
\end{array}
\] & -o & \[
\begin{aligned}
& 9.9284204 \\
& 2.525044^{8}
\end{aligned}
\] \\
\hline & & & & 7.4033756 \\
\hline So the Sine of the laft Angle & DAB & 43 & \(20 \frac{1}{6}\) & 9.8365033 \\
\hline To bis oppofite Side & D B & 271 & \(\underline{0}\) & 2.4331277 \\
\hline & & & & PRO \\
\hline
\end{tabular}

\section*{PROP. III.}

Having two Sides, and the Angle between them; to find the other twe Angles and the tbird Side.

IF the Angle conteined between the two Sides given be a right Angle, the other two Angles will be found readily by Tangents and Logarithms. Asin the Rectangle A I B having the Side A I 244, and the Side I B, to find the Angles at A and B. As the greater Side. A I 24

Is to the leffer Side IB Si the Radius, the Tangent of

To the Tangent of the leffer eAngle. 43 , \(18 \frac{i}{2} \quad 9.9743380\)
But if it be an oblique Angle that is conreined between the two Sides given, the Triangle may be reduced invo two Reetangle Triangles, and then refolved as before.

As in the Triangle A D B, having the Sides A B 335, ACroo, and the Angle B AD \(4320^{\prime}\), to find the Angles at B and D, and the third Side B D. Firft, I would fuppofe a Perpendicular D H to be let down from \(D\), the end of the leffer Side, upon the greater Side \(A B\) : fo thall I have cwo Rectangled Triangles D H A and D HB. And in the Recangle AHD, the Angle ar A being \(433^{2 \prime}\), the orher Angle A DH will be \(46.40^{\prime}\) by Complement, and with there Angles and the Side A D, I may find both A H and DH by the firt Proportion. Then taking \(A\) Hout of \(A B\), there remains \(H\) B for the Side of the Rectangle \(D H B\), and therefore with this Side \(H B\) and the other \(D H, I\) may find the Angle at \(B\), by the former part of this Proportion. And with this Angle and the Perpendicular D H, I may find the third Side D B, by the firt Propofition.
Or having cwo Sides and the Angle berween them, we may find the other two Angles without letting down any Perpendicular, in this manner.

As the Sums of the two Sides given, Is to the Difference of thise Sides:
So the Tangent of half the Sum of the two oppofice Axgles, To the Tangent of half of the Difference betwern thofe Angles:

So here having the Side and the other Side
The Sum of thefe Sides is and the difference of thefe Sides
The Angle conteined B A D is
The Sum of the two oppofite Angles The Half Sum of there Angles

AB
335 435
235
2.6384892
\(\frac{2.3719678}{2674214}\)
\(4320^{\prime}\)

And by Proporion and half differe 53
10.4009092

This half Sum and half Difference make 12 \(20 \frac{1}{3}\) the greater Angle and the Difference between them \(1419 \frac{2}{3}\) the leffer Aigle.
PR OP. IV:

Having ibree Sides, to find the three Angles.

LEt one of the three Sides given be the Bare (bit rather the greater Side) that the Perpendicular may fall within the Triangle. Then gather the Sum and the Difference of the rwo Sides, and the Proportion will hold. As the Baje of the Triangle, To the Snm of the Sides: So the Difference of the Sides, To the alternate Bafr.

\section*{and Tables of Logaritbms.}

This alternate Bafe being taken forth of the true Bale, if we let down a Perpendicular from the oppofite Angle, it fhall fall apon the middle of the Remainder. Asin the Triangle A D B.

The leffer Side A D roe
The orher Side

The Bale of the Triangle AB \(\quad \frac{12}{35}\)
The Sum of the Sides \(\quad 371\)
2.5250448
2.5693739

443291
The Difference between thele Sides
And fo the alcernate Bafe is
This taken out of 335 leaves
The half whereof is
2.2329961
171
\(189326 \quad\)\begin{tabular}{r}
2.2329961 \\
2.2773252
\end{tabular}

145 f. 215
\(73.8 \mathrm{I2}\). And fuch is the Seg- ment \(A\) H, the Diftance between the Angle at A, and the Perpendicular DH. So that having drawn this Perpendicular, we have two Rectangle Triangles D H A and DHB, in which having two Sides, and the right Angle, we may find the other Angles by the fecond Proportion.

Thefe four Propofitions may fuffice for the Refolution of the Sides and Angles in all right-lined Triangles.

> PROP. V.

Having the Bafe and Perpendicular in a right-limed Triangle, to find the Superficial Content.

T\({ }^{H}\) He Perpendicular may be found by one or other of the former Propofitions, and that being known we may find the fuperficial Content. Asin the Triangle A D B, having the Bafe A B 335 , and the Perpendicular DH 68545 .
\begin{tabular}{ccr}
As the Number of & 2 & 0.3010700 \\
To the Perpendicnlar & 68.545 & \(\frac{1.8359757}{1.5349457}\) \\
Sothe Bafe & 335 & 2.5250448 \\
Tothe Content & 11481223 & 4.0599905
\end{tabular}

Or if we would find the Content without knowing the Perpeadicular, we may put two or more Operations into one, as in the Proportion following.

\title{
The general Ufe of the Canon
}

\author{
PROP. VI.
}

Having tro Sides of a right-lined Triangle, and the Angle between therm, to find the Content.

ADd the Sine of the Angle, and the Logarithms of both the Sides, fhall be the Logarithm of the Content.

As in the Triangle A D B, having the Sides A B 335, A D 100, and the Angle B A D 43 gr .20 m .

The Sine of the Angle
The Logarithm of the Side A B
43 gr .20 m. is
335
The Logarithm of the Side A D
AD 100
The Sum of thefe make
From which fubiract the folemn Logarithm
The Remainder will be
The Logarithm of 11494 the Content required.
9.8364770
2.5250448
2.0000000
14.3615218
10.3010300
4.0604918

\section*{PROP. VII.}

Having thrce Angles, and one Side of a right-lined Triangle, to find
the Content.

\(A^{1}\)Dd the double of the Logarithm of the Side given, and the Sines of the two next Angles: from the Sum of thefe fubtract the Sum of 10.3010300 , and the Sine of the oppofite Angle, fo the Remainder fhall be the Logarithm of the Content.

As in che Triangle A D B fuppofing the Angles B A C io be \(348 \mathrm{gr}^{20 \mathrm{mo}}\) BDA 12 gr .00 m . A B D 14 gr .40 m .and the Side A D or the 100 parts.

The Logarithm of the Side A C 100 is 2.0000000

The fame again
The Sine of the Angle B A C
The Sine of the Angle B D A
The Sum of thefe four make
Again, if we add the folemn Logarithm
To the Sine of the oppofite Angle \(14 . \mathrm{gr} .40 \mathrm{~m}\).
The Sum of both will make
Which fubtracted frem 23.7648974 leave The Logarithm of. II 492 the Content required.
\(-2.0000000\) 9.8364770 9.9284204 23.7648974 1.0 .3010300 9.4034554 19.7044854 4,0604120

PROP.

\section*{and Tables of Logarithmse}

\section*{PROP. VIII.}
'Having the three Sides of a right-lined Triangle, to find the Content.
HIrft, fet down the three Sides, the Sum of them, and the Half-Sum. Then from this Half-Sum fuberact each Side feverally and note the Differences. That done, add the Logarithms of the Half-Sum, and thefe Differences, the half thereof thall be the Logarithm of the Content.

Thus in the Triangle \(A D B\), the three \(\left\{\begin{array}{l}A B \\ D D\end{array}\right.\) Sides are
The Sum of thele Sides is
The Half-Sum
The Difference from
The Difference from
The Difference from
\begin{tabular}{ccr}
& 352 & 3.547747 \\
AB & 18 & 1.2552725 \\
D B & 82 & 1.938138 \\
AD & 253 & 2.4031205 \\
& & 8.1199815 \\
ms & & 4.0599907
\end{tabular}

And the half thereof is The Logarithm of \(1148 \mathrm{I}^{223}\) the Content required.

> PROP. IX.

Having the three Sides of a right-lined Triangle, to find the Perpendicular.
A S in the former Triangle A D B , to find the Perpendicular DH then may the Perpendicular be found by the converfe of the fifth Propofition.
\[
\begin{aligned}
& \text { Asion. the Bafe of the Triangle } \\
& \text { To the Superficial Content }
\end{aligned}
\]

> So always the Number of Totbe Perpeadicular

\section*{PROP. X.}

Having the Semidiameter of a Circle, to find the Chord for any CArk propofed.

A\(S\) if in protracting the former Triangle A D B, it were required to find the length of a Chord of 43 gr .20 m . agreeing to the Semidiameter A E, which we fuppofe to be chree inches. This might be done by the firt Proportion, for if the Chord were drawn from \(E\) to \(F\) we Ghould have a Triangle E A F of three Angles and two Sides known. But, more generally comparing the Sine of 30 gr , with the Sine of half the Ark propofed, the Proportion will hold.

> As the Sine of the Semi-radius
> To the Semidiameter

So the Sine of balf the Ark
To the Chord required

So that having drawn the Line A E, and decribed an occult Ark of a Circle upon the Center \(A\), and Semidiameter AE, at the Diftance of three inches, if we take our two inches, and 215 parts of \(x 000\), and inicribe them into that Ark from Eto F, the line AF Chall make the Angle F A E to be 43 gr .20 m . as was required.

Thus having applied that to the Canon and Tables of Logarithms which I had fet down before for the general Uie of the Lines of Numbers, Sines and Tangents, it may appear fufficiently, that, if we oblerve the Rules of Proportion fet forth by others, and work by thefe Tables, we may ure Addition inftead of their Multiplication, and Subtraction inftead of their Divifion, and fo apply thefe general Rules to infinite parriculars.

\section*{CHAP. IV.}

Conteining fome vee of right-lined Triangles the-practice of FORTIFICATION.

IN the late manner of Fortification the ordinary Care is :
1. That the Angle of the Bulwark may be either a right Angle or near unto it.
2. That this Angle may be defended from the Flank and Cortin on either Side.
3. That the Lines of Defence may not exceed the reach of a Musket, which is faid to be twelve fcore Yards, and thofe make 720 foor.
4. That the depth of the Flanks and the bredth of the Rampart be fufficient co refilt battery ; and that may be about 100 foot at the ground.

Upon thefe confiderations depend the reft of Lines and Angles: whereof I will fet down fome Propofitions, beginning with that which may. refolve the works of others.

\section*{PROP. I.}

Having the Side of a Regslar Fort, with the length of the Gorge, the Fland and the Face of the Brlwark, to find the reft of the Lines snd Angles.

\(A\)
Regular Fort is that, which is made with equal Sides and Angle, each Bulwark like unto ocher.
Suppofe, hat by obfervacion or otherwife, we have found that in a fquare Fort, the Sidewas 780 fooc, the Gorge 140, the Flank 100 , and the Face 3.35 : In a Pentagona!, Hexagonal, Hepragonal, as in this Table.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & Ruadr. & Pentag. & Hemag & Heptag. & OCtagen \\
\hline The Side & \(A B\) & 700 & 800 & 900 & 950 & 1000 \\
\hline The Gorge & \(A D\) & 140 & 180 & 190 & 200 & 230 \\
\hline The Flank & \(D E\) & 100 & 120 & 140 & 150 & 158 \\
\hline The Face & \(E F\) & 335 & 352 & 370 & 360 & A20 \\
\hline
\end{tabular}

And that it were required to find the reft of the Lines, and the quansity of the Angles belonging to each Fort, beginning with the Quadrate.

Firft, we may protract this Fort, by making a Square whofe Side A B thall be 700 foot by the Scale : then take but 140 for the Gorge, and fet them off from \(\boldsymbol{A}\) unto \(D\), and from \(A\) unto \(H\); at \(D\) and \(H\) raife two Flanks perpendicular to the Sides of the Fort, and there prick down 100 from \(D\) unto \(E\), and from \(H\) unto \(G\). That done, take 335 out of the fame Scale, and fetting one foot of the Compaffes in the point E, make an occult Ark of a Circle. Again, fetting one foor of the Compaffes in the point G, make another occult Ark, croffing the former in the point F; So the Lines E F, F G fhall reprefent the Face of the Bulwark.

In like manner for the Bulwark at B, we may fee off the Gorge from Bunto N, ofc. So have we divers Triangles, which may be refolved by the firft three Propofitions of right-lined Triangles : and the manner of it thall be fo fet down, as that Precept may be eafily diftinguithed from the Example, and applied to any other, not only by this Canon and Table of Logarithms, but by the old Canon of Sines and Tangents, and by the Lines of sines and Tangents both upon the Sector and the Crofs ftaff.
I. In the Re Pangle ADE, having the Sides AD, AE, we may find the Angles ar \(A\) and \(E\), and the third Side \(A E\), by the former part of the chird Proportion of Right-lined Triangles.
and Tables of Logarithms:
209
\begin{tabular}{lccc}
As the Gorge & AD & 140 & 2.1461280 \\
To the Flank & DE & 100 & 2.0000000 \\
So the Radise & & 9000 m .00 fec. & 10.0000000 \\
To the Tangent of & DAE & \(3532 \frac{1}{4}\) & 9.8538720
\end{tabular}

Take the Angle D AE out of 90 gr . the Complement will give the Angle DEA; and then, having two Sides and three Angles, we may well find the third Side A E by the firft Propofition of the right-lined Triangles.
\begin{tabular}{clrr}
As the Sine of & DAE & \(35: 32 \frac{1}{4}\) & 9.7643542 \\
To the Side & DE & 100 & 2.0000000 \\
So the Sine of & ADE & 9000 m .00 Sec. & 10.0000000 \\
To the Side & AE & 172.241 & 2.2356458
\end{tabular}
2. Becaufe the Fort is fuppofed to be fure, the Angle H A D, mult be 00 gr . and the half Angle C A D 45 gr . if we add this Angle C A D unto the Angle D A E and take the Sum out of 180 gr . the Remainder \(99,27 \frac{3}{4}\) fhall be the Angle E A F. Then in the Triangle E A F, having the Angle at A, and the rwo Sides F E, A E, we may find the ocher Angles at \(E\) and F, by the third Propofition of right-lined Triangles.
\begin{tabular}{|c|c|c|c|}
\hline F, by the thix & EF & 335 & 2.5250448 \\
\hline To the Sine of & EAF & \(9927 \frac{3}{4}\) & 9.9940502 \\
\hline & & & 7.4690054 \\
\hline So the Line & A E & 172042 & 2.2356459 \\
\hline To the Sine of & AFE & \(3026 \frac{1}{5}\) & 9.7046513 \\
\hline
\end{tabular}

Add this Angle A FE to the Angle E AF, and take the Sumonc of 180 gr . the Remainder 50 gr .6 m . 3 fec . Thall be the Angle A EF. And then we have two Sides and three Angles, to find the Head-l ne A F.
\begin{tabular}{|c|c|c|c|}
\hline & & & \\
\hline As the Sine of
To the Face & EAF & \(99277^{\frac{3}{4}}\) - & \[
\begin{aligned}
& 99640502 \\
& 2.5250448 \\
& \hline
\end{aligned}
\] \\
\hline & & & 7.4690054 \\
\hline So the Sine of & A EF & \(506 \frac{1}{23}\) & 9.8848958 \\
\hline To the Head-line & AF & \(260^{2 / 2}\) & 2.4158904 \\
\hline
\end{tabular}
3. If we produce the Face \(F\) E untilit meet the Cortin in \(O\), we Chall have the Triangle A EO: wherein, knowing the Side A F, and the three Angles (for knowing two Angles, the third is always known by the Complement unto 180 gr .) we may find the other two Sides FO, AO.

Dddd

200
As the Sine of
To the Head-line

\section*{The general Ufe of the Canos}

\section*{AOF AF \\ \(1433 \mathrm{~m} .4^{8}\) fic.}
\begin{tabular}{ll}
FAO & 450000 \\
FO & 7369 \\
AFO & 302612 \\
AO & 524212
\end{tabular}
9.4004548
2.4158904
6.9845644
9.8494850
9.8649206

And the Sine of To the Line
Take the Gorge NB 140, out of the Side A B 700, there remains 560 for the Line AN. Take this Line A O our of A N, and there remains \(35^{\cong!8}\) for O N that part of the Cortin from whence the Face of the Bulwark may be defended.
4. In the Triangle A FN, having two Sides A F, A N, and the Angle between them F A N, we may find the other two Angles at \(F\) and \(N\), by the later part of the third Propofition of right-lined Triangles.
As the Sum of the Sides A F, AN \(\quad 820^{i s}\)
Is to the Difference of thofe Sides. 299 I!
2.9141050
\(\frac{2.4763245}{4377805}\)
So the Tang. of the balf fum of opp. Ang. at FoN 2230
9.6176153 To twe Tang. of half the Diff. between thofe Ang. \(836 \frac{1}{3}\)

91798348 This half Diff. added to the half fum gives the greater Ang. AFN \(316 \frac{1}{5}\) and fubtracted the leffer

A NF
\(1353 \frac{4}{5}\) As the Sine of

To the Head-line
ANF
135348

So the Sine of
To the Line of Defence F N
450000
5. In the Triangle A B C we \(767^{21}\)
9.3805157
2.4158904
6.9646253
5. In the Triangle A B C we have the Side A B, and the 2.8848597 to find the Side C A or C B from the Center to the Angles of the Fortes, As the Sine of ACB. 900000

To the Side So the Sine of

To the Line
AB 700
ABC
450000
\(A C^{\prime}\)
\(494^{212}\)
This Line A C added to the Head-line A F, gives the whole C \(F\) 2.6945830 Center of the Fort to the uttermolt point of the Bulwark to be \(7: 55^{225}\).
6. In the Triangle C F L (che Side F L being parallel to \(A B\) the Side of the Fort) we have the three Angles and the Side CF; by which we may sind F L che Diftance beciveen the points of the two next Bulwarks.
\begin{tabular}{|c|c|c|c|}
\hline As the Sine of & CLF & 450000 & 9.8494850 \\
\hline To the Line & C F & \(755^{232}\) & 2.8782498 \\
\hline So the Sine of & FCL & 900000 & 10.0000000 \\
\hline To the Line & FL & 1068.464 & 3.0287648 \\
\hline Thus by refolving of fix & riangle & re found & gr. mr. fec. \\
\hline The Angle at the Gorg & & & 353215 \\
\hline The Angle of the Bulw & vark & & 685224 \\
\hline The Angle & & & 1043348 \\
\hline The Angle & & & \[
135348
\] \\
\hline
\end{tabular}

The length of the Line
The Head-line
The Line on the Cortin
The Line of Defence
The Semidiameter
The Line from the Cencer to the Bulwark
The Diftance between the Bulwark
\(\begin{array}{lll}\text { AE } & 172 \quad 047\end{array}\)
AF 260540
ON \(35: 088\)
FN \(767 \quad 113\)
CA. \(494 \quad 975\)
CF \(755 \quad 525\)
FL 1068464
The principal Lines and Angles belonging to the Bulwark at A.
The reft of the Lines are either parallel unto thele, or elfe they may be found in the fame manner.

And all thefe may be underitood by the fame in the reft of the Bulwarks belonging to this Fort.

Again, what is faid of a Square Fort, the fame may be applied to all regular Forts.

And fo, refolving the works of ocher men, it may appear how near they have come to the former grounds.

But that we may not altogether infift upon Examples, I will fet down fome profitable Suppoficions, and from them proceed to find the reft of the Lines and Angles belonging to any Regular Fort.
1. The Angle at the Cenier A C B, between the Lines C A, C B drawn from the Center to each Bulwark, is found by dividing 360 gr o by the number of the Sides. So in a Square Forr, this Angle will be 90 gr . In a Pentagonal Fort, where there are five Sides, it will be \(7 \mathbf{2} \mathrm{gr} .88 \mathrm{c}\).
2. Take this Angle at the Center, out of 180 gr . there remains the Angle of she Fort HAD.
3. The Angle A D E between che Flank and the Cortin, may be alway \(90 \mathrm{gr}^{\circ}\)

\section*{The general UJe of the Canon}
4. The uttermoft Angle of che Balwark EF G, muft be lefs than the Angle of the Forr, yer nor lefs chan 60 gr . nor doch it need to be much more than 90 gr . It we allow it to be \(\frac{\pi}{3}\) of the Angle of the Fort, it may be defended from the Flank and Cortin on either fide.
5. The Angle at the Gorge D A E, which forms the Flank D E, may be allowed berween 35 and 49 gr . For in imall regular Forts it may be 40 gr . But where the Angle of the Fort is grear, it may be lefs.

There five Angles being firft fedled, the molt of the ocher Angles will depend upon them, as in the Table following.

Or howfoever there may be other Angles found to be more convenient, yet thefe are fufficient to explain the ufe of Triangles.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline In a Regular Fort. & & \(\left.\right|_{\text {Pentag. }} ^{\text {Gr. M }}\) : & \(\frac{\text { Hexay. }}{\text { Gr. M. }}\) & \(\left\lvert\, \frac{\mathrm{H} \text { ptag. }}{\text { Gr. } \mathrm{M}}\right.\). & OCazon. & \(\frac{\text { Cortin. }}{\text { Gr. M. }}\) \\
\hline \[
\text { Angle at the center } A C B
\] & 90 & 720 & & 51-25 & & \\
\hline \(\begin{array}{ll}\text { angle of the Fort } & \text { HAD } \\ \text { Angle of the Flank } \\ \text { ADE }\end{array}\) & 90 & & 1200 & 12834 & 135 & 1800 \\
\hline Angle of the Flank ADE & 900 & 90-1 & & & & \\
\hline Angle of the Bulwark GFE & 630 & 72 & & 85 & \% & \(\bigcirc\) \\
\hline Angle of the Gorge \({ }^{\text {d }}\), \(A E\) & & 39 & & 37 & & 35 \\
\hline ine balf of \(H A D\) is CAD & 450 & 540 & 60 & \begin{tabular}{ll}
64 & 17 \\
\hline 17
\end{tabular} & & \\
\hline Hulf of GFE is AFE & & 136 & 40 & 642 41 & & \\
\hline \(A F E\) out of CAD lcaves \(A O F\) & & \(\left\lvert\, \begin{array}{ll}18 & 0 \\ 18 & 0\end{array}\right.\) & & \({ }^{115} 423\) & & \\
\hline Complement of \(A O F\) is OED & \({ }^{\circ}\) & 1720 & 70 & [68 35 & & \\
\hline Complement of \(O E D\) is DEF. & 硣 & 108 & , & III 26 & 112 & \({ }^{45}\) \\
\hline Complement of DAE i \(A E D\) & 50 & & & & & 55 \\
\hline \(A E D\) out of \(D E F\) leaves \(A E F\) & & 57 & & & & \\
\hline AEF and \(A\) FEgive \(F A E\) & 995 & \(\mathrm{O}^{5} 7\) & \({ }_{82}\) & & [176 30 & 80 \\
\hline
\end{tabular}

\section*{PROP. II.}

Having the ordinary Angles, with the Flank and Line of Dtfence, to find the reff of the Lines and Angles in a Regular Fort.

SUlopofe rhe Angles to be fuch, as in the former Table, the depth of the Flank DE 100 foor, and the Line of Defence F N 720 foot; and that it were required, to find the reft of the Lines and Angles belonging to a Pentagonal Fort.
1. In the Triangle A DE, having the three Angles and the Flank DE we may find the length of the Gorge A D, and the Line A E. The Angle of A DE is alway 90 gr . but che Forr being Pentagonal, made with five Bulwarks at the five Angles, the Table gives the Angle D A E 39.gr. and the Angle AED 5 I gr. wherefore .
As the Sine of
To the Flank
2. In the Triangle A. FE, having the three Angles and the Side A E, we may find the Face of the Bulwark F E, and the Head-line A F.
\begin{tabular}{|c|c|c|c|}
\hline we may find the & & & 9.7692186 \\
\hline As the Sine of. & \(A F E\) & 1560000 & 9.7691186
2.2011282 \\
\hline To the Line & & & 7.5680904 \\
\hline & \(F A E\) & 87000 & 9.9994044 \\
\hline Tothe Face & FE & 26926 & 2.4313140 \\
\hline And the sine of & \(A E F\) & 570000 & 9.9235914 \\
\hline To the Head-line & \(A F\) & 226.235 & 2.3555010 \\
\hline
\end{tabular}
3. In the Triangle A F O, having the three Angles and the Side A F, we may find the other two Sides F O and A O.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{we may find the ot As the Sine of To the \(H\) :ad line} & \multirow[b]{2}{*}{\[
\begin{aligned}
& A O F \\
& A F
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 180000 \\
& 226^{1 \equiv 2}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
9.4899823 \\
2.2555010 \\
\hline
\end{array}
\]} \\
\hline & & & \\
\hline & & & 71344813 \\
\hline \multirow[t]{2}{*}{So the Sine of Tothe Line} & \multirow[t]{2}{*}{\[
\begin{aligned}
& F A O \\
& E O
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
1260000
\]} & 9.9074576 \\
\hline & & & 2.7729763 \\
\hline \multirow[t]{2}{*}{And the sine of To the Line} & \multirow[t]{2}{*}{\[
\begin{aligned}
& A F O \\
& A O
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
260000 \\
438 \$ 1
\end{gathered}
\]} & 9.7692186 \\
\hline & & & 2.6347373 \\
\hline
\end{tabular}
4. In the Triangle A F N, having the Head-line A F, the Line of Defence F N, and the Angle F A N, we may find the other two Angles as N and F , and the third Side A N.
\begin{tabular}{|c|c|c|c|}
\hline & \(F N\) & 7:0 & 2.8573325 \\
\hline & \(F^{*} A\) & 1260000 & 9.9079576 \\
\hline To. & & & 7.050625 z \\
\hline So the Head-live & \(A F\) & \(226{ }^{23}\) & 2.3555010 \\
\hline To the Sine of & \(A N F\) & 144533 & 9.40812 \\
\hline
\end{tabular}

This Angle A NF added to the Angle FAN, and the Sure of both taken out of 180 gr . willgive the third Angle A. FN.
\begin{tabular}{cll}
As the Sine of & FAN & 1260000 \\
To the Line of Defence & FN & \(\mathbf{7 2 0}\)
\end{tabular}
9.9079576 2.8573325 7.0506251 9.8011178 2.7504927
the Sum of Having this Line A \(N\) if we edd the
both Giall be the Side of the Fort A B.
If we take rhe Gorge A D, out of this Line A N, the Remainder Ghall be che Cortin D N.

Again if we take the Line A O out of this Line A N, the Remainder Thall be O N, that part of the Cortin from whence the Face of the Bulwark may be defended. And io here,
The lengeh of this Line
The Gorge

The Side of the Fort
The Cortin
Again taking the Line
From A N, there remains

AN being
AD
A B fhall be D N
AO
ON

So the Sine of
To the Line of
AFN
391427 \(562 \cdot 2\)
Having this Line A N if we edd the Gorge N B or A D, the Sum of

The lenged of this Line
s.
5. In the Triangle A IC, having the three Angles, and the Side A I, the one half of A B the Side of the Fort, we may find both C I, the Semidiamerer of the Circle infrribed, and CA, the Semidiametcr of the Circle circumfcribed about the Fort. As the Sine of
To the Line

ACI
AI
CAI
CI
CIA
CA

360000 \(343 \quad 23\)
9.7692186
2.5355915
7.2336271

So the Sine of
To the Lime
And the whole Sine
To the Line,

540000 472.4225

9000 do
583.9466

99079576
2.6743305
10.0000000
2.7663729
ance CF beThis Line C A added to the Head-line A F gives the diftance C F
ween the Center of the Fort, and the uttermoft point of the Bulwark.
6. If this Fort hall be encompaffed with a Ditch, whole uttermoft Sides fhall be parallel to the Face of the Bulwark; luppofing this Ditch to be of a known bredch (and that may be about 100 foot) we have the Triangle F2 X; wherein knowing the chree Angles and the Side F2, we may find the Line \(F\) X.
\begin{tabular}{llll}
As the Sine of & \(\mathrm{FX}_{2}\) & \(360000 \quad 9.7692186\)
\end{tabular}
To the Bredth-Line F 2 F \(100 \ldots 2,0000000\)

To the Line
F X
\(170^{13}\)
2.2307814

This Line F X added to the Line C F, gives the Diftance C X between the Center of the Fort, and the utcermoft Corner of the Ditch: and 10 here:

The Length of the Head line The Scmidiameter

Both chefe make the Line
Add unto this the Line
So C A, A F, FX make
AF is
CA
CF
FX \(\quad\)\begin{tabular}{r}
226.72 \\
FA
\end{tabular}\(\quad\)\begin{tabular}{r}
83.95 \\
810.67 \\
170.13 \\
\hline
\end{tabular}

CX \(\quad 980.80\)
7. In the Triangle C Y X, having the three Angles and the Side \(\mathrm{C}_{2}\) we may find the two other Sides \(C Y\) and \(X Y\).
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{As the Sine of To the Line} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { CYX } \\
& \text { CX }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1080000 \\
& 980 \text { : } 00
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 9.9782063 \\
& 2.9915815 \\
& \hline 6.9866248
\end{aligned}
\]} \\
\hline & & & \\
\hline & CXY & 360000 & 9.7692186 \\
\hline So the Sine of To the Line & CY & 60614. & \[
2.7825938
\] \\
\hline And the Sine & X C Y & 360000 & \\
\hline To the Lise & & & \[
{ }^{2} .7825938
\] \\
\hline
\end{tabular}

Take the Line C I, from this Line C Y, there remains I Y, the bredth of the Ditch from the middle of the Cortin.

8: Then, for the Lines F L, X Z , and fuchother Parallels to the Side of the Fort AB.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
of the Fort A B. \\
As the Semidiameter To the Side of the Firs
\end{tabular} & \[
\begin{aligned}
& \mathrm{CA} \\
& \mathrm{AB}
\end{aligned}
\] & \[
\begin{aligned}
& 583.95 \\
& 686.47
\end{aligned}
\] & \[
\begin{aligned}
& 2.7663729 \\
& 2.8366215 \\
& \hline
\end{aligned}
\] \\
\hline & & & 7.70702486 \\
\hline So the length of & C F & 810.67 & 2.9088444 \\
\hline To the Diftance & FL & 953.00 & 2.9790930 \\
\hline And the length of & C X & 980.80 & 2.99 .15815 \\
\hline). Io the Diffance & XZ & \(1152 \% 97\) & \[
3,0618310
\] \\
\hline
\end{tabular}

\section*{The general Uje of the Canoss}
9. The Perpendiculars C 3, C4, and luch others, let down from the Cencer upon the former Parallels may be found in the fame forr:
\begin{tabular}{ccccc}
As the Semidiameter & CA & 58395 & 2.7663729 \\
To the Perpendicular & CI & 47242 & 2.6743305 \\
& & & \\
& & & 920424 \\
So the Length of & C.F & 81067 & 2.9088444 \\
To the Perpendicalar & C 3 & 65584 & 2.8168020 \\
And the Length of & C X & 98080 & 2.9915815 \\
To the Perpendicular & C4 & 79348 & 2.8995391
\end{tabular}
10. If we take IR the bredth of the Rampart out of the Perpendicular C I, fuppofing the bredth of the Rampart to be 100 foot, there remains 37242 for the Perpendicular CR.

If we take out I T the bredch of the Rampart and Streer adjoyning, (che Street being fuppofed 30 foor broad) there remains 34242 for the Perpendicular C T.
\begin{tabular}{|c|c|c|c|}
\hline As the Perpendicular To the Side of the Fort & \[
\underset{\mathrm{A} \cdot \mathrm{~B}}{\mathrm{C}}
\] & \[
\begin{aligned}
& 47242 \\
& 68647
\end{aligned}
\] & \[
\begin{aligned}
& 2.6743305 \\
& 2.8366215
\end{aligned}
\] \\
\hline & & & 1622910 \\
\hline So the Perpendicular & CR & 37242 & 2.5710358 \\
\hline To the Side of the Rasapart & QS & 54116 & 2.7333268 \\
\hline - And the Perpendicular & C T & 34242 & 2.5345622 \\
\hline To the inner Side of the Street & VW & 49757 & 2.6968532 \\
\hline As the Perpendiosslar & CI & 47242 & 2.6743305 \\
\hline Tothe Semidiameter & CA & 58395 & 2.7663729 \\
\hline & & & 920424 \\
\hline So the Perpendicklar & CR & 37242 & 2.5710378 \\
\hline Tothe Line & CQ & 46034 & 2,6630802 \\
\hline And the Perpendichlar & CT & 34242 & 2.5345622 \\
\hline To the Line & CV & 42325 & 2.6266046 \\
\hline Tolbe Linc & & 423 & PROP. \\
\hline
\end{tabular}

\section*{PROP. III.}

Having the ordinary Augles with the Line of Defence and Face of the Bulwark, to find the reft of the ines and Angles.

Suppofe a long Cortin to be fortified with Bulwarks, the Angle of each
Bulwark to be 90 gr . the Angle at the Gorge forming the Flank 35 gr . the reft as in the former Table, the Line of Defence 720 foot, and the Face of the Bulwark 300 foor.
\begin{tabular}{|c|c|c|c|}
\hline As the Sine. of & FAE & 550000 & 9.9133645 \\
\hline To the Face & FE & 300 & 2.4771212 \\
\hline & & & 7.436243 .3 \\
\hline So the Sine of & A EF & 800000 & 9.993350 .4 \\
\hline To the Head-line & A F & 360.668 & \(\underline{2.5571081}\) \\
\hline And the Sine of & AFE & 450000 & 9.8494850 \\
\hline Tothe Line & AE & 258.965 & 2,4132417 \\
\hline
\end{tabular}
2. In the Triangle A D E, having the three Angles and the Line A E; we may find both the Flank D E, and the Gorge A D. As the Sine of
To the Lise So the Sine of
To the Flank And the Sine of
To the Gorge
ADE
A E
900000 258.96

D AE
DE
AED
35.0000 1.48 .53

550000
10.0000000
\(\frac{2.4132417}{7.5867583}\)

AD
212.132

Eece
9.7585913

2,1718330
9.9133645
2.3266062
3. In

\section*{The general \(v\) Je of the Canoss}
3. In the Triangle FAO, having the three Angles, and th: two equal Sides A F, A O, we may find the length of F O, the Face produced unto the Cortin.
\begin{tabular}{clll}
Asthe Sine of & A OF & 450000 & 9.8494850 \\
\begin{tabular}{c}
To the Head-line
\end{tabular} & A F & 360.66 & \(\mathbf{2 . 5 5 7 1 0 8 1}\) \\
So the whole Sine of & FAO & 900000 & \(\underline{10.0000000}\) \\
To the Face produced & FO & 510 & 2.7076231
\end{tabular}
4. In the Triangle F A N, having the Head-line A F, the Line of Defence F N, and the right Angle FAN, we may find the other two Angles at F and N , and the chird Side \(\mathrm{A} N\).

As the Line of Defence
To the whole Sine of So the Head-line

FN \(\quad 720\)
2.8573325

ค AF \(\quad 360.66\)
\(\mathrm{ANF} \quad 30.3 \frac{2}{3}\)
9.6997756

As the Size of
To the Line Sothe Sine of

To the Line
\begin{tabular}{lll}
FAN & 900000 & \(\frac{10.0000000}{2.8573325}\) \\
F N & 720 & \(\underline{9.9372735}\) \\
A F N & \(59.56 \frac{2}{3}\) & \(\underline{2.7946060}\) \\
A N & 623.1697 & 2.79.
\end{tabular}
- Having the Line A N, if we add the Gorge N B or A D, the Sum of both fhall be the Line A B or F L, the Diftance between both Bulwarks.

If we take the Gorge A D out of this Line A N, the Remainder fhall be the Cortin DN.

Again, if we take the Line A O out of this Line A N, the Remainder thall be O N, that part of the Cortin from whence the Face of the Bulwark may be defended.
\begin{tabular}{clr}
Thus the Length of & A N being & \\
The Gorge N B, or & A D & 623.169 \\
The Diftance FL or & A B thall be & \(\mathbf{2 1 2 . 1 3 2}\) \\
The Cortin & D N & 835.301 \\
Again taking the Line & A O & \(\mathbf{4 1 . 0 3 7}\) \\
From A N, there remains & ON & 360.668 \\
& & 26.501 \\
& & PROP.
\end{tabular}

\section*{PROP. IV.}

Having the Angles of an irregutar Fort, with the Side between them, ant the Face of the Balwark, to find the reft of the Lines and Angles.

SUppofe the Angles of an old walled Town were to be fortified with new Bulwarks. The Angles of the Bulwark to be either \(\frac{2}{3}\) of the Angle at the Wall (or if \(\frac{2}{3}\) of the Angle be more than 90 gr .) it may fuffice that they be 90 gr . The Flanks perpendicular to the Cortin, to be formed by an Angle between 35 and 40 gr . as thall be found more convenient. And the Face of each Bulwark to be 300 foot.

Let the Angle at A be 126 gr . then may EFG, the Angle of the Bulwark be 84 gr . and the Angle D A E may be allowed to be 38 gr . Let the Angle at \(\mathbf{B}\) be 140 gr . then becaule \(\frac{2}{3}\) of this Angle are above 90 gr . the Angle of this Bulwark may well be 90 gr . and the Angle at the Gorge N B M, 36 gr . And let A B, the Diftance berween thée Angles be 750 foot.

In regular Forts the Bulwarks may be made one like the other, fo the Head-lines being produced will all meet in the fame Center. In irregular (fach as this) there will be fome Difference, yet the work though fomewhat longer will be fill the fame.
1. At the Bulwark A in the Triangle A F E, becaule the Angle of the Fort HAD is \(\mathbf{1 2 6 g r}\). the half Angle QAD 63 gr . and the Angle at the Gorge D A E fuppofed to be \(3^{8} \mathrm{gr}\). the Angle E A F will be 79 gr . Again, the Angle AFE (the half of GFE the Angle of the Bulwark) being 42 gro the Angle AEF will be 59 gr . by Complement.

\section*{The general Vfe of the cazon}

In the Rectangle A D E, the Angle ar the Gorge D A E being 38 gr . the other Angle D E A mult be \(\Sigma_{3} \mathrm{gr}_{\mathrm{g}}\). by Comaplement.

As the whole Sine of
To the Line of

ADE A E

DAE
DE
AED
AD
DAE
DE
AED
AD
DAE
DE
AED
AD
DAE
DE
AED
AD

900000 204.496

So the Sine of To the Flank And the Sine of To the Gorge

380000 125.900

520000
161. 45
10.0000000
2.3196856
7.6893144 9.7893419 2.1000275
9.8965321
2.2072177

In like manner at the Bulwark B in the Triangle B LM, becaufe the Angle of the Fort is 140 gr . the half thereof S B N 70 gr . and the Angle at the Gorge N B M fuppofed to be 36 gr . the Angle M B L will be 74 gr . And then the Angle B L M (the half of the Angle of the Bulwapk) being 45 gr .the third Angle B M L, mult be 61 gr . by Complement.

As the Sine of
Tothe Face
So the Sime of
To the Head-line
And the Sine of
Tothe Line

MBL
ML
B ML
BL
BLM B M

740000
300
610000 272.960 450000 920.68 x
9.9828416
2.4771212
7.5057204 9.9418192 \(\frac{2.4360988}{0.8404850}\) 9.8494850 2.3437646

And in the Reftangle Triangle B N M, allowing NBM, the Angle at the Gorge to be 36 gr . the other Angle \(\mathrm{BM} N\) muft be 54 gr . by Complement.
\begin{tabular}{|c|c|c|c|}
\hline As the whole Sine Tothe Line & \[
\begin{aligned}
& \text { BNM } \\
& \text { BM }
\end{aligned}
\] & \[
\begin{aligned}
& 900000 \\
& 220.68 \mathrm{I}
\end{aligned}
\] & 10.0000000
\[
2.3437646
\] \\
\hline So the Sipe of & & & 7.6562354 \\
\hline To the Flank & \[
\stackrel{N B}{N}
\] & \[
360000
\]
\[
129.713
\] & \begin{tabular}{l}
9.7692186 \\
2.1129832
\end{tabular} \\
\hline And the Sine of & & & \\
\hline To the Gorge & \(\mathrm{BN}^{\text {N }}\) & \[
\begin{aligned}
& 540000 \\
& 178.534 .
\end{aligned}
\] & \[
9.9079576
\] \\
\hline
\end{tabular}

\section*{and Tables of Log aritbnoso}
3. In the Triangle A F O, taking the Angle AFO 42 gr . our of the Angle QAO 63 gr . there remains 2 g gr . for the Angle A OF F
\begin{tabular}{|c|c|c|c|}
\hline As the Sine of To the Head line & \[
\begin{aligned}
& \text { AOF } \\
& \text { AF }
\end{aligned}
\] & \[
\begin{aligned}
& 210000 \\
& 261.963
\end{aligned}
\] & \[
\begin{array}{r}
9.5543291 \\
2.4182403 \\
\hline 6.1360888
\end{array}
\] \\
\hline So the Sine of To the Line & \[
\begin{aligned}
& \text { AFO } \\
& \text { A O }
\end{aligned}
\] & \[
\begin{aligned}
& 420000 \\
& 489127
\end{aligned}
\] & \[
\begin{aligned}
& 9.8255109 \\
& 2.689422 \mathrm{I}
\end{aligned}
\] \\
\hline And the Sine of To the Face produced & \[
\begin{aligned}
& \text { FAO } \\
& \text { FO }
\end{aligned}
\] & \[
\begin{aligned}
& 630000 \\
& 651.316
\end{aligned}
\] & \[
\begin{aligned}
& 99498808 \\
& 2.8137920
\end{aligned}
\] \\
\hline
\end{tabular}

And fo in the like Triangle B L P , taking the Angle B LP 45 gr . out of the Angle S B P, 70 gr . there remains 25 gr . for the third Angle B LP. As the Sine of
To the Head-line
So the Sine of
To the Line

> B P L B

250000 272.960
9.6259482
2.4360988
7.1898494
9.8494850
2.6596356
9.9.729858
2.7831364

A B being
750: B N

AN
A O ON
\begin{tabular}{lr}
AD & 161.145 \\
BD & 588.855 \\
BP & 456.704 \\
DP & 132.151 \\
DN is & 410.3210 \\
& \\
& 4.10
\end{tabular}

\section*{222} The general Use of the Canon
4. In the Triangle A F N, having two Sides A F, A N, and F A N the Angle between them, we may find the other two Angles at N and F , and the Line of Defence F N.

And in the likeriangle B D L, having two Sides BL, B D, and the Angle between them L B D, we may find the other two Angles at \(D\) and \(L\), and the Line of Defence L D.
\begin{tabular}{|c|c|c|}
\hline As the Sum of B L and B D & 861815 & 2.9354138 \\
\hline To the Difference of thefe Sides. & 315895 & 2.4995421 \\
\hline & & 4358717 \\
\hline So the Tang. of the balf fum of & G D & 9.8452267 \\
\hline To the Tangent of & & 9.4093550 \\
\hline
\end{tabular}

This half Diff.added to the half fum gives the greater Ang. BLD \(49.23 \frac{2}{3}\) and fubrracted the leffer \(20.36 \frac{1}{3}\)

As the Sine 'of
To the Head-line
So the Sine of
Te the Line of Defence
And the Sine of
To the Line
20.36
272.960

LBD
LD
BLD
BD
9. 5463550
2.4300988
7.1103544
\(9.97^{29858}\)
\(\begin{array}{r}2: 86263.14 \\ \hline 9.8803627\end{array}\)
2.7700083

PROP.

\author{
PROP. V.
}

Having the Lines and Angles of a Regslar Fort, to find the Content in Feet and Acres.

THe Content of a For may be taken feveral ways: cither from within the Rampart, or from within the Oat-fide of the Ditch, or elfe we may take in the Out-works: And thofe may be of feveral forts, fuch as are here reprefented or the like.
If we confider the Content within the Rampart, we have the Triangle QC S, wherein knowing the Perpendicular CR and the Balc QS, we may find the Content of the Triangle. And this Content multiplied by the Number of the like Triangles belonging to the Fort, fhall be the whole Content required.
Thus, in the Pentagonal Fort before defcribed, where the Perpendicular CR was found to be in feer 372.42 , and the Baic QS 541.16 .
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{mber} & 2. & 0.3010300 \\
\hline & 541.16 & \[
2.7333268
\] \\
\hline & & 2.4322968 \\
\hline So the Perpendicular CR & 372.42 & 2.5710358 \\
\hline \multicolumn{2}{|l|}{To the Content of the Triangle 100773.25} & 5.0033326 \\
\hline \multicolumn{2}{|l|}{Add (for five Triangles) the Logarithm of 5} & 0.6989700 \\
\hline The Content in feet comes to & 503866 & 5.70230 \\
\hline
\end{tabular}

Then to reduce this Content into Acres, we may either divide the num. ber of feet by 43560 (the number of feet conteined in an Acre) or working by Logarithms, we may fubtract this folemn Logarithm 4.63908787 .

Thus from the Logarithm of 503866.25.
Subtract the folemn Logarithm - 43560
There remains the Logarithm of 11.56 The Content in Acres conteined within the Rampart.

If it be required to find the Content of this Pentagonal Fort within the outward Side of the Ditch, we have ten iuch Triangles as X CY, wherein knowing the two Sides C X, C Y, and the Angle between them \(X\) C Y we may let down a Perpendicular from the Angle at Y , upon the Bafe CX; and then with the Perpendicular and the Bafe, we may find the Content of the Triangle as before.

Thus the Side CX being 980.80 , the Side C Y 606.17. and the Angle berween them \(X \subset X, 3^{6} 0000\).

To the Perpendiculidor
2. As the folemn nimber

Totbe Bafe CX 2.

980:80

So the Perpendicular
- To the Content of the Triangle 1.74728 .60 Add (for ten Triangles) the Logarithm of 10.

The Content in feet comes to
Again, fubtract the Logarithm of
1747286
43560
The Content in Acres comes to
40.11
10.0000000
2.7825938 9.7692186
0.3010300
2.9915815
2.6905515
2.5518124
- 5.24 .23639
1.0000000
6.2423639
\(\frac{4.6390878}{1.6032761}\)
By the fame reafon, refolving all into Triangles, we may take in the Counterfcarp,' and the reft of the Out-works; and fo find the Content, not only of a Regular Forr, but of any other Pjece of Ground.

\section*{F1JIS.}

\title{
CANON TRIANGULORUM 0 R, A \\ TABLE 0 F
}

Arcificial Sines and Tangents, то \(A\)
Radius of 10.0000000 Parts
To each MINUTE of the

\section*{QUADRANT.}

B Y
EDMUNV GUNVTER,
Profeffor of Aftronomy in Grefbam-College.
\(L O N D O N\),
Printed by Andrew Clark, for Francis Eglesfield, and are to be fold at the Marigold in S. Paul S Chuirch-yard. 1672.
Aa2aa

\section*{The DESCRIPTION of the} C A N O

THis Canon hath fix Columns. The firft is of Degrees and Minutes, from the beginning of the Quadrant unto 45 gr . the fixth of Degrees and Minutes from 45 gr . unto the end of the Quadrant ; the other four contain the Sines and Tangents belonging to each of thofe Degrees and Minutes, after the manner of other Canons. The difference is in the Numbers: For thefe Sines are not fuch as half the Chords of the double Ark, nor thefe Tangents Perpendiculars at the end of the Diamerer; but other Numbers fubltituted in their place, for artaining the fame end by a more eafie way, fuch as the Logarithms of the Lord of Merchiffon; and thereupon I call them Artificial Sines and Tangents. So the fecond and fourth Columns contain the Sines and Tangents of the Digrees and Minutes in the firf Column; the third and fifth contain the Sines and Tangents of the fixth Column.

As if it were required to find the Artificial Sine belonging to our Latitude, which here at Zondon is \(5 \mathbf{1} \mathrm{gr} . \mathbf{3}^{2} \mathrm{~m}\). you may find Sine 5 I in the lower part of the Page, and \(M_{.} \mathbf{3 2}\) in the fixth Column, the common Angle will give 9.8937452 for the Sine required. And in the fame Line you have 9.7938317 for the Sine of the Complement of this Latitude, which in one word may be called the Co. fine. In like manner, the Tangent of 51 gr .32 m . will be found to be 10.0999134 , and the Co-tangent 9.9000865.

The Secants (if there were ule of them) may eafily be firpplied, by taking the Co-fine out of the double of the Radius.

As the double of the Radius, being \(\quad 20.0000000\)
Take hence the Co-fine of 51 gr 32 m . \(\quad 9.7938317\)
The Secant of 51 gr .32 m . will be \(\quad 10.2061683\)
The Verred sine may alfo be fupplied by adding 3010300 unto the double of the Sine of half the Ark, and fubtracting the Radius. As the half of 51 gr .32 m . being 25 gr .46 m .

Add to che Sine of 25 gr .46 m .
The fame again, and the former Number,
So the Radius being fubtracted, add
TheVerfed Sine of \(51 \mathrm{gr}: 32 \mathrm{~m}\), will be
9.6381968 9.6381968

Noto . 3010300 y \(9 \log m\)
Aaaaa 2
of.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline & & & & Infinicums. & 60 \\
\hline & & 9.9999999 & 6.463726 & \(13: 5362\) & \\
\hline 2 & 6.7647560 & 9.9999999 & 6.764756 & 13.2352438 & 58 \\
\hline 3 & 6.9408473 & 9.2999998 & 6.9408474 & 13.0591525 & 57 \\
\hline 4 & 7.0657860 & 9.9999997 & 7.0657863 & 12.9342136 & 50 \\
\hline 5 & 7.1626999 & 9.9999995 & 7.1626964 & 12.9373035 & 55 \\
\hline 6 & 7.24 & 9.9999993 & & & 54 \\
\hline 7 & 7.3088238 & 9.9999991 & 7.3088247 & 12.691175 & 53 \\
\hline 8 & 7.3608157 & 9.9999988 & 7.3668169 & 12.6 & 52 \\
\hline 9 & 7.4179681 & 9.999998 & 7.4179696 & 12.5 & 51 \\
\hline 10 & 7.46 & 9.999998I & 7.4637273 & 12.5362726 & 50 \\
\hline & 7.5051180 & & 7.5051202 & & \\
\hline 12 & 7.5429064 & 9.9999973 & 7.5429091 & 12.4570908 & 48 \\
\hline I & 7.6776684 & 9.999996 & 7.5776715 & 12.4223284 & 47 \\
\hline 14 & 7.0098529 & 9.9999964 & 7.6098565 & 12. & 46 \\
\hline 15 & 7.6398160 & 9.9999 & 7.5398201 & 12.3601798 & 45 \\
\hline I & 7.6678445 & 9.999995 & 7.66 & 12 & \\
\hline 17 & 7.6941722 & 9.9999947 & 7.6941785 & 12.3058214 & 43 \\
\hline 18 & 7.7189966 & 9.9999940 & 7.7180026 & 12.2819 & 42 \\
\hline 19 & 7.7424775 & 9.9999933 & 7.7424841 & 12.2575158 & 41 \\
\hline 20 & 7.7647536 & 9.9999926 & 7.7647610 & 12.2353262 & 40 \\
\hline & & & 7.7859 & & 8 \\
\hline & 7.8061458 & & 7.8061547 & \(12.193845^{2}\) & 38 \\
\hline & 7.8254507 & 9.9999902 & 7.8254 .604 & 12.1745395 & 37 \\
\hline & 7.8409238 & -9.9999894 & 7.843 .9444. & 12.1560556 & 36 \\
\hline & 7.8616623 & 9.9999885 & 7.8616738 & 12,1382389 & 35 \\
\hline & 7.8786953 & 9.999987 & & 12 & 3.4 \\
\hline & 7.8950854 & 9.9999866 & 78950988 & 12.1049012 & 33 \\
\hline & 7:9108793 & 9.9999856 & 7.9108937 & 12,0891062 & 32 \\
\hline & 7.9261189 & 9.9999845 & 7.9261344 & 12.0738656 & 31 \\
\hline & 7.94 .08418 & 9.9999834 & 7.9408584 & 12.0591416 & 30 \\
\hline & & n. 89. & & Tang. 89. & M \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & Sin. & & & & \\
\hline \[
0
\] & 8.2418 & 9.9999338 & 8.2419214 & & \\
\hline & & \[
9.9
\] & & & \\
\hline 2 & 8.25609 & 9.9999293 & 8.2561649 & II. 7438351 & 58 \\
\hline 3 & 8.2630423 & 9.9999270 & 8.2631152 & 11.7368847 & S \\
\hline 4 & 8.2698810 & 9.9999247 & 8.2699562 & 11.7300437 & 6 \\
\hline 5 & 8.2766136 & 9.9999223 & 8.2766912 & 11.7233087 & 55 \\
\hline 6 & 8.28 & 0.9999200 & & & \\
\hline 7 & 8.2897734 & 9.9999175 & 8.289855 & 11.7101440 & 53 \\
\hline 8 & 8.2962067 & 9.9999150 & 8.2962916 & II.7037083 & 52 \\
\hline 9 & 8.3025460 & 9.9999125. & 8.30263 .35 & 11.6973664 & I \\
\hline 10 & 8.308794I & 9.9999099 & 8.3088842 & II.691158 & 50 \\
\hline 1 I & & & & & \\
\hline 12 & 8.3 & 9.9999047 & 8.32 & 11.67 & 48 \\
\hline 13 & 8.3270163 & 9.9999020 & 8.3271142 & 1 1.6728857 & \\
\hline 14 & 8.3329243 & 9.99989 & 8.3330249 & \(11.666975{ }^{\circ}\) & 46 \\
\hline 15 & 8.3387529 & 9.9998966 & 8.3388563 & 11.6611437 & 5 \\
\hline 16 & 8.3 & 9.99 & 8.344610 & & \\
\hline 17 & 8.3501805 & 9.9998910 & 8.3502894 & 11.6497106 & 43 \\
\hline 18 & 8.3557834 & 9.9998882 & 8.3558952 & 11.6441047 & 42 \\
\hline 19 & 8.3613149 & 9.9998853 & 8.3614296 & 11.6385703 & 41 \\
\hline 20 & 8.3667769 & 9.9998823 & 8.3668945 & 11.6331054 & . \\
\hline 2 I & 8.3721709 & & 8.3722915 & & \\
\hline 22 & 8.3.774988 & 9.9998764 & 8.3765223 & 11.6223776 & 38 \\
\hline 23 & 8.3827620 & 9.9998734 & 8.3828886 & 11.6171113 & 37 \\
\hline 24 & 8.387962 I & 9.9998703 & 8.3880918 & 1 y .6119081 & 36 \\
\hline 25. & 8.3931007 & 9.9998672 & 8.3932335 & 11:6067664 & 35 \\
\hline & 8.3981792 & 9.99 & 8.39 & & 34 \\
\hline 27 & 8.4031990 & 9.9998609 & 8.403338I & I I. 5966619 & 33 \\
\hline 28 & 8:4081613 & 9.9998576 & 8.4083036 & 11.5916963 & 2 \\
\hline 29 & 8.4130676 & 9.9998544 & 8.4132131 & I 1.5867868 & I \\
\hline 30 & 8.4179190 & 9.99985 II & 8.41 .80678 & I 1.5819321 & 0 \\
\hline & & Sin. 88. & & \%. & M \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & Tang. 2. & & \\
\hline & 8.5428 & 9.9997353 & 8.5430838 & 11.4569162 & \\
\hline & 8.546421 & 9.9997309 & 8.5466908 & 11.4533091 & \\
\hline 2 & 8.549994 & 9.9997264 & 8.5502683 & 11.4497317 & 58 \\
\hline 3 & 8.5535385 & 9.9997219. & 8.5538166 & 11.4461834 & \% \\
\hline 4 & 8.5570536 & 9.9997174 & 8.55733 .62 & 11.4426637 & 56 \\
\hline 5 & 8.5605404 & 9.9997128. & 8.5608276 & 11.4391724 & 55 \\
\hline 6 & & 9.9997 & 8.56429 & \(11.435,7088\) & \\
\hline 7 & 8.567431 & 9.999703.5 & 8.5677274 & 11.4322725 & 53 \\
\hline 8 & 8.570835.7 & 9.9996988 & 8.5711368 & 11.428863I & 52 \\
\hline 9 & 8.5742 I 3.9 & 9.999694I & 8.5745197 & I 1.4254802 & 51 \\
\hline 10 & 8.5775659 & 9.9996894. & 8.5778765 & 11.422123 .4 & 50 \\
\hline 1 I & 8.58 & 9.9996846 & 8.5812076 & & 9 \\
\hline 12 & 8.5841933 & 9.9996797. & 8.5845 .35 & 11.4154864 & 48 \\
\hline 13 & 8.5874694 & 9.99.9674.9 & 8.5877945 & 11.4122054. & 47 \\
\hline 14 & 8.5907209 & 9.9996700 & 8.5910509 & 11.4089490 & \\
\hline 15 & -8.5939482 & 9.9996650 & 8.5943832 & 11.405716 .7 & 45 \\
\hline 16 & 8.59715 & 9.9996600 & 8.5974916 & & \\
\hline 17 & 8.6003317 & 9.9996550 & 8.6006766 & 11.399323 .3 & 43 \\
\hline 18 & 8.6034885 & 9.9996499 & 8.6038385 & II.396161.4 & 42 \\
\hline 19 & 8.6066225 & 9.9996449 & 8.6069776 & 11.3930223 & 1 \\
\hline 20 & 8.609734I & 9.9996397 & 8.6100943 & 11.3899056 & 40 \\
\hline 21 & 8.6128234 & 9.9996346 & 8.6131888 & I1.3868 III & 9 \\
\hline 22 & 8.6158909 & 9.9996294 & 8.6162515 & 11.3837384 & 8 \\
\hline 23 & 8.6189369 & 9.999624I & 8.6193127 & 11.3806872 & 37 \\
\hline 24 & 8.6219616 & 9.9 & 8.6223427 & 11.3776572 & 36 \\
\hline 25 & 8.6249653 & 9.9996135 & 8.6253517 & I 1.3746482 & 35 \\
\hline 26 & 8.6279484 & 9.9996082 & 8.6283402 & 11.3716598 & \\
\hline 27 & 8.6399111 & 9.9996028 & 8.6313082 & 1 1.3686917 & 33 \\
\hline 28 & 8.63:38536 & 9.9995974 & 8.6342562 & 11.3657437 & 2 \\
\hline 29 & 8.63067763 & 9.9995919 & 8.6371844 & 11.3628155 & 31 \\
\hline 30 & 8.6396795 & 9.9995864 & 8.640093 t & 11.3599068 & 30 \\
\hline & & & & ng & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 8.63 & 9 & 8.640093 & I 1.3599068 & 30 \\
\hline & & & & 11.3570175 & \\
\hline & 8.6454282 & 9.9995753 & 8.6458528 & II.354147.1 & 8 \\
\hline 33 & 8.6482741 & 9.9995697 & 8.6487044 & 11.3512955 & 7 \\
\hline 34 & 8.6511015 & 9.9995640 & 8.6515375 & 11.3484625 & 26 \\
\hline 35 & 8.6539106 & & 8.6543522 & II 1.345 & 25 \\
\hline 36 & 8.6567016 & 9.9995527 & & I I 1342 & 24 \\
\hline 37 & 8.6594748 & 9.9995469 & 8.6599278 & I I .34 & 23 \\
\hline 38 & 8.6622303 & 9.9995411 & 8.6626891 & II. 3373108 & 22 \\
\hline 39 & 8.6649684 & 9.9995353 & 8.6654330 & II.3345669 & 21 \\
\hline 40 & 8.6676893 & 9.9995294 & 8.6681598 & 11.3318401 & 20 \\
\hline & & 9.9995 235 & 8.6708696 & 11.3291303 & 19 \\
\hline 42 & 8.6730803 & 9.9995176 & 8.6735627 & II. 3264372 & 18 \\
\hline 43 & 8.6757510 & 9.9995 I I6 & 8.6762393 & II. & 17 \\
\hline 44 & 8.67840 & 9.9995056 & 8.6788996 & II. 3211003 & 16 \\
\hline 45 & 8.6810. & 9.9994995 & 8.6815437 & II. 3184562 & \\
\hline 46 & 8.6836654 & 9.9994 & & I & 14 \\
\hline 47 & 8.6862717 & 9.9994873 & 8.6867844 & 11.3132155 & 13 \\
\hline 48 & 8.6888625 & 9.9994812 & 8.6893813 & 11.3106186 & 12 \\
\hline 49 & 8.6914378 & 9.9994750 & 8.6919628 & II.3080371 & \\
\hline 50 & 8.6939980 & 9.9994687 & 8.6945292 & II. 3054707 & 10 \\
\hline 51 & 8.696 & 9.9994625 & 8.6970806 & & \\
\hline \(j^{2}\) & 8.6990733 & 9.9994561 & 8.6966171 & & \\
\hline 53 & 8.7015889 & 9.9994.498 & 8.7021390 & II. & 7 \\
\hline 54 & 8.7040899 & 9.9994434 & 8.7046464 & & 6 \\
\hline 55 & 8.7065765 & & 8.7071395 & 11.2928604 & 5 \\
\hline & & & 8.7096184 & I1.2903815 & \\
\hline & 8.7115074 & 9.9994241 & 8.7120833 & 11.2879166 & 3 \\
\hline 58. & 8.7139520 & 9.9994175 & 8.7145345 & I1.2854655 & 2 \\
\hline 59 & 8.7163829 & 9.9994110 & 8.7169719 & II. 2830281 & I \\
\hline 60 & 8.7188001 & 9.9994044 & 8.7193 .957 & II 2806042 & \\
\hline & & Sin. 8 & & Tang. 87 & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Sin. & & & & \\
\hline 0 & 8.7188001 & 2.9994044 & 8.7193957 & 11.28060 & 60 \\
\hline & 8.7 & 9.9993977 & 8.72180 & 11.2781937 & 5 \\
\hline 2 & 8.7235946 & 9.9993910 & 8.7242035 & 11.2757964 & 58 \\
\hline 3 & 8.7259720 & 9.9993843 & 8.7265877 & I 1.273412.3 & 57 \\
\hline 4 & 8.7283365 & 9.9993776 & 8.7289589 & II.2710410 & 56 \\
\hline 5 & 8.7306882 & 9.9993708 & 8.7313173 & II 26886826 & 55 \\
\hline 6 & & 9.9993640 & 8.733663 & 11.2663368 & 54 \\
\hline 7 & 8.7353535 & 9.9993571 & 8.7359964 & 11.2640036 & 53 \\
\hline 8 & 8.7376674 & 9.9993502 & 8.7383 .172 & I I. 261682.7 & 52 \\
\hline 9 & 8.7399691 & 9.9993433 & 8.7406258 & IJ. 2593742 & 51 \\
\hline 10 & 8.742258 .6 & 9.9993363 & 8.7429222 & 11.2570777 & 50 \\
\hline II & 8.744536 & 9.9993293 & 8.74520 & 11.2547933 & 49 \\
\hline 12 & 8.7468015 & 9.9993223 & 8.7474792 & II 1.2525207 & 48 \\
\hline 13 & 8.7490552 & 9.9993152 & 8.7497400 & 11.2502599 & 47 \\
\hline 14 & 8.7512973 & 9.999308I & 8.7519892 & II. 2480107 & 46 \\
\hline 15 & 8.7535278 & 9.9993009 & 8.7542268 & II 12457731 & 45 \\
\hline 16 & 8.7557468 & 9.9992937 & & I 1.2435468 & 44 \\
\hline & 8.757857 .5 & 9.9992865. & 8.7586681 & I1.2413319 & 43 \\
\hline 18 & 8.7601511 & 9.9992792 & 8.7608719 & IT.2391280 & 42 \\
\hline 19 & 8.7623366 & 9.999279 & 8.7630646 & 11.2369353 & 41 \\
\hline 20 & 8.7645 II & 9.9992646 & 8.7652464 & \[
11.2347535
\] & 40 \\
\hline & 8.7666747 & & & 11.2325825 & 39 \\
\hline & 8.7688275 & 9.9992498 & 8.769577 & II 1.2304222 & 38 \\
\hline 2 & 8.7709697 & 9.9992423 & 8.7717273 & I I 22282726 & 37 \\
\hline 24 & 8.7731013 & 9.9992349 & 8.7738664 & II.226I 335 & 36 \\
\hline 25 & 8.7752225 & 9.9992273 & 8.7759952 & I I. 2240048 & 5 \\
\hline & & 9:9992198 & 8.7781135 & II. 2218864 & 34 \\
\hline 2 & 8.7794340 & 9.9992122 & 8.7802217 & II. 2197782 & 3 \\
\hline 28 & 8.7815244 & 9.9992045 & 8.7823198 & 11.2176801 & 32 \\
\hline & 8.7836048 & 9.9991969 & 8.7844079 & It.2155920 & 3 I \\
\hline 30 & 8.7856752 & 9.9991892 & 8.7864860 & II.2135139 & 0 \\
\hline & & & & Tang. 86. & M \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline & 8.8438 & 9.9989408 & 8.8446437 & . 1553562 & \\
\hline \[
11
\] & 8.8453 & 9.9989319 & & 11.1535455 & \\
\hline 2 & 8.8471827 & 9.9989230 & 8.8482597 & \[
11.1517403
\] & 58 \\
\hline 3 & 8.8487906 & 9.9989141 & 8.8500565 & II.1499934 & 57 \\
\hline 4 & 8.8507512 & 9.998905 I & 8.8518460 & II.148.1539 & 56 \\
\hline 5 & 8.8525245 & 9.9.98896I & 8.8536283 & II.1463716 & 55 \\
\hline 6 & 8.8542905 & 9.998887 & 8.85540 & II.1445966 & \\
\hline 7 & 8.8560493 & 9.9988780 & 8.8571713 & II.I 428286 & 53 \\
\hline 8 & 8.8578010 & 9.9988689 & 8.8589321 & 11.1415678 & 52 \\
\hline 9 & 8.8595456 & 9.9988597 & 8.8606858 & IJ.1393141 & 51 \\
\hline IO & 8.8612832 & 9.9988506 & 8.8624326 & II.I 375673 & 50 \\
\hline & 8.8630 & 9.9988413 & 8.8641725 & & 49 \\
\hline 12 & 8.8647376 & 9.998832 I & 8.8659055 & I I.I 340944 & 48 \\
\hline 13 & 8.8664545 & 9.9988228 & 8.8676317 & II.I 323682 & 4 \\
\hline 14 & 8.8681646 & 9.9988135 & 8.8693511 & IT.I306488 & 46 \\
\hline 15 & 8.8698679 & 9.998804 r & 8.8710638 & I I.I28936I & 45 \\
\hline 6 & 8.8716646 & & \[
8.8727699
\] & 1 & 4 \\
\hline 17 & 8.8732546 & \[
9.9987852
\] & 8.8744693 & 11.1255306 & 43 \\
\hline 18 & 8.8749380 & 9.9987758 & \[
8.8761622
\] & II.1238377. & 42 \\
\hline 19 & 8.8766149 & 9.9987662 & 8.8778487 & II. 1221513 & 1 \\
\hline 20 & 8.8782853 & 9.9987567 & 8.8795286 & II.120471.3 & 40 \\
\hline 21 & 8.8799493 & 9.998747 & 8.8812022 & II.II87978 & 39 \\
\hline 22 & 8.8816069 & 9.9987375 & 8.8828694 & II.II71305 & 38 \\
\hline 23 & 8.8832581 & 9.99872.78 & 8.8845303 & 11.1154696 & 37 \\
\hline 24 & 8.8849031 & 9.9987181 & 8.8861849 & II.II38150 & 36 \\
\hline 25 & 8.8865418 & 9.9987083 & 8.8878334 & II.1121660 & 35 \\
\hline 6 & 8.8881743 & 9.9986986 & & 11.1105243 & \\
\hline 27 & 8.8898006 & 9.9986888 & 8.89I II 18 & I I. 108888 I & \\
\hline 28 & 8.8914209 & 9.9986789 & 8.8927420 & 11.1072580 & 2 \\
\hline 29 & 8.8930351 & 9.9986690 & 8.8943660 & It.1056339 & 3 I \\
\hline 30 & 8.8946433 & 9.9986591. & 8.895984 I & II.1040158 & 0 \\
\hline & & in. & & Tang. 85 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline \(\bigcirc\) & 8.9402960 & 9.9983442 & \[
8.9419517
\] & II.0580482 & 60 \\
\hline 1 & 8.9417 .379 & 9.99833 .3 I & & & \\
\hline 2 & 8.9431743 & 9.9983220 & 8.9448522 & II.0.551477 & 59 \\
\hline 3 & 8.9446063 & 9.9983109 & 8.9462954 & 11.0537046 & 57 \\
\hline 4 & 8.9460335 & 9.9982997 & 8.9477338 & 11.0522661 & 56 \\
\hline 5 & 8.9474560 & 9.9982885 & 8.9491675 & I 1.0508324 & 55 \\
\hline 6 & 8.9488739 & 9.9982772 & 8.9505966 & I I. 0494033 & \\
\hline 7 & 8.9502871 & 9.9982659 & 8.9520211 & I I . 0479788 & 53 \\
\hline 8 & 8.9516956 & -9.9982546 & 8.95 .34410 & 11.0465589 & 5.2 \\
\hline 9 & 8.9530996 & 9.9982 .432 & 8.9548564 & I 1.0451436 & 51 \\
\hline 10 & 8.9544990 & 9.99823 I8 & 8.9562672 & II.0.537327 & 50 \\
\hline & 8.95589 & 9.9982204 & 8.9576735 & , & \\
\hline 12 & 8.9572843 & 9.9982089 & 8.95.90754 & I 1.0409245 & 48 \\
\hline 13 & 8.9586702 & 9.9981974 & 8.96 .04728 & I 1.0395271 & 47 \\
\hline 14 & 8.9600517 & 9.9981858 & 8.9618658 & I I.038I341 & 6 \\
\hline 15 & 8.9614287 & 9.9981742 & 8.963 .2544 & I1.03674.55 & 45 \\
\hline 16 & 8.9628013 & 9.998I626 & \[
8.9646387
\] & II.0353612 & \\
\hline 17 & 8.9641996 & 0.9981509 & \[
8.9660187
\] & II.0339812 & \\
\hline 18 & 8.9655337 & 9.9981392 & 8.9673944 & 11.0326055 & 42 \\
\hline 19 & 8.9668934 & 9.998.1275 & 8.9687658 & \[
15.0312341
\] & 4 \\
\hline 20 & 8.9682488 & 9.9981157 & 8.9701330 & 11.0298669 & \\
\hline 2 I & 8.9695998 & 9.9981039 & 8.9714949 & 11.0285050 & 39 \\
\hline 22 & 8.9709467 & 9.998092 I & 8.9728546 & 11.0271453 & 38 \\
\hline 23 & 8.97.22894 & 9.9980802 & 8.9742092 & I J. 0257907 & 37 \\
\hline 24 & 8.9736280 & 9.9980682 & 8.9755597 & I 1.0244402 & 36 \\
\hline 25 & 8.9749624 & 9.9980563 & 8.9769060 & I 1.0230939 & 35 \\
\hline 2 & 8.9762926 & 9.9980443 & 8.9782433 & II.0217516 & 34 \\
\hline 27 & \(8.9776187^{\circ}\) & \[
9.9980323 .
\] & 8.9795864 & \[
\text { I } 1.020413 \%
\] & 33 \\
\hline 28 & 8.9789408 & 9.9980202 & 8.9809206 & \[
\text { I I.OI } 90793
\] & 32 \\
\hline 29 & 8.9802588 & 9.9980081 & 8.9822 .507 & I I.OI77492 & 31 \\
\hline 30 & 8.9815728 & 9.9979959 & 8.98357 .6 & II.O164230 & 30 \\
\hline & & & & Tang. 84. & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & Sin & & Tang. 5. & & \\
\hline 30 & 8.9815728 & 9.9979959 & 8.9835769 & 11.0164230 & 30 \\
\hline 31 & 8.9828829 & 838 & 8,9848991 & 11:0151208 & 29 \\
\hline 32 & 8.9841889 & 9.9979715 & 8.9852173 & II.OI 37826 & 28 \\
\hline 33 & 8.9854909 & 9.9979593 & 8.9875316 & II.OI24083 & 27 \\
\hline 34 & 8.9867890 & 9.9979470 & 8.9888420 & II.OII & 26 \\
\hline 35 & 8.9880833 & 9.9979347 & 8.9991486 & . 00 & 25 \\
\hline & 8.98 & 9.9979223 & 8. & & 24 \\
\hline & 8.9906602 & 9.9979099 & 8.992 & 11.0072496 & 23 \\
\hline 38 & 8.9919429 & 9.9978974 & 8.994 & 11.0059545 & 22 \\
\hline 39 & 8.9932217 & 9.9978850 & 8.9953367 & 11.0040632 & 2.1 \\
\hline 40 & 8.9944967 & 9.9978725 & 8.9966243 & 11.00337 & 20 \\
\hline & & & 8.9979081 & 11.0220918 & 19 \\
\hline 42 & 8.9970356 & 9.9978473 & 8.999188 & 11.0008117 & 18 \\
\hline 43 & 8.9982994 & 9.9978347 & 9.0004648 & 10.9995352 & 7 \\
\hline 44 & 8.9995595 & 9.9978220 & g. 0 & 10.9982624 & 0 \\
\hline 45 & 9.0008159 & 9.9978093 & 9.0030066 & 10.9 & \\
\hline & & & & 10.9957278 & 4 \\
\hline & 9.0033178 & 9.9977838 & 9.0055 & 10.9945659 & 13 \\
\hline 48 & 9.0045633 & 9.9977710 & 9.0067923 - & 10.9932076 & 2 \\
\hline & 9.0058053 & 9.99775 \({ }^{\text {81 }}\) & 9.0080472 & 10.9919528 & 1 \\
\hline 50 & 9.0070436 & 9.9977452 & 9.0092984 & 10.9907016 & 10 \\
\hline & & & 9.0105461 & 10.989153 & \\
\hline 52 & 9.0095096 & 9.9977193 & 9.0117902 & 10.9882097 & \\
\hline & 9.0107373 & 9.9977063. & 9.0130310 & 10.9869690 & \\
\hline & 9.0119615 & 9.9976933. & 9.0142682 & 10.9857 .317 & \\
\hline 55 & 9.0131823 & 9.9976802 & 9.0155021 & 10.9844979 & \\
\hline 46 & 9.0143996 & 9.9976671 & 9.0167325 & 析 & \\
\hline & 9.0156134 & 0.9976540 & 9.0179594 & 10.9820405 & \\
\hline 8 & 9.0168238 & 9.9976408 & 9.0191830 & 10.9808169 & \\
\hline & 9.0180309 & 9.9976276 & 9.0204033 & & \\
\hline 60 & 9.0192345 & 9.9976143 & 9.0216202 & 10.9783797 & \\
\hline & & & & 7 ang. 8 & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline M & Sin. 6. & & Tang. 6. \\
\hline \(\bigcirc\) & 9.0192345 & 9.9976143 & 9.02162 \\
\hline I & 9.0204348 & 9.9976010. & 9.0228338 \\
\hline 3 & 9.0216317 & 9.9975877 & 9.0240440 \\
\hline 3 & 9.0228254 & 9.9975743 & 9.0252510 \\
\hline 4 & 9.0240157 & 9.9975609 & 9.026454 .8 \\
\hline 5 & - 9.0252027 & 9.9975475 & 9.0270552 \\
\hline 6 & 9.0263864 & 9.9975340 & 9.0388524 \\
\hline 7 & 9.0275669 & 9.9975204 & 9.0300464 \\
\hline 8 & 9.0287441 & .9.9975060 & 9.0312372 \\
\hline 9 & 9.0299182 & 9.9974933 & 9.0324.24.9 \\
\hline 10 & 9.0310890 & 9.9974797. & 9.0336094 \\
\hline 11 & 9.0322567 & 9.9,974660 & 9.0347906 \\
\hline 12 & 9.0334211 & 9.9974523 & 9.0359688 \\
\hline 13 & 9.0345824 & 9.9974386 & 9.0371439 \\
\hline 14 & 9.0357406 & 9.9974248 & 9.0383158. \\
\hline 15 & 9.0361957 & 9.9974110 & 9.0394848 \\
\hline 16 & 9.0380477 & 9.9973971 & 9.0406506 \\
\hline 17 & 9.0391966 & 9.9973832 & 9.0418134 \\
\hline 18 & 9.0403424 & 9.9973693 & 9.0429731 \\
\hline 19 & 9.0414852 & 9.9973553 & 9.0441298 \\
\hline 20 & 9.0426249 & 9:9973413 & 9.045.2836 \\
\hline 2 T & 9.0437616 & 9.9973273 & 9.0464353 \\
\hline 22 & 9.0448954 & 9.9973132 & 9.047582I. \\
\hline 23 & 9.046026I & 9.9972991 & 9.0487270 \\
\hline 24 & 9.0471538 & 9.9972849 & 9.0498689 \\
\hline 25 & 9.0482786 & 9.9972707 & 9.0510078 \\
\hline 26 & 9.0494004 & 9.9972565 & 9.0521439 \\
\hline 27 & 9.0505194 & 9.9972423 & 9.0533771 \\
\hline 28 & 9.05163\%4 & 9.9972279 & 9.054407.5 \\
\hline 29 & 9.0527485 & 9.9972136 & 9.0555349 \\
\hline 30 & 0.0538587 & 9.9971992 & 9.0566595 \\
\hline & & Sin. 83. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \\
\hline 10.9783797 & 60 \\
\hline 12.9771662 & 59 \\
\hline 10.9759559 & 58 \\
\hline 10.9747489 & 57 \\
\hline 10.9735452 & 56 \\
\hline 10.9723447 & 55 \\
\hline 10.9711475 & 54 \\
\hline 10.9699535 & 53 \\
\hline 10.9687627 & 52 \\
\hline 10.9675751 & 51 \\
\hline 10.9663906 & 50 \\
\hline 10.9652093 & 49 \\
\hline 10.9640311 & 48 \\
\hline 10.9628561 & 47 \\
\hline 10.9616841 & 46 \\
\hline 10.9605152 & 45 \\
\hline 10.9593493 & 44 \\
\hline 10.9581866 & 43 \\
\hline 10.9570268 & 42 \\
\hline 10.9558701 & 4 I \\
\hline 10.9547164 & 40 \\
\hline 10.9535656 & 39 \\
\hline 10.9524178 & 38 \\
\hline 10.9512739 & 37 \\
\hline 10.9501311 & 36 \\
\hline 10.948992 I & 35 \\
\hline 10.9478560 & 34 \\
\hline 10.9467228 & 33 \\
\hline 10.9455925 & 32 \\
\hline 10.9444651 & 3 I \\
\hline 10.9433405 & 30 \\
\hline Tang. 83. & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 9.0 & 9. & & & 30 \\
\hline & & & & & \\
\hline & 9.0560706 & 9.9971704 & 9.0589002 & 10.9410998 & 8 \\
\hline & & 9.9971559 & 9.0600164 & 10.9399836 & 7 \\
\hline & 9.0582711 & 9.9971414 & 9.0611297 & 10.9388703 & 6 \\
\hline [35 & 9.059367 I & 9.9971268 & 9.0622403 & 10.9377597 & 5 \\
\hline & 9.0604 & 9 & & & 4 \\
\hline 37 & 9.0615509 & 9.9970976 & 9.0644533 & 10.9355467 & 3 \\
\hline 38 & 9.0626386 & 9.9970829 & 9.0655556 & 10.9344444 & 22 \\
\hline & 9.0637235 & 9.9970682 & 9.0666553 & 10.93334 & 1 \\
\hline 40 & 9.0648057 & 9.9970535 & 9.0677 .522 & 10.9322478 & 20 \\
\hline & 9.06588 & 9.9970387. & 9.008846 & & 19 \\
\hline 42 & 9.0669619 & 9.9970239 & 9.0699381 & 10.9300619 & 18 \\
\hline & 9.0680360 & 9.9970090 & 9.0710270 & 10.9289730 & 17 \\
\hline & 9.0691074 & 9.9969941. & 9.072 I 33 & 10.9278867 & 16 \\
\hline 45 & 9.0701761 & 9.9969792. & 9.0731969 & 10 & 15 \\
\hline & 9.07 & 9.9969642 & & & 14 \\
\hline & 9.0723055 & 9.9969492 & 9.0753563 & 46437 & 13 \\
\hline 48 & 9.0733663 & 9.9969342 & 9.0764321 & 9 & 2 \\
\hline 49 & 9.0744 & 9.9969191. & & 10.9224947 & 1 \\
\hline 50 & 9.0754799 & 9.9969040 & 9.0785760 & 10.9214240 & 10 \\
\hline & 9.0765329 & 9.9968888 & & & \\
\hline 52 & \[
9.0775832
\] & & 9.0807096 & & 8 \\
\hline & 9.0786310 & 9.9968584 & & & \\
\hline 5 & 9.0796762 & 9.996843 I & 9.0828331
0.0838915 & \[
10.9171669
\] & 5 \\
\hline 55 & 9.0807189 & 9.9968278 & & & 5 \\
\hline 56 & 9.0817590 & 9.9968125 & 9.0849466 & 10.9150534 & \\
\hline 57.. & 9.0827966 & 9.9967971 & 9.0859996 & 10.9140004 & \\
\hline 58 & 9.0838317 & 9.9967817 & 9.0870501 & 10.9129499 & \\
\hline 59 & 9.0848643 & 9.9967662 & 9.0880981 & 10.9119019 & \\
\hline 60 & 9.0858945 & 9.9967507 & 9.0891438 & 10.9108562 & - \\
\hline & & & & (tang. 83. & M \\
\hline
\end{tabular}

Cccce
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\bar{M} \mid
\] & \(\frac{\operatorname{Sin} .7}{9.0858945}\) & 9.9967507 & \(\frac{\text { Tang. } 7 \cdot}{9.0891438}\) & 10.9108562 & 60 \\
\hline 1 & 9.0869221 & 9.9967352 & 9.0901869 & 10,909813.1 & 59 \\
\hline 2 & 9.0879473 & 9.9967196 & 9.0912277 & 10.9087723 & 58 \\
\hline 3 & 9.0889700 & 9.9967040 & 9.0922660 & 10.9077340 & 57 \\
\hline 4 & 9.0899903 & 9.9966884 & 9.0933020 & 10.9066980 & 56 \\
\hline 5 & 9.9910082 & 9.9966727. & 0.0943355 & 10.9056645 & 55 \\
\hline 6 & 9.0920237 & 9.9966570 & 9. & 10.9046333 & 4 \\
\hline 7 & 9.0930367 & 9.9966412. & 9.0963955 & 10.9036045 & 53 \\
\hline 8 & 9.0940.474 & 9.9966254 & 9.0974219 & 10.9025781 & 5. \\
\hline 9 & 9.0950556 & 9.9966096 & 9.0984460 & 10.9015540 & 5 I \\
\hline 10 & 9.0960615 & 9.9965937. & 9.0994678 & 10.9005322 & 50 \\
\hline 11 & 9.097065 .1 & 9.9965778 & 9.1004872 & 10.8995828 & 9 \\
\hline 12 & 9.0980662 & 9.9965619 & 9.1015044 & 10.8984956 & 48 \\
\hline 13 & 9.0990651 & 9.9965419 & 9.1025192 & 10.8974808. & 7 \\
\hline 14 & 9.1000616 & 9.9965299 & 9.1035317 & 10.8964683 & 46 \\
\hline IS & 9.1010558 & 9.9965138. & 9.1045420 & 10.8954580 & 45 \\
\hline 16 & 9.1020477 & 9.9964977. & 9.1055500 & 10.8944500 & 4 \\
\hline 17 & 9.193037 .3 & 9.9964816 & 9.1065557 & 10.8934443 & 4 \\
\hline 18 & 9.1040246 & 9.996465s & 9.1075591 & 10.8924409 & 4 \\
\hline 19 & 9.1050096 & 9.9964493 & 9.1085604 & 10.8914396 & 41 \\
\hline 20 & 9.1059924 & 9.9964330 & 9.1095594 & 10.8904406 & 40 \\
\hline 21 & 9.1069729 & 9.9964167 & 9.1105562 & 10.8894438 & 9 \\
\hline 2 & 9.1079512 & 9.9964004 & 9.1115508 & 10.8884492 & 38 \\
\hline 23 & 9.1089272 & 9.9963841 & 9.1125431 & 10.8874569 & 37 \\
\hline 24 & 9.1099010 & 9.9963677. & 9.1135333 & 10.8864667 & 36 \\
\hline 25 & 9.1108726 & 9.9963513 & 9.1145212 & 10.8854787 & 35 \\
\hline 26 & 9.1118420 & 9.9963.348. & 9.1155072 & 10.8844928 & 34 \\
\hline 27 & 9.1128092 & 9.9963183. & 9.1164909 & 10.8835091 & 33 \\
\hline 28 & 9.1137742 & 9.9963018 & 9.1174724 & 10.882527 .6 & 32 \\
\hline 29 & 9:1147370 & 9.9962852 & 9.1184518. & 10.8815482 & 31 \\
\hline 30 & 9.115697.7 & 9.9962686 & 9.1194291 & 12.8805709 & 30 \\
\hline & & Sin. 82. & & Tang. 82. & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\frac{\mathrm{M}}{30}\) & \(\frac{\operatorname{Sin} .7}{9.1156977}\) & 2.9962686 & \(\frac{\text { Tang. } 7 .}{\text { 9.1194291 }}\) & 10.8505709 & \\
\hline & 9. & 9.996251 & 9.1204043 & & \\
\hline 32 & 9.1176125 & 9.9962352 & 9.121377 & 10:8786227 & 28 \\
\hline 33 & 9.1185667 & 9.9962185 & 9.1223482 & 10.8776518 & 27 \\
\hline 34 & 9.1195.188 & 9.9962017 & 9.1233171 & . 10.8766829 & 26 \\
\hline 35 & 9.1204688 & 9.9961849 & 9.1242839 & 10.8757161 & 25 \\
\hline 36 & & & 9.12 & & 4 \\
\hline 37 & 9.12236 & 9.9961512 & 9.126211 & , 8738 & 23. \\
\hline 38 & 9.1233061 & 9.9961343 & 9.1271718 & 10.8728282 & 22 \\
\hline 39 & 9:1242477 & 9.9961174 & 9.1281303 & 10.8718697 & 1 \\
\hline 40 & 9.1251872 & 9.9961004 & 9.12.90868 & 10.8709132 & 2 \\
\hline & & & 130041 & 10.8699587 & 19 \\
\hline 42 & 9. & 9.9960663 & 9.1309937 & 10.8690062 & \\
\hline & 9.1279 & 9.9960492 & 9.1319442 & 10.8680558 & 17 \\
\hline & 9.128924 & 9.9960321 & 9.1328926 & 10.8671074 & 16 \\
\hline 45 & 9.1298539 & 9.9960149 & 9:1338390 & & 15 \\
\hline & & & 9.1347835 & & 4 \\
\hline & 9.1317064 & 9.9959804 & 9.1357260 & 40 & 3 \\
\hline \[
1 \begin{aligned}
& 47 \\
& 48
\end{aligned}
\] & 9.132629 & 9.9959631 & 9.15366665 & 10.8633335 & 12 \\
\hline & 9.133550 & 9.9959458 & 9.1376051 & 10.8623949 & 1 \\
\hline 50 & 9.1344702 & 9.9959284 & 9.1385417 & 10.8614583 & - \\
\hline & 9.13 & 9.99591II & 9.1394764 & & \\
\hline & 9.1363028 & 9.9958936 & 9.1404092 & 10.8595908 & \\
\hline & 9.1372161 & 9.9958761 & 9.1413400 & 10.8586600 & \\
\hline & 9.1381275 & 9.9958586 & 9.1422689 & 10.8577311 & \\
\hline 55 & 9.1390370 & 9:99584II & 9.1431959 & 10.8568041 & \\
\hline 56 & 9.13994 & 9.9958235 & 9.1441210 & 85879 & \\
\hline & 2.1408501 & 9.9958059 & 9.1450442 & 10:8549558 & \\
\hline 58 & 9.1417537 & 9.9957882 & 9.1459655 & 10.8540345 & \\
\hline & 9.1426555 & 9.9957705 & 9.1468850 & 10.8531150 & \\
\hline 60 & 9.1435553 & 9.9957528 & 9.1478025 & 10.8521975 & \\
\hline & & & & and. 8 & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & Sin. 8. & & Tang. 8. & & \\
\hline 0 & 9.1435553 & 9.9957528 & 9.1478025 & 10.8521972 & 6 C \\
\hline 1 & 9.1444532 & 9.9957350 & 9.1487182 & 10.8512818 & 59 \\
\hline 2 & 9.1453493 & 9.9957172 & 9.1496321 & 10.8503679 & 58 \\
\hline 3 & 9.1462435 & 9-9956993 & 9.1505441 & 10.8494559 & 57 \\
\hline 4 & 9.1471358 & 9.9956815 & 9.1514543 & 10.8485457 & 56 \\
\hline 5 & 9.1480262 & 9.9956635 & 0.1523627 & 10.8476373 & 55 \\
\hline 6 & 9.148 & 9.99 & 9.1532692 & 10.8467308 & 54 \\
\hline 7 & 9.1498015 & 9.9956276 & 9.1541739 & 10.8458261 & 53 \\
\hline 8 & 9.1506864 & 9.9956095 & 9.1550769 & 10.8449231 & 52 \\
\hline 9 & 9.1515694 & 9.9955915 & 9.1559780 & 10.8440220 & 51 \\
\hline 10 & 9.1524507 & 9.9955734 & 9.1568773. & 10.8431227 & 50 \\
\hline 11 & 9.153330 & & 9.1577748 & & 49 \\
\hline 12 & 9.1542076 & 9.9955370 & 9.1586706 & 10.8413294 & 48 \\
\hline 13 & 9.1550834 & 9.9955188 & 9.1595646 & 10.8404354 & 47 \\
\hline 14 & 9.1559574 & 9.9955005 & 9.1604569 & 10.8395431 & 46 \\
\hline 15 & 9.1568296 & 9.99548.22 & 9.1613473 & 10.8386527 & 45 \\
\hline 16 & 9.1577000 & 9.9954639 & 9.1622361 & & 44 \\
\hline 17 & 9.1585686 & 9.9954455 & 9.1631231 & 10.8368769 & 43 \\
\hline 18 & 9.1594354 & 9.9954271 & 9.1640083 & 10.8359917 & 42 \\
\hline 19 & 9.1603005 & 9.9954087 & 9.1648919 & 10.8351081 & 1 \\
\hline 20 & 9.1611639 & 9.9953902 & 9.1657737 & 10.8342263 & 40 \\
\hline 21 & 9.1620254 & 9.9953717. & 9.1666538 & & 9 \\
\hline 22 & 9.1628853 & 9.9953531 & 9.1675322 & 10.8324678 & 38 \\
\hline 23 & 9.1637434 & 9.9953345 & 9.1684989 & 10.8315911 & 37 \\
\hline 24 & 9.1645998 & 9.9953159 & 9.1692839 & 10.8307161 & 36 \\
\hline 25 & 9.1654544 & 9.9952972 & 9.1701572 & 10.8298428 & 5 \\
\hline 26 & 9.1663074 & & & & 34 \\
\hline 27 & 9, 1671586 & 9.9952597. & 9.1718989 & 10.8281011 & 33 \\
\hline 28 & 9.168008 .2 & 9.9952409 & 9.1727672 & 10.8272328 & 33 \\
\hline 29 & 9.1688 .559 & 9.9952221 & 9.1736338 & 10.8263662 & 1 \\
\hline 30 & 9.1697021 & 9.995 .203 .3 & 9.1744988 & 12.825 .5012 & 30 \\
\hline & & Sin. 8 I . & & ang. 8 & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & Sin. 8. & & Tang. 8. & & \\
\hline 30 & 9.169702 I & 9.9952033 & 9.1744988 & 10.8255012 & 30 \\
\hline & 9.1705465 & 9.9951844 & 9.1753622 & 10.8246378 & 29 \\
\hline 2 & 9.1713893 & 9.9951634 & 9.1762239 & 10.8237761 & 28 \\
\hline 33 & 9.1722305 & 9.9951464 & 9.1770840 & 10.8229160 & 27 \\
\hline 34 & 9.1730699 & 9.9951274 & 9.1779425 & 10.8220575 & 26 \\
\hline 35 & 9.1739077 & 9.9951084 & 9.1787993 & 10.8212007 & 25 \\
\hline 36 & 9.1747439 & 9.9950893 & 9.1796546 & 10.8203454 & 24 \\
\hline 37 & 9.1755784 & 9.9950702 & 9.1805082 & 1 c .9194918 & 23 \\
\hline 38 & 9.1764112 & 9.9950510 & 9.1813602 & 10.8186394 & 22 \\
\hline 39 & 9.1772425 & 9.9950318 & 9.1822106 & 10.8177894
10.8169405 & 21 \\
\hline 40 & 9.1780721 & 9.9950126 & S.1830595 & 10.8169405 & 20 \\
\hline 41 & 9.1789001 & 9.9949933 & 9.1839068 & 10.8160932 & 19 \\
\hline 42 & 9.1797265 & 9.9949740 & 9.1847525 & 10.8152475 & 18 \\
\hline 43 & 9.1805512 & 9.9949546 & 9.1855966 & 10.8144.034 & 17 \\
\hline 44 & 9.18:3744 & 9.9949352 & 9.1864392 & 16.8135608
10.8127198 & 16 \\
\hline 45 & 9.1821960 & 9.9949158 & 9.1872802 & & 15 \\
\hline 46 & 9.1830160 & 9.9948964 & 9.1881196 & 10.8118804 & 14 \\
\hline & 9.1838344 & 9.9948769 & 9.1889 .575 & 10.8110425 & 13 \\
\hline 48 & 9.1846512 & 9.9948573 & 9.1897939 & 10.8102061 & 12 \\
\hline 49 & 9.1854665 & 9.9948377 & 9.1906287 & 10.800 .371 .3 & 11 \\
\hline 50 & 9.1862802 & ¢.9948181 & 9.1914621 & 10.8085379 & 10 \\
\hline & 9.1870923 & 9.9947985 & 9.1922939 & Ic. 8077061 & 8 \\
\hline 52 & 9.1879029 & 9.9947788 & \(9.19312+1\) & rc. 8068759 & 8 \\
\hline 53 & 9.1887120 & 9.9947591 & 9.1939529 & 10.806047 .1 & 7 \\
\hline 54 & 9.1895195 & 9.9947393 & 9.1947802 & 10.8052198
10.8043941 & 5 \\
\hline 55 & 9.1903254 & 9.9947195 & 9.1956059 & 10.8043941 & 5 \\
\hline 56 & & 9.9946997 & 9.1964302 & 10.8035698 & \\
\hline 57 & 9.1919328 & 9.9946798 & 9.1972530 & 10.8027470 & \\
\hline 58 & 9.1927342 & 9.9946599 & 9.1980743 & 10.8019257 & \\
\hline 59 & 9.193534i & 9.9946399 & 9.1988942 & 10.8011059 & \\
\hline 60 & 9.1943324 & 9.9946199 & 9.1997125 & & \\
\hline & & & & Tang. 8 I & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Sin & & T & & \\
\hline 0 & 9.1943324 & 9. & 9.1997125 & 10.8002875 & 0 \\
\hline I & 9.19512 & 9.9945999 & 9.2005294 & 10.7994706 & 9 \\
\hline 2 & 9.1959247 & 9.9945798 & 9.2013449 & 10.7986551 & 58 \\
\hline 3 & 9.1967186 & 9.9945597 & 9.2021588 & 10.7978411 & 7 \\
\hline 4 & 9.1975110 & 9.9945396 & 9.2029714 & 10.7970296 & 56 \\
\hline 5 & 9.1983019 & 9.9945194 & 9.2037825 & 10.7962175 & 55 \\
\hline 6 & 9.1990913 & 9.9944992 & 9.2045922 & 10.7954078 & 54 \\
\hline 7 & 9.1998793 & 9.9944789 & 9.2054004 & 10.7945996 & 53 \\
\hline 8 & 5.2006658 & 9.9944587 & 9.206207 .2 & 10.7937928 & 52 \\
\hline 9 & 9.2014509 & 9.9944383 & 9.2070126 & 10.7929874 & 51 \\
\hline 10 & 9.2022345 & 9.9944, 80 & 9.2078165 & 10.7921835 & 50 \\
\hline 11 & 9.203 & 9.9943975 & 9.20 & 10.7913809 & 49 \\
\hline I & 9.2037974 & 9.994377 I & 9.2094203 & 10.7905797 & 48 \\
\hline 13 & 9.2045767 & 9:9943566 & 9.2102200 & 10.7897800 & 47 \\
\hline 14 & 9.2053545 & 9.994336I & 9.2 IIOI84 & 10.7889816 & 46 \\
\hline 15 & 9.2061309 & 9.9943156 & 9.2118153 & 10.7881847 & 45 \\
\hline 16 & 9.2 & 9.9942 & 9.2126109 & 10.78738 .91 & 44 \\
\hline 17 & 9.2076795 & 9.9942773 & 9.2134051 & 10.7865949 & 43 \\
\hline 18 & 9.2084516 & 9.9942537 & 9.2141980 & 10.7858020 & 2 \\
\hline 19 & 9.2092224 & 9.9942330 & 9.2149894 & 10.7850106 & 1 \\
\hline 20 & 9.2099917 & 9.9942122. & 9.2157795 & 10.7842205 & 40 \\
\hline 21 & 9.2107597 & 9.9941914 & 9.2165683 & 10.7834317 & 39 \\
\hline 22 & 9.2115263 & 9.9941706 & 9.2173556 & 10.7826444 & 38 \\
\hline 23 & 9.2122914 & 9.9941498 & 9.2181417. & 10.7818583 & 37 \\
\hline 24 & 9.2130552 & 9.9941289 & 9.2189264 & 10.7810736 & 36 \\
\hline 25 & 9.2138176 & 9.9941079 & 9.2197097 & 10.7802902 & 35 \\
\hline & 9.2145787 & 9.9940870 & 9.2204917 & 10.7785083 & 34 \\
\hline 27 & 9.2153384 & 9.9940659 & 9.2212724. & 10.7787276 & 33 \\
\hline 28 & 9.2160967 & \[
9.9940449
\] & 9.2220518. & 10.7779482 & 32 \\
\hline 29 & 9.2168536 & 9.9940238 & 9.2228298 & 10.7771702 & 31 \\
\hline 30 & 9.2176092 & 9.9940027 & 9.2236065 & IC.776393) & 30 \\
\hline & & Sin. 80. & & Tang. 80. & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & Sin. 9. & & Tang.9. & & \\
\hline & 9.2176092 & 9.9940027 & 9.2236065 & 10.7763935 & 30 \\
\hline & 9.2183635 & 9.99398 I 5 & 9.2243819 & 10.7756181 & 29 \\
\hline 32 & 9.2191164 & 9.9939603 & 9.2251561 & 10.7748439 & 28 \\
\hline & 9.2198680 & 9.9939391 & 9.2259289 & 10.77407 II & 27 \\
\hline 34 & 9.2206182 & 9.9939178 & 9.2267004 & 10.7732996 & 26 \\
\hline 35 & 9.2213671 & 9.9938965 & 9:2274706 & 10.7725294 & 25 \\
\hline & 9.222 & & 9.2282395 & 10.7717605 & 24 \\
\hline & 9.2228609 & -9.9938538 & 9.2290071 & 10.7709929 & 23 \\
\hline 38 & S.2236059 & 9.9938324 & 9.22977 & 10.7702265 & 22 \\
\hline 39 & 9.2243495 & 0.9938 r 09 & 9.2305386 & 10.7694614 & 21 \\
\hline 40 & 9.2250918 & 9.9937894 & 9.2313024 & 10.7686976 & 20 \\
\hline 41 & 9.2258328 & 9.9937676 & 9.2320650 & & 19 \\
\hline 42 & 9.2265725 & 9.9937463 & 9.2328262 & 10.7671738 & 18 \\
\hline 43 & 9.2273110 & 9.9937247 & 9,2335863 & 10.7664137 & 17 \\
\hline 44 & 9.228048 I & 9.9937030 & 9.234345 I & 10.7656549 & 16 \\
\hline 45 & 9.2287839 & 9.9936813 & 9.2351026 & 10.7648974 & 15 \\
\hline 46 & 9.229 & & 9.2358589 & 1411 & 14 \\
\hline & 9.2302518 & 9.9936378 & 9.2366139 & 10.7633861 & 13 \\
\hline 8 & 9.2309838 & 9.9936160 & 9.2373678 & 10.7626322 & 12 \\
\hline & 9.2317145 & 9.9935942 & 9.2381203 & 10.7618797 & 11 \\
\hline 50 & 9.2324440 & 9.9935723 & 9.2388717 & 10.7611283 & 0 \\
\hline 51 & 9.2331722 & 9.993550 & 8 & & \\
\hline 52 & 9.2338992 & 9.9935285 & 9.2403708 & 10.7596292 & \\
\hline 53 & 9.2346249 & 9.9935065 & 9.2411185 & 8815 & \\
\hline & 9.2353494 & 9.9934844 & 9.2418650 & 10.7581350 & \\
\hline 55 & 9.2360726 & 9.9934624 & 9.2426103 & 10.7573897 & 5 \\
\hline 56 & 9.2367946 & 9.9934403 & 9.2433543 & & \\
\hline & 9.2375153 & 9.993418 I & 9.2440972 & 10.7559 & \\
\hline & 9.2382349 & 9.99.33959 & 9.2448389 & 10. & \\
\hline & 9.238953 .2 & 9.9933737 & 9.2455794 & & \\
\hline 60 & 9.2396702 & 9.9933515 & 9.2463188 & . 7536 & \\
\hline & & Sin. 80 & & ang. 80 & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Sin. 10. & & Tang. 10. & & \\
\hline 0 & 9.2396702 & 9.9933515 & 9.2463188 & 10.7536812 & 60 \\
\hline & 9.2403861 & 9.9933292 & 9.2470569 & 10.7529430 & 59 \\
\hline 2 & 9.2411007 & 9.9933 .068 & 9.2477939 & 10.7522061 & 8 \\
\hline 3 & 9.2418141 & 9.9932845 & 9.2485297 & 10.7514703. & 57 \\
\hline 4 & 9.2425264 & 9.9932621 & 9.2492643 & 10.7507357 & 56 \\
\hline 5 & 9.2432374 & 9.9932396 & 9.2499978 & 10.7500022 & \\
\hline 6 & & 9.9932171 & 9. & 10.7492699 & 54 \\
\hline 7 & 9.2446558 & 9.9931946 & 9.2514612 & 10.7485388 & 53 \\
\hline 8 & 9.2453632 & 9.9931720 & 9.2521912 & 10.7478088 & 52 \\
\hline 9 & 9.2460695 & 9.9931494 & 9.2529200 & 10.7470800 & SI \\
\hline 10 & 9.2467746 & 9.9931268 & 9.2536477 & 10.7463522 & 50 \\
\hline 11 & 9.247 & 9.9 & 9.2543742 & 10.7456257 & 49 \\
\hline 12 & 9.24818 & 9.9930814 & 9.2550997. & 10.74490 & 48 \\
\hline 13 & 9.2488827 & 9.9930587 & 9.2558240 & 10.74417 & 47 \\
\hline 14 & 9.2495830 & 9.9930359 & 9.256547 I & 10.743 & 46 \\
\hline 15 & 9.2502822 & 9.9930131. & 9.2572691 & 10.7427308 & 5 \\
\hline 16 & 9.250980 & 9.9929902 & 9.2579901 & & \\
\hline 17 & 9.2516772 & 9.9929673 & 9.2587099 & 10.741 & 43 \\
\hline 18 & 9.2523729 & 9.9929444 & 9.2594285 & 10.7405715 & 42 \\
\hline 19 & 9.2530675 & 9.9929214 & 9.2601461 & 10.7398539 & I \\
\hline 20 & 9.2537609 & 9.9928984 & 9.2608625. & 10.7391375 & 40 \\
\hline 21 & 9.2544532 & 9.9928753 & 9.2615779 & 10.73842 & 9 \\
\hline 22 & 9.2551444 & 9.9928522 & 9.2622921 & 10.7377079 & 38 \\
\hline 23. & 9.2558344 & 9.9928291 & 9.2630053 & 10.7369947 & 37 \\
\hline 24 & 9.2565233 & 2.9928059 & 9.2637173. & 10.7362827 & 6 \\
\hline 25 & 9.2572110 & 9.9927827 & 9.2644283 & 10.73557 & 35 \\
\hline 26 & 9.257897 & 9.9927595 & 9.2651382 & 10.7348618 & 34 \\
\hline 27 & 9.2585832 & 9.9927362 & 9.2658470 & 10.7341530 & 33 \\
\hline 28 & 9.2.592676 & 9.9927129 & 9.2665547 & 10.7334453 & 32 \\
\hline 29 & 9.2599509 & 9.9926895 & 9.2672613 & 10.7327387 & 31 \\
\hline 30 & 9.2606330 & 9.9926661 & 9.2679669 & 10.73203 & 30 \\
\hline & & Sin. 74. & & Tang. 7 & M \\
\hline
\end{tabular}

Ddddd
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & Sin. & & Tang. II. & & \\
\hline 0. & 9.2805988 & 9.9919466 & 9.2886523 & 10.7113 & 60 \\
\hline \[
I
\] & 9.2812483 & 9.9919220 & 9.2893263 & 10.7106737 & 59 \\
\hline 2 & 9.2818967 & 9.9918974 & 9.2899993 & 10.7100007 & 58 \\
\hline 3 & 9.2825441 & 9.9918727 & 9.2906713 & 10.7093287 & 57 \\
\hline 4 & 9.2831905 & 9.9918480 & 9.2913424 & 10.7086576 & 56 \\
\hline 5 & 9.2838359 & 9.9918233 & 9.2920126 & 10.7079874 & 55 \\
\hline 6 & 9.2844803 & 9.9917989 & 9.2 & 10.7073183 & \\
\hline 7 & 9.285 .237 & 9.9917737 & 9.2933500 & 10.7066500 & 53 \\
\hline 8 & 9.2857661 & 9.9917489 & 9.2940172 & 10.7059828 & 52 \\
\hline 9 & 9.2864076 & 9.9917240 & 9.2946836 & 10.7053164 & 51 \\
\hline 10 & 9.2870480 & 9.9916991 & 9.2953489 & 10.7046511 & 50 \\
\hline II & 9.2876875 & 9.9916741 & 9.2960134 & 10.7039866 & \\
\hline 12 & 9.2883260 & 9.9916492 & 9.2966769 & 10.7033231 & 48 \\
\hline 13 & 9.2889636 & \[
9.9916241
\] & 9.2973395 & 10.7026605 & 47 \\
\hline 14 & 9.2896001 & \[
9.9915290
\] & 9.298001 I & \[
10.7019989
\] & 46 \\
\hline 15 & 9.2902357 & 9.9915739 & 9.2986618 & 10.7013382 & 45 \\
\hline 16 & 9.2908704 & 9.9915488. & 9.2993216 & 10.7006784 & 44 \\
\hline 17 & 9.2915040 & 9.9915236 & 9.2999804 & 10.7000196 & 43 \\
\hline 18 & 9.2921367 & 9.9914984. & 9.3006383 . & 10.6993617 & 42 \\
\hline 19 & 9.292768 .5 & 9.9914731. & 9.3012954 & 10.6987046 & 41 \\
\hline 20 & 9.293399 .3 & 9.9914478 & 9.3019514 & 10.6980486 & 40 \\
\hline & 9.29.40291 & 9.9914225 & 9.3026066 & 10.6973934 & \\
\hline & 9.294.6580 & 9.9913971 & 9.3032609 & \[
10.696739 \mathrm{I}
\] & 38 \\
\hline 23 & 9.2952859 & 9.9913717. & 9.3039143 & 10.6960857 & 37 \\
\hline 24 & 9.2959129 & 9.9913462. & 9.3045667 & 10.6954333 & 36 \\
\hline 25 & 9.2965390 & 9.9913207. & 9.3052183 & 10.6947817 & 35 \\
\hline 6 & 9.297164x & \[
9.9912952
\] & 9.3058689. & & 34 \\
\hline & 9.2977883 & \[
9.9912696
\] & 90.3065187. & \[
10.69348=3
\] & 33 \\
\hline 28 & \[
9.2984116
\] & \[
9.9912440 .
\] & 9.3071675. & \[
10.6928325
\] & 32 \\
\hline 29 & \[
9,2990339
\] & \[
9.9912184
\] & \[
9.3078155
\] & \[
10.6921845
\] & 31 \\
\hline 3.0 & 19,2996553 & 9.9912927 & 9.3084626. & 12.6915374 & 30 \\
\hline & & Sin. 78. & & Tang. 78. & M \\
\hline
\end{tabular}

Ddddd 2
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & Sin. 12. & & Tang. 12. & & \\
\hline \(\bigcirc\) & 9.3178789 & 9.9904044 & 9.3274745 & 10.6725255 & 60 \\
\hline & 9.3184728 & 9.9903775 & 9.328 c9.53 & & 㖪 \\
\hline 2 & 9.3190659 & 9.9903506 & 9.3287153 & 10.6712847 & 58 \\
\hline 3 & 9.3196581 & 9.9903237 & 9.32933 .45 & 10.6706655 & 57 \\
\hline 4 & 9.3202495 & 9.9902 .967 & 9.3299528 & 10.670047.2 & 56 \\
\hline 5 & 9.3208400 & 9.9902697 & 9.3305704 & 10.6699426 & 55 \\
\hline 6 & 9. & 9.9902426 & 9.3311872 & 10.6588128 & \\
\hline 7 & 9.3220186 & 9.990215.5 & 9.3318031 & 10.6681969 & 3 \\
\hline 8 & 9.3226066 & 9.9901883 & 9.332418.3 & 10.6675817 & 52 \\
\hline 9 & 9.323193 .8 & 9.9901612 & 9.3330327 & 30.6609673 & 51 \\
\hline 10 & 9.3237802 & 9.9901 339 & 9.3336463 & 10.6663537 & 50 \\
\hline 1 I & 9.3243657 & 9.9901067 & 9.3342591 & 10.6657409 & 碞 \\
\hline 12 & 9.3249505 & 9.9900794 & 9.3348711 & 10.6651289 & 48 \\
\hline 13 & 9.3255344 & 9.990052.1 & 9.3354823 & 10.6645177 & 47 \\
\hline 14 & 9.32611.74 & 9.9900247 & 9.3360927 & 10.6639073 & 46 \\
\hline 15 & 9.3266997 & 9.9899973 & 9.3367024 & 10.6632976 & 45 \\
\hline 16 & 9.32728II & 9.9899698 & 9.3373 113 & & 44 \\
\hline 17 & 9.3278617 & 9.9899423 & 9.3379194 & 10.6620806 & 43 \\
\hline 18 & 9.3284416 & 9.9899148. & 9.3385267. & 10:6614743 & 42 \\
\hline 19 & 9.3290206 & 9.9898873 & 9.3391333 & 10.6608667 & 41 \\
\hline 20 & 9.3295988 & 9.9898597. & 9.3397391 & 10.6602609 & 40 \\
\hline 21 & 9.3301761 & 9.9898320. & 9.34034 & 10.6596559 & 39 \\
\hline 22 & 9.3307527 & 9.9898043 & 9.3409484 & 10.6590516 & 38 \\
\hline 2 & 9.33 .13285 & 9.98 .97766 & 9.3415519 & 10.65 .84481 & 37 \\
\hline 24 & 9.3319035 & 9.9897489 & 9.3421546 & 10.6578454 & 36 \\
\hline 25 & 9.3324777 & 9.9897211 & 9.3427566 & 10.6572434 & 35 \\
\hline 26 & 9.3330511 & 9.9896932 & 9.3433578 & 10.6566422 & 34 \\
\hline 28 & 9.3336237 & 9.9896654 & 9.3439583 & 10.6560417 & 33 \\
\hline 28 & 9.334195 .5 & 9.9896374 & 9.3445580 & 10.6554420 & 32 \\
\hline 29 & 9.3.34766.5 & 9.9896095 & 9.3451570 & 10.6548430 & 31 \\
\hline 30 & 9.3353368 & 9.9895815 & 9.3457552 & 12.6542448 & 30 \\
\hline & & Sin. 77. & & Tang. 77 & M \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline 0 & 9:3520880 & 9.9887239 & 9.3633641 & 10.6366359 & 60 \\
\hline 1 & 9.3526349 & 9.9886947 & 9.3639401 & 10.6360399 & 59 \\
\hline 2 & 9.3531810 & 9.9886655 & 9.3645155 & 10.6354845 & 8 \\
\hline 3 & 9.3537264 & 9.9886363 & 9.3650901 & 10.6349099 & 57 \\
\hline 4 & 9.3542710 & 9.9886070 & 9.3650641 & 10.6343359 & 6 \\
\hline 5 & 9.3548150 & 9.988577 .6 & 9.4662374 & 10.6337626 & 5 \\
\hline 6 & 9.355358 & & 9.3668100 & 10.6331900 & 4 \\
\hline 7 & 2.3559008 & 9.9885188 & 9.3673819 & 10.6326181 & 5 \\
\hline 8 & 9.3564426 & 9.9884894 & 9.3679532 & 10.6320460 & 52 \\
\hline 9 & 9.3569836 & 9.9884599. & 9.3685238 & 10.6314762 & 51 \\
\hline 10 & 9.3575240 & 9.9884303. & 9.3690937 & 10.6309063 & 50 \\
\hline 1 I & 2.358063 & & 9.3696629 & 10.6303371 & \\
\hline 12 & 9.3586027 & 9.9883712 & 9.3702315 & 10.6297685 & 48 \\
\hline 13 & 2.3591409 & 9.9883415 & 9.3707994 & 10.6292006 & 47 \\
\hline 14 & 9.3596785 & 9.9883118 & 9.3713667 & 10.6286333 & \\
\hline 15 & 9.3602154 & 9.988282 I & 9.3719333 & 10.6280667 & 5 \\
\hline 16 & 9.3607 & & 9.3724992 & 10.6275008 & 4.4 \\
\hline 17 & 9.3612870 & 9.9882225 & 9.3730645 & 10.6269355 & 43 \\
\hline 18 & 9.3618217 & 9.9881927 & 9.3736291 & 10.6263709 & 42 \\
\hline 19 & 9.3623558 & 9.9881628 & 9.3741930 & 10.6258070 & 1 \\
\hline 20 & 2.3628892 & 9.9881329. & 9.3747563 & 10.6252437 & 40 \\
\hline 2 I & 9.3634219 & & 2.37.53190 & 10.6246810 & \\
\hline 22 & 9.3639539 & \(9.98807^{29}\) & 9.3758810 : & 10.6241190 & \\
\hline 23 & 9.3644852 & 9.9880429. & 9.3764423. & 70.6235577 & \\
\hline 24 & 9.3650158 & 9.9880128 & 9.3770030 & 10.6229970 & 6 \\
\hline 25 & 9.3655458 & 9.9879827 & 9.377563 I & 10.6224369 & \\
\hline 26 & 9.3660750 & 9.9879525. & 9.3781225 & 10.6218775 & \\
\hline 27 & 9.3666036 & 9.9879223 & 9.1786813 & 10.6213187 & 33 \\
\hline 28 & 9:3671315 & 9.987892 I & 9.3792394 & 10.6207606 & 32 \\
\hline O & 9.3676587 & 9.9878618 & 9.3797969 & 10.620203 I & \\
\hline 30 & 9.3681853 & 9.9 & 9.3803537 & 10.6196463 & 30 \\
\hline & & & & Tan & M \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
\overline{9.3836752}
\] & \(\overline{9.986904 \mathrm{I}}\) & \[
\frac{\text { Tang. I4. }}{9.3967712}
\] & 89 & 60 \\
\hline 1 & 9.3 & & & & \\
\hline \[
2
\] & 9.3846873 & 9.9868410 & 9.3978463 & 10.6021537 & 8 \\
\hline 3 & 9.3851924 & 9.9868094 & 9.3983830 & 10.6016170 & 7 \\
\hline 4 & 9.3856969 & 9.9867778 & 9.3989191 & 10.60108ag & 6 \\
\hline 5 & 9.3862008 & 9.986746I & 9.3994547 & 10.6005453 & 5 \\
\hline 6 & 0.3867 & & 9.3999896 & 10.6000104 & 54 \\
\hline 7 & 9.3872067 & 9.9866827 & 9.4005240 & 10.5994760 & 53 \\
\hline 8 & 9.3877087 & 9.9866509. & 9.4010578 & 10.5989422 & 52 \\
\hline 10 & 9.3882101 & 9.98661 .91. & 9.4015910 & 10.5984090 & 1 \\
\hline 10 & 9.3887109 & 9.9865872 & 9.4021237 & 10.5978763 & 50 \\
\hline 1 I & & & 9.4026558 & 10.5973442 & \\
\hline 12 & 9.389710 & 9.9865233 & 9.4031873 & 10.5968127 & 48 \\
\hline 13 & 9.3902096 & 9.9864913 & 9.4037182 & 10.5962818 & \\
\hline 14 & 9.3907079 & 9.9864593 & 9.4042486 & 10.5957514 & \\
\hline \({ }^{15}\) & 9.3912057 & 9.9864273 & 9.4047784 & 10.5952216 & 45 \\
\hline 16 & 9.39170 & & 9.4053076 & 10.5946924 & \\
\hline 17 & 9.3921993 & 9.9863630 & 9.4058363 & 10.5941637 & 4 \\
\hline 18 & 9.3926952 & 9.9863308 & 9.4063644 & 10.5936356 & 42 \\
\hline 19 & 9.3931905 & 9.9862986 & 9.4068919 & 10.5931081 & \\
\hline 20 & 9.393685 .2 & & 9.4074189 & 10.592581 I & \\
\hline 21 & 9.394179 & 9.98623 .40 & & & \\
\hline 22 & 9.3946729 & 9.9862017 & 9.4084712 & 10.5915288 & 38 \\
\hline 23 & 9.3951658 & 9.9861693 & 9.4089965 & 10.5910035 & 37 \\
\hline 24 & 9.3956581 & 9.98613 .69 & 9.4095212 & 10.5904788 & 36 \\
\hline 25 & 9.3961499 & 9.9861045 & 9.41004 & 10.5899546 & 5 \\
\hline 26 & 9.3966410 & 9.9860720 & 9.4105690 & 10.5894310 & 34 \\
\hline 27 & 9.3971315 & 9.9860394 & 9.4110921 & 10.5889079 & 33 \\
\hline 28 & 9.3976215 & 9.9860069 & 9.4116146 & 10.5883854 & 32 \\
\hline 29 & 9.3981109 & 9.9859742 & 9.4121366 & 10.5878634 & 31 \\
\hline 30 & 9.3985996 & 9885416 & 9.4126581 & 10.5873419 & 30 \\
\hline & & & & & \(\bar{M}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\frac{\mathrm{M}}{30}\) & \(\frac{\text { Sin. } 14 .}{9.3985996}\) & \(9.9859416^{\circ}\) & \(\frac{\text { Tang. } 14 .}{9.4126581}\) & 10.5873419 & 30 \\
\hline & & & 9.41317 & 10.5868211 & \\
\hline 31
32 & 9.39 & 9.9858762 & 9.4136993 & 10.5863007 & 28 \\
\hline 33 & 9.4000625 & 9.9858434 & 9.4142191 & 10.5857809 & 27 \\
\hline 34 & 9.4005489 & 9.9858106 & 9.4147383 & 10.5852617 & 26 \\
\hline 35 & 9.4010348 & 9.9857777. & 9.4152570 & 10.5847430 & 25 \\
\hline & & & 9.41577 & & , \\
\hline & 9.4020048 & 9.9857 II 9 & 9.41629 & 10. 8837072 & 23 \\
\hline 38 & 9.4024889 & 9.9856790 & 9.4168099 & 10.583190 .1 & \\
\hline 39 & 9.4029734 & 9.9856460 & 9.4173265 & 10.5826735 & \\
\hline 40 & 9.4034554 & 9.9856129 & 9.4178425 & 10.5821575 & \\
\hline 4 & 9.4039378 & 9.98.55798 & 9.4 & & - \\
\hline 42 & 9.4044196 & 9.9855467 & 9.4188729 & 10 & \\
\hline 43 & 9.4049009 & 9.9855135 & 9.4193874 & 10.5806126 & 7 \\
\hline & 9.4053816 & 9.9854803 & 9.4199013. & & 6 \\
\hline 45. & 9.4058617 & 9.985447 & 9.4204146 & 10 & 5 \\
\hline 46 & 9.40634 .13 & & & & 14 \\
\hline & 9.4068203 & 9.9853805 & 9.4214398 & 10.5785602 & 13 \\
\hline 48 & 9.4072987 & 9.985347. 1 & 9.4219515 & 10.5 & \\
\hline & 9.4077766 & 9.9853138 & 9.4224628 & 10.5775372 & 1 \\
\hline 50 & \(9.4082539^{\circ}\) & 9.9852803: & 9.4229735 & 10.5770265 & \\
\hline & 9.40 & 9.9852468 & 9.423483 & & \\
\hline & 9.4092068 & 9.9852133 & 9.4239935 & 10.5760065 & \\
\hline & 9.4096824 & 9.9851798 & 9.4245026 & & \\
\hline 54 & 9.4101575 & 9.9851462 & 9.4250113 & & 6 \\
\hline 55 & 9.4106320 & 9.9851125 & 9.4255194 & & \\
\hline 56 & 9.4111059 & 9.9850789 & 9.4260271 & & \\
\hline & 9.4115793 & 9.9850452 & 9.4265342 & 10.5734658 & \\
\hline 58 & 9.4120522 & 9.9850114 & 9.4270408 & 10.5729592 & \\
\hline & 9.4125245 & 9.9859776 & 9.4275469 & 10.5724532 & \\
\hline 60 & 9.4129962 & 9.9859438 & 9.4280525 & . 57194 & \\
\hline & & & & Tang. 7 & M \\
\hline
\end{tabular}

Ecece
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & Sin. 15 & & Tang. 15. & & \\
\hline 0 & 9.4129962 & 9.9849438 & 9.4280525 & 10.5719475 & 60 \\
\hline I & 9.4134674 & 9.9849099 & 9.4285575 & 10.5714425 & 59 \\
\hline 2 & 9.413938 I & 9.9848760 & 9.429062 I & 10.57 .09379 & 58 \\
\hline 3 & 9.4144082 & 9.9848420 & 9.429566 I & 10.5704339 & 57 \\
\hline 4 & 9.4148778 & 9.984808 I & 9.4300697 & 10.5699303 & 56 \\
\hline 5 & 9.4153468 & 9.9847740 & 9.4305727 & 10.5694273 & 55 \\
\hline 6 & 9.415815 .2 & 9.9847400 & 9.4310753 & 10.5689247 & 4 \\
\hline 7 & 9.4162332 & 9.9847059 & 9.4315773 & 10.5684227 & 53 \\
\hline 8 & 9.4167506 & 9.9846717 & 9.4320789 & 10.56792 11 & 52 \\
\hline 9 & 9.4172174 & 9.9846375 & 19.4325799 & 10.567420I: & 51 \\
\hline 10 & 9.4176837 & 9.984603 & 9.4330804 & 10.5669196 & 50 \\
\hline & 9.4181495 & 9.9845690 & 9.4335805 & 10.5664195 & 49 \\
\hline 12 & 9.4186148 & 9.9845347 & 9.4340800 & 10.5659200 & 48 \\
\hline 13 & 9.4190795 & 9.9845004 & 9.4345791 & 10.5657209 & 47 \\
\hline 14 & 9.4195436 & 9.9844660 & 9.4350776 & 10.5649224 & 46 \\
\hline 15 & 9.4200073 & 9.9844316 & 9.4355757 & 10.5644243 & 45 \\
\hline 16 & 9.4204704 & 9.9843971 & 9.4360733 & 10.5639267 & 44 \\
\hline 17 & 9:4209330 & 9.9843626 & 9.4365704 & 10.5634296 & 43 \\
\hline 18 & 9.4213950 & 9.984328I & 9.4370670 & 10.5629330 & 42 \\
\hline & 9.4218566 & 9.9842935 & 9.4375631 & 10.5624369 & 41 \\
\hline 20 & 9.4223176 & 9.9842589 & 9.4380587 & 10.5619413 & 40 \\
\hline & 9.4227780 & & 9.4385538 & 10.5614462 & 39 \\
\hline & 9.4232380 & 9.9841895 & 9.4390485 & 10.5609515 & 38 \\
\hline 23 & 9.4236974 & 9.9841548 & 9.4395426 & 10.5604574 & 37 \\
\hline 24 & 9.4241563 & 9.9841200 & 9.4400363 & 10.5599637 & 36 \\
\hline 125 & 9.4246147 & 9.9840852 & 9.4405295 & 10.5594705 & 35 \\
\hline & 9.4250726 & 9.9840503 & 9.4410222 & 10.5589778 & 4 \\
\hline & 9.4255299 & 9.9840154 & 9.4415145 & 10.5584855 & 33 \\
\hline & 9.4259867 & 9.9839805: & 9.4420062 & 10.5579938 & 32 \\
\hline 22 & 9.4264430 & 9.9839455 & 9.4429975 & 10.5575025 & 3 I \\
\hline 30 & 9.4268988 & 9.9839105 & 9.4429883 & 12.5570117 & 30 \\
\hline & & Sin. 74. & & Tang. 74. & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & \(\frac{\text { Sin. } 15}{9.4268988}\) & 9.9839105 & \(\frac{\text { Tang. I } 5 .}{9.4429883}\) & 10.5570117 & 30 \\
\hline & 9.4273541 & 9.9838755 & 9.4434786 & 10.5565214 & 29 \\
\hline 31 & 9.4278089 & 9.9838404 & 9.4439685 & -10.5560315 & 8 \\
\hline 33 & 9.4282631 & 9.9838052 & 9.4444579 & 10.5555421 & 27 \\
\hline 3 & 9.4287169 & 9.9837701 & 9.4449468 & 10.5550532 & 26 \\
\hline 35 & 9.4291701 & 9.9837348 & 9.4454352 & 10.5545648 & 25 \\
\hline 36 & 9.4296228 & 9.9836996 & 9.4459232 & 10.5540768 & 24 \\
\hline 37 & 9.4300750 & 9.9836643 & 9.4464107 & 10.5535893 & 23 \\
\hline 38 & 9.4385267 & 9.9836290 & 9.4468978 & 10.5531022 & 22 \\
\hline 39 & 9.4309779 & 9.9835936 & 9.4473843 & 10.5526157 & 21 \\
\hline 40 & 9.4314286 & 9.9835582 & 9.4478704 & 10.5521262 & 0 \\
\hline & 9.4318788 & 9.9835227 & 9.4483561 & 10.5516439 & 9 \\
\hline 42 & 9.4323285 & 9.9834872 & 9.4488413 & 10.5511587 & \\
\hline 43 & 9.43277 .77 & 9.9834517 & 9.4493260 & 10.5506740 & 17 \\
\hline 44 & 9.4332264 & 9.9834161 & 9.4498102 & 10.5501898 & 16 \\
\hline 45 & 9.4336746 & 9.9833805 & 9.4502940 & 10.5497060 & 15 \\
\hline 46 & 9.4341223 & 9.9833449 & 9.4507774 & 10.5492226 & 14 \\
\hline 47 & 9.4345694 & 9.9833092 & 9.4512632 & 10.5487398 & 13 \\
\hline 48 & 9.4350161 & 9.9832735 & 9.4517427 & I0.5482573 & 12 \\
\hline 49 & 9.4354623 & 9.9832377 & 9.4522246 & 10.5477754 & 11 \\
\hline 50 & 9.4359080 & 9.9832019 & 9.4527061 & 10.5472939 & 10 \\
\hline & 9.4363532 & 9.9831661. & 9.4531872 & 10.5468128 & 9 \\
\hline 52 & 9.4367980 & 9.9831302 & 9.4536678 & 10.5463322 & 8 \\
\hline 53 & 9.4372422 & 9.9830942 & 9.4541479 & 10.5458521 & \\
\hline 54 & 9.4376859 & 9.9830583 & 9.4546276 & 10.5453724 & 6 \\
\hline 55 & 9.4381292 & 9.9830223 & 9.4551069 & 10.5448931 & 5 \\
\hline 56 & 9.43857 .19 & 9.9829862 & 9.4555857 & 10.5444143 & 4 \\
\hline 57 & 9.4390142 & 9.9829501 & 9.456064 .1 & 10.5439359 & 3 \\
\hline 58 & 9.4394560 & 9.9829140 & 9.4565420 & 10.5434580 & \\
\hline 59 & 9.4398973 & 9.982877 .8. & 9.4570194 & 10.5429806 & \\
\hline 60 & 9.4403381 & 9.98284116 & 9.4574964 & 10.5425036 & \\
\hline & & Sin. 74. & & Tang. 74. & \\
\hline
\end{tabular}

Eecce \({ }^{2}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
1 \mathrm{M}
\] & Sin. 16. & & Tang. 16. & & \\
\hline \(\bigcirc\) & 9.440338I & 9.9828416 & 9.4574964 & 10.5425036 & 60 \\
\hline I & & 9.9828054 & & & 9 \\
\hline 2 & 9.4412182 & 9.9827691 & 9.4584491 & 10.5415509 & 58 \\
\hline 3 & 9.4416576 & 9.9827328 & 9.4589248 & 10.5410752 & 57 \\
\hline 4 & 9.4420965 & 9.9826964 & 9.4594001 & 10.5405999 & 56 \\
\hline 5 & 9.4425349 & 9.9826600 & 9.4598749 & 10.5401251 & 55 \\
\hline 6 & 9.44297 & 9.9826236 & 9.4 & & 4 \\
\hline 8 & 9.4434103 & 9.9825871 & 9.4608232 & 10.539 & 53 \\
\hline 8 & 9.4438472 & 9.9825506 & 9.4612967 & 10.5 .387 .033 & 52 \\
\hline 9 & 9.4442837 & 9.9825140 & 9.4617697 & 10.5382303 & 51 \\
\hline 10 & 9.4447197 & 9.9824774 & 9.4622423 & 10.5377 .577 & 50 \\
\hline II & 9.4451 & 9.9824408 & 9.4627145 & & 49 \\
\hline 12 & 9.4455904 & 9.9824041 & 9.4631863. & 10.536813 .7 & 48 \\
\hline 13 & 9.4460250 & 9.9823674 & 9.4636576 & 10.5363424 & 47 \\
\hline 14 & 90.446459.1 & 9.9823306 & 9.4641285 & 10.5358715 & 46 \\
\hline 15 & 9.4468927 & 9.9822938 & 9.4645990 & 10.5354010 & 45 \\
\hline 16 & & & 9.4650690 & 0. 3349310 & 44 \\
\hline 17 & 9.4477586 & 9.9822201 & 9.4655386 & 10.5344614 & 43 \\
\hline 18 & 9.4481909 & 9.982183 I & 9.4660078 & 10.5339922 & 42 \\
\hline 19 & 9.4486227 & 9.9821462 & 9.4664765 & 10.5335235 & 41 \\
\hline 20 & 9.4490540 & 9.9821092 & 9.4669448 & 10.5330552 & 40 \\
\hline 21 & 9.4494849 & 9.9820721 & 9.4674127 & & 39 \\
\hline 22 & 9.4499153 & 9.982035.1 & 9.4678802 . & 10.5321198 & 咗 \\
\hline 23 & 9.4503452 & 9.9819979. & 9.4683473 & 10.5316927 & 37 \\
\hline 24 & 9.4507747 & 9.9819608 & 9.4688139. & 10.5311861 & 36 \\
\hline 25 & 9.4512037 & 9.9819236 & 9.4692801 & 10.5307199 & 35 \\
\hline 26 & 9.4516322 & 9.9818863. & 9.4697459 & 10.5302 & 34 \\
\hline 27 & 9.4520603 & 9.9818490 & 9.4702112 & - 10.5297838 & 33 \\
\hline 28 & 9.4524879 & 9.9818117. & 9.4706762. & I0.529323.8 & 32 \\
\hline 29 & 9.452915.1 & 9.9817744 & 9.4711407 & 10.5288593 & 31 \\
\hline 30 & 9.45.33.418 & 9.9817370 & 9.47 16048 & 12.5283952 & 30 \\
\hline & & & & Tang. & M \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline \(\bigcirc\) & 9.4659 & 9.9805963 & 9.4853390 & 10.5146610 & \\
\hline & 9.4 & 9.9805577 & & & \\
\hline 2 & 9.4667609 & 9.9805190 & 9.4862419 & 10.5137581 & \\
\hline 3 & 9.4671730 & 9.9804803 & 9.4866928 & 10.5133072 & \\
\hline 4 & 9.4675848 & 9.9804415 & 9.4871433 & 10.5128567 & \\
\hline 5 & 9.4679960 & 9.9804027 & 9.4875933 \} & 10.5124067 & 5 \\
\hline 6 & & & & O & \\
\hline 7 & 9.4688173 & 9.9803250 & 9.4884924. & & \\
\hline 8 & So4692273 & 9.9802860 & 9.4889413 & & \\
\hline 9 & 9.4696369 & 9.9802471 & 9.4893898 . & 12 & \\
\hline 10 & 9.4700461 & 2.9802081 & 9.4898380 & 10.5101620 & \\
\hline 1 I & & 9.9 & 9.4902858 & 10 & \\
\hline 12 & 9.4708631 & 9.9801299 & 9.4907332 & \[
10.5092668
\] & 48 \\
\hline 13 & 9.4712710 & 9.9800908 & 9.4911802 & 10:5088198 & \\
\hline 14 & 9.4716785 & 9.9800516 & 9.4916269 & 10.5083731 & \\
\hline IS & 9.4720856 & 9.9800124 & 9.4920731 & 10.5079269 & 5 \\
\hline 16 & 9.4724922 & 9. & 0 & & \\
\hline 17 & 9.4728985 & 9.9799339 & 9.4929646 & 10.5070354 & \\
\hline 18 & 9.4733043 & 9.9798946 & 9.4934097 & 10.5065903 & \\
\hline 19 & 9.4737097 & 9.9798552 & & 10.5061455 & \\
\hline 20 & 9,4741146 & \[
9.9798158
\] & 9.4942988 & 10.5057012 & \\
\hline 2 I & 9. & & & 10.5052571 & \\
\hline 22 & 9.4749234 & 9.9797369 & 9.495186 & 10.5048135 & \\
\hline 23 & 9.4753271 & 9.9 & 9.4956298 & 10.5043702 & \\
\hline 24 & 9.4757304 & 9.9796578 & 9.4960727 & 10.5039273 & 6 \\
\hline 25 & 9.4761334 & 9.9796182 & 9.4965152 & 10.5034848 & 35 \\
\hline 26 & & & 9.4969574 & 10.5030426 & 34 \\
\hline & 9.4769380 & 9.9795388 & 9.497399 I & 10.5026009 & 3 \\
\hline 28 & 9.4773396 & 9.9794991 & 9.4978406 & 10.5021594 & 3 \\
\hline 29 & 9.4777409
0.4781418 & 9.9794593 & 9.4982816 & 10.5017184 & 1 \\
\hline 30 & 9.47814 .18 & 9.97.941.95 & 9.4987223 & 10.501277 & 0 \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & & & Tang. 17. & & \\
\hline 30 & 9.4781418 & 9.9794195 & 9.4987223 & 10.5012777 & 30 \\
\hline & 9.4785.423 & 9.9793796 & 9.4991620 & 10.5008374 & 29 \\
\hline 32 & 9.4789423 & 9.9793398 & 9.4996026 & 10.5003974 & 28 \\
\hline 33 & 9.4793420 & 9.9792998 & 9.5000422 & 10.4999578 & 27 \\
\hline 34 & 9.4797412 & 9.9792599 & 9.5004814 & 10.4995186 & 26 \\
\hline 35 & 9.4801401 & 9.9792198 & 9.5009203 & 10.4990797 & 25 \\
\hline 36 & & 9.9791798 & 9.5013588 & 10.4986413 & 24 \\
\hline 37 & 9.4809366 & 9:9791397 & 9.5017969 & 10.498203 I & 23 \\
\hline 38 & 9.48 r 3342 & . 9.9790996 & 9.5022347 & 10.4977653 & 22 \\
\hline 39 & 9.4817315 & 9.9790594 & 9.5026721 & 10.4973279 & 21 \\
\hline 40 & 0.4821283 & 9.9790192 & 9.5031092 & 10.4968908 & 20 \\
\hline & 9.4825248 & & 9.50354 & 10.4 & 9 \\
\hline 42 & 9.4829208 & 9.9789386 & 9.5039822 & 10.4960178 & 18 \\
\hline 43 & 9.4833165 & 9.9788983 & 9.5044182 & 10.495581 .8 & 17 \\
\hline 44 & 9.4837117 & 9.9788579 & 9.5048538 & 10.4951467 & 16 \\
\hline 45 & 9.4841066 & 9.9788175 & 9.5052891 & 10.4947109 & 15 \\
\hline & 9.4845010 & 9.9787770 & 0.5057240 & 10.4942760 & 14 \\
\hline & 9.4848951 & 9.9787365 & 9.5061586 & 10.4938414 & 13 \\
\hline 48 & 9.4852888 & 9.9786960 & 9.5065928 & IC. 4.934072 & 12 \\
\hline & 9.4856820 & 9.9786554 & 9.5070267
0.5074602 & \[
\begin{aligned}
& 10.4929733 \\
& 10.7925398
\end{aligned}
\] & II \\
\hline \[
150
\] & 9.4860749 & 9.9786148 & 9.5074602 & 10.4925398 & 10 \\
\hline & 9.4864674 & 9.9785741 & 9.5078933 & 10.4921067 & \\
\hline & 9.4.868595 & 9.9785334 & 9.5083261 & 10.4916739 & \\
\hline 5 & 9.4872512 & 9.9784927 & 9.5087586 & 10.4912414 & \\
\hline 54 & 9.4876426 & 9.9784519 & 9.5091907 & 10.4908093
10.4903776 & \\
\hline 55 & 9.4880335 & 9.9784111 & 9.5096224 & 10.4903776 & \\
\hline & 9.4884240 & 9.9783702 & 9.5100539 & 10.4899461 & \\
\hline & 9.4888142 & ¢. 97838293 & 9.5104849 & 10.7895151 & \\
\hline 158 & 9.4892040 & 9.9782883 & 9.5109156 & 1c. 7800844 & \\
\hline & 9.4895934 & 9.7.782474 & 9.5113460 & 10.4886540 & \\
\hline 60 & 9.4899824 & 9.9782063 & 9.5117760 & & \\
\hline & & & & Tang. 72. & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
\frac{\text { Sin. } 18 .}{9.4899824}
\] & 9.9782063 & \[
\frac{\text { Tang. } 18 .}{9.5117760}
\] & 10.4882240 & 0 \\
\hline 1 & 9.490 & & 9.5122057 & & 9 \\
\hline 2 & 9.4907.592 & 9.978124 I & 9.5126351 & 10.4873649 & 8 \\
\hline 3 & \(9.491147{ }^{\text {I }}\) & 9.9780830 & 9.5130641 & 10.4869359 & 57 \\
\hline 4 & 9.4915345 & 9.97804.18 & 9.5134927. & 10.4865073 & \\
\hline 5 & 9.4919216 & 9.9780006 & 9.5139210 & 10.4860790 & 55 \\
\hline 6 & 9.4 & 9.9 & 9.5 & 10.4856510 & \\
\hline 7 & 9.4926646 & 9.9779180 & 0.514776 & 10.4852234 & \\
\hline 8 & 9.4930806 & 9.9778767 & 9.5152039 & 10.4847961 & \(5^{2}\) \\
\hline 9 & 9.4934661 & 9.97 & 9.5156309. & 10.4843691 & 1 \\
\hline 10 & 9.4938513 & 0.9777938. & 9.516057 .5 & 10.4849425 & 0 \\
\hline 1 I & 9.49 & & & & \\
\hline 12 & 9.4946205 & 9.9777108 & 9.5169097 & 10.4830903 & 48 \\
\hline \({ }_{1} 3\) & 9.4950046 & 9.9776693 & 9.5173353 & 10.4826647 & \\
\hline 14 & 9.4953883 & 9.9776277 & 9.5177606 & 10.4822394 & 46 \\
\hline 15 & 9.4957716 & 9.9775860 & 9.5181855 & 10.4818145 & 45 \\
\hline 16 & 9.4961545 & & 9.5186101 & & \\
\hline 17 & 9.4965370 & 9.9775026 & 9.5190344 & 10.4809656 & \\
\hline 18 & 9.4969192 & 9.9774609 & 9.5194583 & 10.4803417 & \\
\hline 19 & 9.4973010 & 9.9774191 & 9.5198819 & 10.4801181 & 1 \\
\hline 20 & 9.4976824 & 9.9773772 & 9.51030 .52 & 10.4796948 & \\
\hline 2 I & 9.4980 & 9.9773354 & 9.5T07282 & & \\
\hline 22 & 9.4984442 & 9.9772934 & 9.5215508 & 10.4788492 & \\
\hline 23 & 9.4988245 & 9.9772515 & 9.5215730 & 10.4784270 & 37 \\
\hline 24 & 9.4992045 & 9.9772095 & 9.5219950 & 10.4780050 & 6 \\
\hline 25 & 9.4995840 & 9.9771674 & 9.5224166 & 10.4775834 & 35 \\
\hline 26 & 9.4999633 & 9.9771253 & 9.5228379 & 10.4771621 & 34 \\
\hline & -9.500342I & 9.9770832 & 9.5232589. & 10.4767411 & 3 \\
\hline 28 & 9.5007206 & 9.9770410 & 9.5236795. & 10:4763205 & 32 \\
\hline 29 & 9.5010987 & 9.9769988 & 9.5240999. & 10.4750001 & 1 \\
\hline 30 & 9.5014764 & 9.9769566 & 9.5245199: & 10.4754801 & \(\bigcirc\) \\
\hline & & & & & M \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline IM & Sin. 19. & & Tang. 19. & & \\
\hline 0 & 9.5126419 & 9.9756701 & 9.5369719 & 10.4630281 & 60 \\
\hline & 9.5130086 & 9.9756265 & 9.5373821 & 10.4626179 & 5 \\
\hline 2 & 9.5133750 & 9.9755830 & 9.5377920 & 10.4622080 & 58 \\
\hline 3 & 9.5137410 & 9.9755394 & 9.5382017 & 10.4617983 & 57 \\
\hline 4 & 9.5141067 & 9.9754957 & 9.5386110 & 10.4613890 & 56 \\
\hline 5 & 9.514472 I & 9,975452 & 9.9390200 & 10.4609800 & 55 \\
\hline 6 & 9.514837 & 9.9754083 & 9.5394287 & 10.4605713 & 54 \\
\hline 7 & 9.5152017 & 9.9753646 & 9.5398371 & 10.4601629 & 53 \\
\hline 8 & 9.5155660 & 9.9753208 & 9.5402453 & 10.4597547 & 52 \\
\hline 9 & 9.5159300 & 9.9752769 & 9.5406531 & 10.4593469 & 51 \\
\hline 10 & 9.5162036 & 9.9752330 & 9.5410605 & 10.4589394 & 50 \\
\hline I I & 9.5166569 & 9.9751891 & 9.5414678 & 10.4585322 & \\
\hline 12 & 9.5170198 & 9.9751451 & 9.5418747 & 10.4581253 & 48 \\
\hline 13 & 9.5173824 & 9.9751011 & 9.5422813 & 10.4577187 & 47. \\
\hline 14 & 9.5177447 & 9.9750570 & 9.5426877 & 10.4573123 & 46 \\
\hline 15 & 9.5181066 & 9.9750129 & 9.5430937 & 10.4569063 & 45 \\
\hline 16 & 9.5184682 & 9.9749688 & 9.5434994 & 10.4565005 & 4 \\
\hline 17. & 9.5188295 & 9.9749246 & 9.5439048 & 10.4560952 & 43 \\
\hline 18 & 9.5191904 & 9.9748804 & 9.5443100 & 10.4556900 & 42 \\
\hline 19 & 9.5195510 & 9.9748361 & 9.5447148 & 10.4552852 & 41 \\
\hline 20 & 9.5199112 & 9.9747918 & 9.5451193 & 10.4548807 & 40 \\
\hline 21 & 9.5202711 & 9.9747475 & 9.5455236 & 10.4544764 & 39 \\
\hline 22 & 9.5206307 & 9.9747031. & 9.5459276 & 10.4540724 & 38 \\
\hline 23 & 9.5209899 & 9.9746587. & 9.5463312 & 10.4536688 & 37 \\
\hline & 9.5213488 & 9.9746142. & 9.5467346 & 10.4532654 & 36 \\
\hline 25 & 9.5217074 & 9.9745697 & 9.5471377 & 10.4528623 & 35 \\
\hline & 9.5220656 & 9.9745252. & 9.5475405 & 10.4524595 & 34 \\
\hline 27 & 9.5224235 & 9.9744806. & 9.5479430 & 10.4520570 & 33 \\
\hline 28 & 9.5227811 & 9.9744359 & 9.5483452 & 10.4516548 & 32 \\
\hline 129 & 9.5231383 & 9.9743913 & 9.5487471 & 10.4512529 & 31 \\
\hline 30 & 9.5234953 & 9.9743466 & 9.5491487 & 10.4508513 & 30 \\
\hline & & Sin. 70. & & Tang. 70. & (M) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
\sin .20
\] & & Tang. 20. & & \\
\hline \(\bigcirc\) & 9.5340517 & 9.9729858 & 9.5610656 & 10.4389341 & 60 \\
\hline & 9.5 & 9.9729398 & 9.5614588 & & \\
\hline 2 & 9.5347452 & 9.9728938 & 9.5618515 & 10.4381485 & 8 \\
\hline 3 & 9.5350915 & 9.9728477. & 9.5622439 & 10.4377561 & 57 \\
\hline 4 & 9.5354375 & 9.9728016 & 9.5626360 & 10.4373640 & \\
\hline 5 & 9.5357832 & 9.9727554 & 9.9630278. & 10.43697 .22 & 55 \\
\hline 6 & 9.5361 & 9.9727092 & 9.56 & & 54 \\
\hline 7 & 9.5364737 & 9.9726629 & 9.5638107 & 10.4361893 & S \\
\hline 8 & 9.5368184 & 9.9726166 & 9.5642018 & 10.4357982 & 52 \\
\hline 9 & 9.5371628 & 9.9725703 & 9.5645925 & 10.4354075 & 51 \\
\hline Io & 9.5375069 & 9.9725239 & 9.5649831 & 10.4350169 & 50 \\
\hline 11 & 9.53785 & 9.9724775 & 9.5653733 & & 49 \\
\hline 12 & 9.5381943 & 9.9724310 & 9.5657633 & 10.4342367 & 8 \\
\hline 13 & 9.5385375 & 9.9723845 & 9.5661530 & 10.4338470 & 47 \\
\hline 14 & 9.5388804 & 9.9723380 & 9.5665424 & 10.4334576 & 46 \\
\hline 15 & 9.5392230 & 9.9722914 & 9.5669316 & 10.4330684 & 45 \\
\hline 16 & 9.5395653 & 9.9722448 & 9.5673205 & 95 & 44 \\
\hline 17 & 9.5399073 & 9.972198I & 9.5677091 & 10.4322909 & 43 \\
\hline 18 & 9.5402489 & 9.9721514 & 9.5680975 & 10.4319025 & 42 \\
\hline 19 & 9.5405903 & 9.9721047 & 9.5684856 & 10.4315144 & 41 \\
\hline 20 & 9.5409314 & 2.9720579 & 9.5688735 & 10.4311265 & 40 \\
\hline 21 & 9.5,412721 & 9.9720110 & 9.5692611 & 10.4307389 & 38 \\
\hline 22 & 9.5416126 & 9.9719642 & 9.5696484 & 10.4303516 & 38 \\
\hline 23 & 9.5419527 & 9.9719172 & 9.5700355 & 10.4299645 & 37 \\
\hline 24 & 5422926 & 9.9718703 & 9.5704223 & 10.4295777 & 36 \\
\hline 25 & 9.5426321 & 9.9718233 & 9.5708088 & 10.4291912 & 35 \\
\hline 26 & 9.5429713 & 9.9717762 & 9.5711951 & & 34 \\
\hline 27 & 9.5433103 & 9.9717291 & 9.5715811 & 10.4284189 & 33 \\
\hline 28 & 9.5436489 & 9.9716820 & 9.5719669 & 10.4280331 & 32 \\
\hline 29 & 9.5439873 & 9.9716348 & 9.5723524 & 10.4276476 & 3.1 \\
\hline 30 & 9.5443253 & 9.9715876 & 9.5727377 & 12.427262 & O \\
\hline & & & & Tang. 69 & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & Sin. 20. & & Tang. 20. & & \\
\hline 30 & 9.5443253 & 9.9715876 & 9.5727377 & 10.4272623 & 30 \\
\hline 31 & 9.5446630 & 9.9715404 & 9.5731227 & 10.4268773 & 29 \\
\hline 32 & 9.5450005 & 9.971431 & 9.5735074 & 10.4264926 & 28 \\
\hline 33 & 9.5453376 & 9.9714457 & S.5738919 & 10.4261081 & 27 \\
\hline 34 & 9.5456745 & 9.9713984 & 9.5742761 & 10.4257239 & 26 \\
\hline 35 & 9.5460110 & 9.9713509 & 9.5746601 & 10.4253399 & 25 \\
\hline 36 & 9.5463472 & 9.9713035 & 9.5750438 & 10.4249562 & 24 \\
\hline 37 & 9.5460832 & 9.9712560 & 9.5754292 & 10.4245728 & 23 \\
\hline 38 & 9.5470189 & 9.9712084 & 9.5758104 & 10.42418 & 22
21 \\
\hline 39 & S.54.73542 & 9.9711608 & 9.576193 .4 & 10.4238066
10.4234239 & 20 \\
\hline 40 & 9.5476893. & 9.9711132 & 9.5765761 & 10.4234 & \\
\hline 41 & 9.5480240 & 9.9710655 & 9.5769585 & 10.4230415 & 19 \\
\hline 42 & 9.5483585 & 9.9710178 & 9.5773407 & 10.4226593 & 18 \\
\hline 43 & 9.5486927 & 9.9709701 & 9.5777226 & 10.4222774 & 17 \\
\hline 44 & 9.5490266 & 9.9709223 & \[
9.5781043 .
\] & & 15 \\
\hline 45 & 9.5493602 & 9.9708744 & 9.57848 & 10.4215142 & 15 \\
\hline & 9.5496935 & 9.9708265 & 9.5788669 & 10.4211331 & 14 \\
\hline 46 & 9.5496935 & 9.9707786 & 9.5792479 & 10.4207521 & 13 \\
\hline 4 & 9.5503592 & 9.9707306 & 9.5796286 & IC.4203714 & 12 \\
\hline & 9.5506916 & 9.9706826 & 9.5800090 & 10.4199910 & İ \\
\hline 50 & 9.551023 .7 & 9.9706346 & 9.5803892 & 10.4196108 & 0 \\
\hline & & 9.9705865 & 9.5807691 & 10.4192309 & 9 \\
\hline 5 & 9.55.56871 & 9.9705383 & 9.5811488 & 10.4188512 & \\
\hline 53 & 9.5520184 & 9.9704902 & 9.5815282 & 10.4184718 & \\
\hline 54 & 9.5523494 & 9.9704419 & 9.5819074 & 10.4180926 & \\
\hline 55 & 9.5526801 & 9.9703937 & 9.5822864 & 10.417813 .6 & \\
\hline 56 & 9.5530105 & 9.9703454 & c. 5826651 & 10.7173349 & \\
\hline 57 & 9.5533406 & 9.9702970 & 9.5830435 & 10.4169565. & \\
\hline 58 & 9.5536704 & 9.9702486 & 9.5834217. & 10.4165783
10.4162003 & \\
\hline 59 & 9.5539999 & 9.9702002
9.970151 & 9.5 9.541774 & 10.416203
10.415826 & - \\
\hline & 9.5543293 & & & & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline 0 & 2.5543292 & 9.9 & & & \\
\hline 1 & & 9.9701032 & & & \\
\hline 2 & 9.5549868 & 9.9700547 & 9.5 & 0679 & 58 \\
\hline 3 & 9.5553152 & 9.9700061. & 9.5853091 & 6909 & \\
\hline 4 & 9.5556433 & 9.9699574 & 9.5856859 & 141 & \\
\hline 5 & 9.5559711 & 9.9699087 & 9.5860624 & 10.4139376 & 55 \\
\hline 6 & 9.5562 & 9.9698600 & & & \\
\hline 7 & 9.5566259 & 9.9698112 & 9.5868147 & & 3 \\
\hline 8 & 9.5569529 & 9.9697624 & 9.587190 & 10.4128096 & 2 \\
\hline 9 & 9.5572796 & 9.9697136 & 9.587560 & & 1 \\
\hline 10 & 9.5576060 & 9.9696647 & 9.5879413 & & \\
\hline 1 I & 2.557 & & & & 49 \\
\hline 12 & 9.558257 & 9.969y 668 & 9.5886912 & 10.4113088 & 48 \\
\hline 13 & 9.558583 & 9.9695177 & 9.5890657 & 10.4109343 & 47 \\
\hline 14 & 9.5589088 & & 9.589440 I & 10.4405599 & 46 \\
\hline 15 & 9.5592338 & 9.9694196 & 9.5898142 & 10.4101858 & \\
\hline 16 & 9.5595 & & 9.5901881 & & \\
\hline 17 & 9.5598829 & 9.96932 I 2 & 9.5905617 & 10.4094383 & 44 \\
\hline 18 & 9.5602071 & 9.9692720 & 9.5909351 & 10.4090649 & 42 \\
\hline 19 & 9.5605310 & 9.9692227. & 9.5913082 & 10.4086918 & \\
\hline 20 & 9.5608546 & 9.9691734 & 9.5916812 & 10.4083188 & \\
\hline 21 & & & 9.592053 & & \\
\hline 22 & 9.56150 & 9.9690746 & 9.5924263 & 10.4075737 & 38 \\
\hline 23 & 9.5618237 & 9.96 & 9.5927985 & 10.4072015 & 7 \\
\hline 24 & 9.5621462 & 9.9689757 & 9.5931705 & 10.4068295 & 6 \\
\hline 125 & 9.5624685 & 9.9689262 & 9.5935423 & & \\
\hline 26 & & & 9.593.913 & & \\
\hline 28 & 9.5631121 & 9.9688270 & 9.5942851 & 10.4057149 & 34 \\
\hline 28 & 9.5634335 & 9.9687773 & 9.5946561. & 10.4053439 & 32 \\
\hline 30 & 9.5637546
0.5640754 & 9.9687276 & 9.5950269 & 10.404973I & 3 I \\
\hline 30 & 9.5640754 & 9.9686779 & 9.5953975 & & 30 \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 9.5 & 9.9686779 & \(\frac{\text { Tang. } 21 .}{}\) & 10.4046025 & 0 \\
\hline & 9.5 & 9. & 9.595 & 10.4042321 & 9 \\
\hline & 9.5647163 & 9.9685783 & 9.5961380 & 10.4038620. & 8 \\
\hline 33 & 9.5650363 & 9.9685284 & 9.5965079 & 34921 & 27 \\
\hline 34 & 2.5653561 & 9.9684785 & 9.5968 & 10.4031224 & 26 \\
\hline 35 & 9.5656756 & 9.9684286 & 9.5972470 & 10.4027530 & 25 \\
\hline 36 & 9.5659948 & 9.9683786 & 9.5976162 & & 4 \\
\hline 37 & 9.5663137 & 9.9683285 & 9.5979852 & 10.4020148 & 23 \\
\hline 38 & 9.5666324 & 9.9682784 & 9.5983540 & 10.4016460 & 22 \\
\hline 39 & 9.5669508 & 9.9682283 & 9.5987225 & 75 & 21 \\
\hline 40 & 9.5673689 & 9.9681781 & 9.5990908 & 10.4009092 & 20 \\
\hline 41 & 9.5675868 & 9.9681279 & 9.5994588 & & 9 \\
\hline 42 & 9.5679044 & 9.9680777 & 9.5998267 & :10.4001733 & 8 \\
\hline 43 & 9.5682217 & 9.9680274 & 9.6001943 & 10.3998057 & 17 \\
\hline 44 & 9.5685387 & 9.967977 I & 9.6005617 & '10.3994383 & 6 \\
\hline 45 & 9.5688555 & 9.9679267 & 9.6009289 & 10.3990711 & I5 \\
\hline & & 9.9678763 & & & 4 \\
\hline & 9.5694883 & 9.9678258 & 9.6016625 & 10.398337 & 13 \\
\hline 48 & 9.5698043 & 9.9677753 & 9.6020290. & 10.3979710 & 2 \\
\hline & 9.5701200 & 9.9677247 & 9.6023953 & 10.3976047 & 11 \\
\hline 50 & 9.5704355 & 9.9676741 & 9.6027613 & 10.3972387 & 0 \\
\hline 51 & 9.5707506 & 9.9676235 & 9.6031271 & , & \\
\hline 5 & \[
9.5710656
\] & 9.9675728 & 9.6034927 & 10.3965073 & 8 \\
\hline 53 & 9.5713802 & 9.9675221 & 9.6038581 & 10.3961419 & \\
\hline 54 & 9.5716946 & 9.9674713 & 9.6042233 & 66 & 6 \\
\hline 55 & 9.5720087 & 9.9674205 & 9.6045882 & 10.3954118 & 5 \\
\hline & 9.5723226 & 9.9673697 & , & & \\
\hline & 9.5726362 & 9.9673188 & 9.6053174 & 10.3946826 & \\
\hline 58 & 9.5729495 & 9.9672679 & 9.6056817 & 10.3943183 & \\
\hline 59 & 9.5732626 & 9.9672169 & 9.6060457 & 10.3939543 & \\
\hline 60 & 9.5735754 & 9.9671659 & 9. & & \\
\hline & & & & ang. 6 & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & Sin. 22. & & Tang. 22. & & \\
\hline \(\bigcirc\) & 9.57357 & 9.9671659 & 9.6064096 & 10.3935904 & 60 \\
\hline 1 & 9.5738880 & 9.9671 148 & 9.6 & & \\
\hline 2 & 9.5742003 & 9.9670637 & 9.6071366 & 10.3928634 & 8 \\
\hline 3 & 9.5745123 & 9.9670125 & 9.6074997 & 10.3925003 & \\
\hline 4 & 9.5748240 & 9.9669614 & 9.6078627 & 10.3921373 & 6 \\
\hline 5 & 9.5751356 & 9.9669101 & 9:6082254 & 10.3917 & 55 \\
\hline 6 & 9.5754468 & & 9.6085880 & 10.3914120 & \\
\hline 7 & 9.5757578 & 9.9668075 & 9.6089503 & 10.3910497 & 53 \\
\hline 8 & 9.5760685 & 9.9667562 & 9.6093124 & 10.3906876 & 52 \\
\hline 9 & 9.5763790 & 0.9667048 & 9.6096742 & 10.3903258 & 5 i \\
\hline 10 & 9.5766892 & 9.9666533 & 9.6100359 & 10.3899641 & 50 \\
\hline & & 9.9666018 & 9.6103973 & 10.38960 .27 & \\
\hline 12 & 9.5773088 & 19.9665503 & 9.6107586 & 10.3892414 & 8 \\
\hline 13 & 9.5776183 & 9.9664987 & 9.6111196 & 10.3888804 & 47 \\
\hline 14 & 9.5779275 & 9.9664471 & 9.6114804 & 10.3885196 & 46 \\
\hline 15 & 9.5782364 & 9.9663954 & 9.6118409 & 10.3881591 & 45 \\
\hline & & & 9.6122013 & & 44 \\
\hline & 9.5788535 & 9.9662920 & 9.6125615 & 10.3874385 & 43 \\
\hline 18 & 9.5791616 & \(9.9662402^{\circ}\) & 9.6129214 & 10.3870786 & 42 \\
\hline 19 & 9.5794695 & 9.9661884 & 9.6I328ı2 & 10.3867188 & \(4{ }^{1}\) \\
\hline 20 & 9.5797772 & 9.9661365 & 9.6136407 & 10.3863593 & 40 \\
\hline & & & 9.6140000 & 10.3860000 & \\
\hline 22 & 9.5803917 & 9.9660326 & 9.61435 & 10.3856409 & 138 \\
\hline 22 & 9.5806986 & 9.9659806 & 9.6147186 & 10.3852820 & 7 \\
\hline 2 & 9.5810052 & 9.9659285 & 9.6.150766 & 10.3849234 & 36 \\
\hline 25 & 9.5813'116 & 9.96587 .64 & 9.6154351 & 10.3845649 & 135 \\
\hline 26 & 9.5816177 & 9.9658243 & 9.6157934 & 10.3842066 & \\
\hline & 9.5819236 & 9.9657721 & 9.6161514 & 10.3838486 & \\
\hline 28 & 9.5822292 & 9.9657199 & 9.6165093. & 10.3834907 & \\
\hline & 9.5825345 & 9.965667 & 9.6168669 & 10.383133 I & \\
\hline 3 & 9.5828397 & 9.9656153 & 9.6172243 & 10.3827757 & 10 \\
\hline & & & & Tang. 67 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & Sin. 22. & & Tang. 22. & & \\
\hline 30 & 9.5828397 & 9.9656153 & 9.6172243 & 10.3827757 & 30 \\
\hline 3 & 9.5831445 & 9.9655630 & 9.6175815 & 10.3824185 & 29 \\
\hline 32 & 9.583449 I & 9.9655106 & 9.6179385 & 10.3820615 & 28 \\
\hline 33 & 9.58.37535 & 9.9654582 & 9.6182953 & 10.3817047 & 27. \\
\hline 34 & 9.5840576 & 9.9654057 & 9.6186519 & 10.381348 I & 26 \\
\hline 35 & 9.5843615 & 9.9653532 & 9.6190083 & 10.3809917 & 25 \\
\hline 36 & 9.5846651 & 9.9653006 & 9.6193 .645 & 10.3806355 & 24 \\
\hline 37 & 9.5849685 & 9.9652480 & 9.6197205 & 10.3802795 & 23 \\
\hline 38 & 9.5851716 & 9.9651953 & 9.6200762 & 10.3799238 & 22 \\
\hline 39 & 9.5855745 & 9.965 1426 & 9.6204318 & 10.3795682 & 21 \\
\hline 40 & 9.5858771 & 9.9650899 & 9.6207872 & 10.3792128 & 20 \\
\hline 41 & 9.5861795 & 9.9650371 & 9.6211423 & 10.3788577 & 19 \\
\hline 42 & 9.5864816 & 9.9649843 & 9.6214974 & \(10: 3785026\) & 18 \\
\hline 43 & 9.5867835 & 9.9649314 & 9.6218520 & 10.3781480 & 17 \\
\hline 44 & 9.5870851 & 9.964878.5 & 9.6222066 & 10.3777934 & 16 \\
\hline 45 & 9.5873865 & 9.9648256 & 9.6225609 & 10.3774391 & 5 \\
\hline 46 & 9.5876876 & 9.9647726 & 9.6229150 & 10.3770850 & 14 \\
\hline & 9.5879885 & 9.9647195 & 9.6232690 & 10.3767310 & 13 \\
\hline 48 & 9.5882892 & 9.9646665 & 9.6236227 & 10.3763773 & 12 \\
\hline 49 & 9.5885896 & 9.9646133 & 9.6239763 & 10.3760237 & 1 \\
\hline 50 & 9.5888897 & 9.9645602 & 9.6243296 & 10.37 .56704 & 10 \\
\hline 51 & 9.5891897 & 9.9645069 & 9.6246827 & 10.3753173 & 9 \\
\hline \(5^{2}\) & 9.5894893 & 9.9644537 & 9.6230356 & 10.3749644 & . 8 \\
\hline 53 & 9.5897888 & 9.9644004 & 9.6253884 & 10.3746116 & 7 \\
\hline 54 & 9.5900880 & 9.9643470 & 9.6257409 & 10.3742591 & 6 \\
\hline 55 & 9.5903869 & 9.9642937 & 9.6260932. & 10.3739068 & \\
\hline 56 & 9.5906856 & 9.9642402 & 9.6264454 & 10.37 .35546 & 4 \\
\hline 57 & 9.5909841 & 9.9641868 & 9.6267973 & 10.3732027 & 3 \\
\hline 58 & 9.5912823 & 9.9641332 & 9.6271491 & 10.3728509 & \\
\hline 5 & 9.5915803 & 9.9640797 & 9.6275006 & \[
10.3724994
\] & \\
\hline 60 & 9.5918780 & 9.9640261 & 9.6278519 & 10.372148 I & \\
\hline & & Sin. 67. & & Tang. 67. & M \\
\hline
\end{tabular}

Ggggg
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Sin. 23 & & Tang. 23. & & \\
\hline \(\bigcirc\) & 9.5918780 & 9.9640261 & 9.6278519 & 10.3721481 & 60 \\
\hline 1 & 9.5921755 & 9.9639724 & 9.6282030 & 10.3717969 & 59 \\
\hline 2 & 9.5924728 & 9.9639187 & 9.6285540 & 10.3714460 & 58 \\
\hline 3 & 9.5927698 & 9.9638650 & 9.6289048 & 10.3710952 & 57 \\
\hline 4 & 9.5930666 & 9.96381 12 & 9.6292553 & 10.3707447 & 56. \\
\hline 5 & 9.5933631 & 9.9637574 & 9.6296057 & 10.37039 .43 & 55 \\
\hline 6 & 9.5936.594 & 9.9637036 & 9.629955 \({ }^{8}\) & 10.3700442 & 54 \\
\hline 7 & 9.5939555 & 9.9636496 & 9.6303058 & 10.3696942 & 53 \\
\hline 8 & 9.5942513 & 9.9635957 & 9.6306556 & 10.3693444 & 52 \\
\hline 9 & 9.5945469 & 9.9635417 & 9.6310052 & 10.3689948 & 51 \\
\hline 10 & 9.5948422 & 9.9634877 & 9.6313545 & 10.3686455 & 50 \\
\hline 11 & 9.5951373 & 9.9634336 & 9.6317037 & 10.3682963 & 49 \\
\hline 12 & 9.5954322 & 9.9633795 & 9.6320527 & 10.3679473 & 48 \\
\hline 13 & 9.5957268 & 9.9633253 & 9.6324015 & 10.3675985 & 47 \\
\hline 14 & 9.5960212 & 9.9632711 & 9.6327501 & 10.3672499 & 46 \\
\hline 15 & 9.5963154 & 9.9632168 & 9.6330985 & 10.3669015 & 45 \\
\hline 16 & 9.5966093 & 9.9631625 & 9.6334468 & 10.3665532 & 4 \\
\hline 17 & 9.5969030 & 9.9631082 & 9.6337948 & 10.3662052 & 43 \\
\hline 18 & 9.5971965 & 9.9630538 & 9.6341426 & 10.3658574 & 42 \\
\hline 19 & 9.5974897 & 9.9629994 & 9.6344903 & 10.3655097 & 1 \\
\hline 20 & 9.5977827 & 9.9629449 & 9.6348378 & 10.3651622 & 40 \\
\hline 2 I & 9.5980754 & 9.9628904 & 9.6351850 & 10.3648150 & 39 \\
\hline 22 & 9.5983680 & 9.9628358 & 9.635532 I & 10.3644679 & 38 \\
\hline 23 & 9.5986602 & 9.9627812 & 9.6358790 & 10.3641210 & 37 \\
\hline 24 & 9.5989523 & 9.9627266 & 9.6362257 & 10.3637743 & 36 \\
\hline 25 & 9.599244. \({ }^{\text {I }}\) & 9.9626719 & 9.6365722 & 10.3634278 & 35 \\
\hline 26 & 9.5995357 & 9.9626172 & 9.6369185 & 10.3630815 & 34 \\
\hline 27 & 9.5998270 & 9.9625624 & 9.6372646 & 10.3627354 & 33 \\
\hline 28 & 9.6001181 & 9.96250\%6 & 9.6376106 & 10.3623894 & 32 \\
\hline 29 & 9.6004090 & 9.9624527 & 9.6379563. & 10.3620437 & 31 \\
\hline 30 & 9.6006997. & 9.9623978 & 9.6383019. & 10.3616981 & 30 \\
\hline & & & & Tang. 66 & M \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\frac{\operatorname{Sin} .24 .}{9.6093133}\) & 9.9607302 & \(\frac{\text { Tang. } 24 .}{} 9.6485831\) & 10.3514169 & 0 \\
\hline & 9.6 & 9.96 & 9.64892 & 10. & \\
\hline 2 & 9.609880 & 9.9606176 & 9.64926 & 10.3507372 & 8 \\
\hline 3 & 9.6101635 & 9.9605612 & 9.6496 & 10.350397 & \\
\hline 4 & 9.6104465 & 9.9605048 & 9.6499417 & 10.3500583 & \\
\hline 5 & 9.6107293 & 9.9604484 & 9.6522809 & 10.3497 !91 & 55 \\
\hline 6 & 9.6 & 9.9603919 & 9. & 10. & \\
\hline 7 & 9.6112941 & 9.9603354 & 9.65095 & 10.3490 & \\
\hline 8 & 9.6155762 & 9.9602788 & 9.6512574 & 10.3487026 & \\
\hline 9 & 9.6118580 & 9.9602222 & 9.6516359 & 10.3483641 & 51 \\
\hline 10 & 9.6121397 & 9.9601655 & 9.6519742 & 10.3480258 & O \\
\hline 11 & 9. & & 9.6 & & 9 \\
\hline 12 & 9.6127023 & 9.9600520 & 9.652650 & 10.3473497 & \\
\hline 13 & 9.6129833 & 9.9599952 & 9.652988 I & 10.3470119 & \\
\hline 14 & 9.6132641 & 9.95.99384 & 9.6533257 & 10.3466743 & 46 \\
\hline 15 & 9.6135446 & 9.9598815 & 9.6536631 & 10.3463369 & \\
\hline 16 & 9.6138250 & 9.9598246 & 9.65 & & \\
\hline 17 & 9.6141051 & 9.9597676 & 9.6543375 & 12.3456625 & 43 \\
\hline 18 & 9.6143850 & 9.9597106 & 9.6546744 & 10.3453256 & 42 \\
\hline 19 & 9.6146647 & 9.9596535 & 9.6550112 & 10.3449888 & \\
\hline 20 & 9.6149441 & 9.9595964 & 9.6553477 & 10.3446523 & \\
\hline 21 & & & 9.6556841 & 10.3443 .159 & \\
\hline 22 & 9.6155024 & 9.9594821 & 9.6560204 & 10.3439796 & \\
\hline 23 & 9.615781 & 9.9594248 & 9.6563564 & 10.3436436 & \\
\hline 24 & 9.6160598 & 9.9593675 & 9.6566923 & 10.3433077 & 6 \\
\hline 25 & 9.6163382 & 9.9593102 & 9.6570280 & 10.3429720 & 5 \\
\hline 26 & 9.6166164 & 9.9592528 & 9.6573636 & 10.3426364 & \\
\hline & 9.6168944 & 9.9591954 & 9.6576989 & 10.3423011 & 33 \\
\hline 28 & 9.6171721 & 9.9591380 & 9:6580341 & 10.3419659 & 32 \\
\hline 29 & 9.6174496 & 9.9590805 & 9.6583692 & 10.3416308 & \\
\hline 30 & 9.6177270 & 9.9590229 & 9.6587041 & 10.3412960 & 0 \\
\hline & & & & Tang. 6 & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & Sin. 24. & & Tang. 24. & & \\
\hline 30 & 9.6177270 & 9.9590299 & 9.6587041 & 10.3412960 & 30 \\
\hline 31 & 9.6180041 & 9.9589653 & 9.6590387 & 10.3409613 & 29 \\
\hline 32 & 9.6182809 & 9.9589077 & 9.6593733 & 10.3406267 & 28 \\
\hline 33 & 9.6185576 & 9.9588500 & 9.6597076 & 10.3402924 & 27 \\
\hline 34 & 9.6188341 & 9.9587923 & 9.6600418 & 10.3399582 & 26 \\
\hline 35 & 9.6191103 & 9.9587345 & 9.6603758 & 10.3396242 & 25 \\
\hline 36 & 9.6193864 & 9.9586767 & 9.6607097 & 10.3392903 & 24 \\
\hline & 0.6196622 & 9.9586188 & 9.6610434 & 10.3389566 & 23 \\
\hline 38 & 9.6199378 & 9.9585609 & 9.6613769 & 10.3386231 & 22 \\
\hline 39 & 9.6202132 & 9.9585030 & 9.6617103 & 10.3382897 & 21 \\
\hline 40 & 9.6204884 & 9.9584450 & 9.6620434 & 10.3379566 & 20 \\
\hline & & & 9.6623765 & 10.3376235 & 19 \\
\hline 42 & 9.621 .0382 & 9.9583288 & 9.6627093 & 10.337290 & 18 \\
\hline 43 & 9.6213127 & 9.9582707 & 9.6630420 & 10.3369580 & 17 \\
\hline 44 & 9.6215871 & 9.9582125 & 9.6633745 & 10.3366255 & 16 \\
\hline 45 & 9.6218612 & 9.9581543 & 9.6637069 & 10.336293 I & IS \\
\hline & & 9.9580961 & 9.664039.1 & 10.3359609 & 14 \\
\hline & 9.6224088 & 9.9580378 & 9.6643711 & 10.3356289 & 13 \\
\hline 48 & 9.6226824 & 9.95797.9.4 & 0.6647030 & 10.3352970 & 12 \\
\hline 49 & 9.6229557 & 9.9579210 & 9.6650346 & \[
10.3349654
\] & 110 \\
\hline 50 & 9.6232287 & 9.9578626 & 9.0653602 & 10.3340338 & 1 \\
\hline & 9.6235016 & 9.9578041 & 9.6656975 & 10:334.3025 & \\
\hline 52 & 9.6237743 & 9.9577456 & 9.6660288 & 10.3339712 & \\
\hline 53 & 9.6240468 & 9.9576870 & 9.6663598 & 10.33.36402 & 7 \\
\hline 54 & 9.6243190 & 9.9576284 & 9.6666907 & 10.3333093 & \\
\hline 55 & 9:6245911 & 9.9575697 & 9.6070214 & 10.3329786 & 5 \\
\hline & 9.6248629 & 9.9575110 & 9.6673519 & 10.3326481 & \\
\hline & 9.62513 .46 & 9.957452 .2 & 9.6676823 & 10.3323177 & \\
\hline 58 & 9.6254060 & 0.9573934 & 2.6680126 & 10.3319874 & \\
\hline 159 & 9.6256772 & 9.9573345 & 9.6683426 & 10.3316574 & \\
\hline 60 & 9.6259483 & 9.9572757 & 9.6686725 & . 331 & \\
\hline & & Sin. 65. & & Tang. 6 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & Sin. 26. & & Tang. 26. & & \\
\hline & 6418420 & 9.9536602 & 9.6881818 & 10.3118182 & 60 \\
\hline & 9.6421009 & 9.9535985 & 9.6885023 & 10.3114977 & 59 \\
\hline 2 & 9.6423596 & 9.9535306 & 9.6888227 & 10.3111773 & \(5^{8}\) \\
\hline 3 & 9.6426182 & 9.9534751 & 9.6891430 & 10.3108570 & 57 \\
\hline 4 & -9.6428765 & 9.9534134 & 9.6894631 & 10.3105369 & 56 \\
\hline 5 & 9.6431347 & 9.9533515 & -9.689783 I & 10.3102169 & 55 \\
\hline 6 & & 9.9532897 & 9.6901030 & 10.3098970 & 4 \\
\hline 7 & 9.6436504 & 9.9532278 & 9.6904226 & 10.3095774 & 53 \\
\hline 8 & 9.6439080 & 9.9531658 & 9.6907422 & 10.3092578 & 52 \\
\hline 9 & 9.6441654 & 9.9531038 & 9.6910616 & 10.3089384 & 51 \\
\hline 10 & 9.6444226 & 9.9530418 & 9.6913809 & 10.3086191 & 50 \\
\hline II & 9.6446796 & 9.9529797 & 9.6917000 & 10.3083000 & 49 \\
\hline 12 & 9.6449365 & 9.9529175 & 9.6920189 & 10.307981 I & 8 \\
\hline 13 & 9.645 I 93 I & 9.9528553 & 9.6923378 & 10.3076622 & 47 \\
\hline 14 & 9.6454496 & 9.952793 I & 9.6926565 & 10.3073435 & 46 \\
\hline 15 & 9.6457058 & 9.9527308 & 9.6929750 & 10.3070250 & 45 \\
\hline 16 & 9.6459619 & 9.9526685 & 9.6932934 & 10.3067066 & 44 \\
\hline & 9.6462178 & 9.95 26061 & 9.6936117 & 10.3063883 & 43 \\
\hline 18 & 9.6464735 & 9.9525437 & 9.6939298 & 10.3060702 & 42 \\
\hline 19 & 9.6467290 & 9.9524813 & 9.6932478 & 10.3057522 & 41 \\
\hline 20 & 9.6469844 & 9.9524188 & 9.6945656 & 10.3054344 & 40 \\
\hline 2 I & 9.6472395 & 9.9523562 & 9.6948833 & 10.3051167 & 39 \\
\hline 22 & 9.6474945 & \[
9.9522936
\] & 9.6952009. & 10.3047991 & 38 \\
\hline 23 & \(9.647749^{2}\) & 9.9522310 & 9.6955183 & 10.3044817 & 37 \\
\hline & 9.6480038 & 9.9521683 & 9.6958355 & 10.3041645 & 36 \\
\hline 25 & 9.6482582 & 9.9521055 & 9.6961527 & 10.3038473 & 35 \\
\hline & 9.6485124 & 9.9520428 & 9.6964697 & 10.3035303 & 34 \\
\hline 27 & 9.6487665 & 9.9519799 & 9.6967865. & 10.3032135 & 33 \\
\hline 28 & \(9: 6490203\) & 9.9519171 & 9.6971032 & 10.3028968 & 32 \\
\hline 29 & 9.6492740 & 9.9518541 & 9.6974198 & 10.3025802 & 31 \\
\hline 30 & 9.6495274 & 9.9517912 & 9.69773 .63 & 12.3022637 & 30 \\
\hline & & Sin. 63. & & Tang 63. & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\frac{\mathrm{Mf}}{-1}\) & & 9. & \(\frac{7 \text { ang. } 26 .}{9.6977363}\) & 022 & 0 \\
\hline & & 9. & 9.6 & 10.3019474 & 29 \\
\hline & 9.6500338 & 9.9516651 & 9.698368 & 10313 & 28 \\
\hline & 9.6502868 & 9.9516020 & 9.6986847 & 10.3013153 & 27 \\
\hline & 9.6505395 & 9.9515389 & 9.6990006 & 10.3009294 & 26 \\
\hline 35 & 9.6507920 & 9.9514757 & 9.69931 .64 & 10.3006836 & 5. \\
\hline & 9.6510444 & 9.9 & 9.6 & 10.3003680 & 24 \\
\hline 37 & 9.6512966 & 9.9513492 & 9.6999474 & 10.3000526 & 23 \\
\hline 38 & 9.6515486 & 9.9512858 & 9.7 & 10.299737 .2 & 22 \\
\hline 39 & 9.6518034 & 9.9512224 & 9.700 & 10.2994220 & 1 \\
\hline 40 & 9.6520521 & 9.9511590 & 9.700893 & 10.2991070 & 20 \\
\hline & 9.65 & & 9. & 10.2987920 & 9 \\
\hline & 9.6525548 & 9.9510320 & 9.7015227 & 10.2984773 & 8 \\
\hline & 9.6528059 & 9.9509685 & 9.7018374 & 10.2981626 & 17 \\
\hline & 9.6530568 & 9.9509049 & 9.7021519 & 10.2978481 & 16 \\
\hline 45 & 9.653307 .5 & 9.9508412 & 9.7024663 & .297533.7 & 5 \\
\hline 46 & 9.6535581 & & 9.7027805 & - & 14 \\
\hline 47 & 9.6538084 & 9.9507138 & 9.7030946 & r0.296905.4 & 13 \\
\hline 48 & 9.6540586 & 9.9506500 & 9.7034086 & 10.2965914 & \\
\hline 49 & 9.6543086 & 9.9505861. & 9.7.037225 & & 1 \\
\hline 50 & 9.6545584 & 9.9505223 & 9.7040362 & .10.2959638 & 1 \\
\hline & 9.6548081 & 9.9504583 & & & \\
\hline 52 & 9.655057 .5 & 9.9503 .944 & 9.7046632 & 10.2953368 & 8 \\
\hline & 9.6553068 & 9.9503303 & 9.7049765 & \(10.29,5023.5\) & 7 \\
\hline 54 & 9.6555559 & 9.9502663 & 9.7052897 & 10.2947103 & 6 \\
\hline 55 & 9.6558048 & 9.9502022 & 9.7056027 & 10.2943973 & 5 \\
\hline 56 & 9.6560536 & 9.9501380 & 9.7059156 & 10.2940844 & 4 \\
\hline 57 & 9.656302 .1 & 9.9500738 & 9.7062284 & 10.2937716 & 3 \\
\hline 58 & 9.6565505 & 9.9500095 & 9.7065410 & \(10.293459^{\circ}\) & 2 \\
\hline 59 & 9.6567987 & 9.94.9945 \({ }^{2}\) & 9.7068535 & & + \\
\hline 60' & 9.6570468 & 9.9498809 & 9.7071659 & I & \(\bigcirc\) \\
\hline & & & & Tang. \(63^{2}\). & M \\
\hline
\end{tabular}

Hhhhh
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & & & & & \\
\hline 0 & 9.6570 & 9.9498809 & 9. & 4 I & 60 \\
\hline 1 & 9.657294 & 9.9 & 9.7074 & 10.2925 & 9 \\
\hline 2 & 9.6575423 & 9.949752 I & 9.7077902 & 10.2922098 & 58 \\
\hline 3 & 9.6577898 & 9.9496876 & 9.7081022 & 10.2918978 & 57 \\
\hline 4 & 9.6580371 & 9.9496230 & 9.7084141 & 10.2915859 & 56 \\
\hline 5 & 9.6582842 & 9.9495585 & 9.7087258 & 10.2912742 & 55 \\
\hline 6 & 9.6 & 9. & 9.70 & 10.2909626 & 54 \\
\hline 7 & 9.6587780 & 9.9494293 & 9.7093488 & 10.2906512 & 53 \\
\hline 8 & 9.6590246 & 9.9493645 & 9.7096601 & 10.2903399 & 52 \\
\hline 9 & 9.6592710 & 9.9492997 & 9.7099713 & 10.2900287 & 51 \\
\hline 10 & 9.6595173 & 9.9492349 & 9.7102824 & 10. & 50 \\
\hline & 9.65 & 9.9491700 & 9.710 & & 析 \\
\hline & 9.6600 & 9.9491051 & 9.7109041 & 10.2890959 & 48 \\
\hline & 9.6602550 & 9.9490402 & 9.71 P2148 & 10.2887852 & 47 \\
\hline & 9.6605005 & 9.9489752 & 9.7115254 & 10.2884746 & 46 \\
\hline 15 & 9.6607459 & 9.9489101 & 9.7118358 & 10.2881642 & 45 \\
\hline & & & 9.7121461 & 10.2 & 44 \\
\hline & 9.6612 & 9.9487799 & 9.7124562 & IC. 2875438 & 43 \\
\hline 18 & 9.6614810 & 9.9487147. & 9.7127662 & 10.2872338 & 42 \\
\hline 19 & 9.6617257 & 9.9486495 & 9.713 .0761. & 10.286523 .9 & 41 \\
\hline 20 & 9.6619701 & 9.9485842 & 9.7133859 & 10.286614 .1 & 0 \\
\hline & & 9.948 & & 10.2863044 & 39 \\
\hline 22 & 9.662458 & 9.94845,35 & 9.7140051. & 10.2859949 & 38 \\
\hline 23 & 9.6627026 & 9.948388 I . & 9.7143 & 10.2856855 & 37 \\
\hline 3 & 9.6629464 & 9.9483227 & 9.7146237 & 10.2853763 & 36 \\
\hline 25 & 9.6631900 & 9.9482572 & 9.7149329. & 10.2850671 & 35 \\
\hline 26 & 9.6 & 9.9481916 & 9.715241 & 10.2847581 & 34 \\
\hline 27 & 9.6636768 & 9.9481260 & 9.7155508 & 10.2844492 & 33 \\
\hline 128 & 9.6639199 & 9.9480604 & 9.7158595 & 10.2841405 & 32 \\
\hline 29 & 9.6641628 & 9.9479947. & 9.7161682 & 10.2838318 & 3.1 \\
\hline 30 & 9.6644056 & 9.947928 & 9.7164767 & 10.2835233 & 30 \\
\hline & & Sin. 62. & & Tang. 62 & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & \(\frac{\operatorname{Sin} 27}{9.6644056}\) & 9.9 & \(\frac{\text { Tang. } 27}{9.7164767}\) & &) \\
\hline & 9.664 & 9.947863 I & 9.71678 & 10.2832149 & I \\
\hline & 9.6648906 & 9.9477973 & 9.7170933 & 10.2829067 & 8 \\
\hline 33 & 9.6651329 & 9.9477314 & 9.7174014 & 10.2825986 & 27 \\
\hline & 9.6653749 & 9.9476655 & 9.7177094 & 10.2822906 & 26 \\
\hline [& 9.6756168 & 9.9475995 & 9.7180173 & 10.2819827 & 25 \\
\hline 36 & 9.6 & & 9.718 & & 24 \\
\hline & 9.6661001 & 9.9474674 & 9.7186327 & 10.2813673 & 23 \\
\hline 38 & 9.6663415 & 9.9474013 & 9.7189402 & 10.2810598 & 22 \\
\hline 39 & 9.6665828 & 9.9473352 & 9.7192476 & 10.2807524 & 1 \\
\hline 40 & 9.6668238 & 9.9472689 & 9.7195549 & 10.280445 I & 20 \\
\hline & 9.6670647 & 9.9472027 & 9.719 & 0 & 9 \\
\hline 42 & 9.6673054 & 9.9471364 & 9.7201690 & 10.2798309 & 18 \\
\hline 4 & 9.6675459 & 9.9470700 & 9.7204759 & 10.2795241 & , \\
\hline & 9.6677863 & 9.9470036 & 9.7207827 & 10.2792173 & 6 \\
\hline 45 & 9.6680265 & 9.9469372 & 9.7210893 & 10.2789107 & 5 \\
\hline 46 & 9.6682665 & & 9.7213958 & 10.2786042 & 4 \\
\hline 47 & 9.6685064 & 9.9468042 & 9.7217022 & , 10.2782978 & 13 \\
\hline 48 & 9.6687461 & 9.9467376 & 9.7220085 & 10.2779915 & \\
\hline 49 & 9.6689856 & 9.9466710 & 9.7223147 & 10.2776853 & \\
\hline 50 & 9.6692250 & 9.9466043 & 9.7226207 & 10.2773793 & \\
\hline 51 & 9.6694642 & 9.9465376 & 9.7229266 & 10.2770734 & 91 \\
\hline \()^{2}\) & 9.6697032 & 9.9464708 & 9.7232324 & 10.2767676 & 8 \\
\hline 53 & 9.6699420 & 9.9464040 & 9.7235381 & 10.2764619 & \\
\hline 54 & 9.6701807 & 9.9463371 & 9.7238436 & & , \\
\hline 55 & 9.6704192 & 9.9462702 & 9.7241490 & .2758510 & 5 \\
\hline 56 & 9.6706576 & 9.9462032 & 9.7244543 & 10.2755457 & 4 \\
\hline 57 & 9.6708958 & 9.9461362 & 9.7247595 & 10.2752405 & 3 \\
\hline 58 & 9.6711338 & 9.9.450692 & 9.7250646 & i 0.2749354 & 2 \\
\hline S & 9.6713716 & 9.946002 I & 9.7253695 & 10.2746305 & 1 \\
\hline 60 & 9.6716093 & 9.9459349 & 9.7256744 & 10.2743256 & , \\
\hline & & Sir. 62. & & ang. & M \\
\hline
\end{tabular}

Hhhh 2
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Sin. 28. & & Tang. 28. & & \\
\hline \(\bigcirc\) & 0.6716093 & 9.9459349 & 9.7256744 & 10.2743256 & 60 \\
\hline 1 & 9.6718 & 9.9458677 & 9.725979 & 10.2740209 & 59 \\
\hline 2 & 0.6720841 & 9.9458005 & 9.7262837 & 10.2737163 & 58 \\
\hline 3 & 9.6723213 & 9.9457332. & 9.7265881 & 10.2734119 & 57 \\
\hline 4 & 9.6725583 & 9.9456659 & 9.7268925 & 10.2731075 & 5.6 \\
\hline 5 & \(9.672795^{2}\) & 9.9455985 & 9.7.271967 & 10.2728033 & 55 \\
\hline 6 & 9.6 & 9. & & & \\
\hline 7 & 9.6732684 & 9.9454636 & 9.7278048 & 10.2721952 & 53 \\
\hline 8 & 9.6735047 & 9.9453960 & 9.728108 & 10.2718913 & \(5{ }^{2}\) \\
\hline 9 & 9.6737409 & 9.9453285 & 9.7284124 & 10.2715876 & 51 \\
\hline 10 & 0.6739769 & 9.9452609. & 9.7287161 & 10.2712839 & 50 \\
\hline & 9.6742 1 & & 9.7290196 & 10.2709804 & \\
\hline 12 & 0.6744485 & 9.9451255 & 9.7293230. & 10.2706770 & 4 \\
\hline 13 & 9.6746840 & 9.9450577. & 9.7296263 & 10.2703737 & 47 \\
\hline 14 & 9.6749194 & 9.9449899 & 9.7299295 & 10.2700705 & 6 \\
\hline 15 & 9.6751546 & 9.9449220 & 9.7302325 & 10.2697675 & 5 \\
\hline 16 & 9.67 & & 9.73 & & 44 \\
\hline & 9.6756245 & 9.9447862 & 9.7308383 & 10.2691617 & 4 \\
\hline 18 & 9.6758592 & 9.9447 182 & 9.7311410 & 10.2658590 & 42 \\
\hline & 9.6760937 & 9.9446501 & 9.7314436 & 10.2685564 & \\
\hline 20 & 9.6763281 & 9.944582 I & 9.7317460 & 10.2682540 & 0 \\
\hline & & 39 & 9.7320484 & 0.26795 & \\
\hline 22 & 9.6767963 & 9.9444457 & 9.7323506 & 10.2676494 & 8 \\
\hline & 9.6770302 & 9.9443775 & 9.7326527 & 10.2673473 & 37 \\
\hline & 9.6772640, & 9.9443092 & 9.7329547 & 10.2670453 & 36 \\
\hline 25 & 9.6774975 & 9.9442409 & 9.7332566 & 10.2667434 & \\
\hline & 0.6777309 & 9.9441725 & 9.7335584 & 10.2664 & 34 \\
\hline & 9.6779642 & 9.9441041 & 9.7338601 & 10.2661399 & 33 \\
\hline 28 & 9.6781972 & 9.9440356 & 9.734161 .6 & 10.2658 & 32 \\
\hline & 9.6784301 & 9.9439671 & 9.7344631 & 10.2655369 & \\
\hline 30 & 9.6786629 & 9.9438985 & 9.7347644 & 10.2652356 & 0 \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & Sin. 28. & & Tang. 28. & & \\
\hline 30 & 9.6786629 & 9.94389 .85 & 9.734764 .4 & 10.2652356 & 30 \\
\hline 31 & 9.6788955 & 9.9438299 & 0.7350656 & 10.2649344 & 29 \\
\hline 32 & 9.6791279 & 9.9437612 & 0.7353667 & 10.26463 & 28 \\
\hline 33 & 9.6793603 & 9.9436925 & 9.7356677 & 10.2643323 & 27 \\
\hline 34 & 9.6795923 & 9.9436238 & 9.7359085 & 10.2640315 & 26 \\
\hline 35 & 9.6798243 & 9.9435549 & 9.7362693 & 10.2637307 & 25 \\
\hline & 9.6800560 & 9.9434861 & 9.7365699 & 10.2634301 & 24 \\
\hline 37 & 9.6802877. & 9.9434172 & 9.7368705 & 10.2631295 & 23 \\
\hline 138 & 9.6805191 & 9.9433482 & 9.7371709 & 10.2628291 & 22 \\
\hline 39 & 0.6807504 & 9.9432792 & 9.7374712 & 10.2625288 & 21 \\
\hline 40 & 9.6809816 & 9.9432102 & 0.7377714 & 10.2622286 & 20 \\
\hline 4 I & 9.6812126 & 9.943141 1 & 9.7380715 & 10.2619285 & 19 \\
\hline 42 & 9.6814434 & 9.9430720 & 9.7383714 & 616286 & \\
\hline 43 & 9.6816741 & 9.9430028 & 9.7386713 & 10.2613 .287 & 17 \\
\hline 44 & 9,6819046 & 9.9429335 & 9.7389710 & 10.2610290 & 16 \\
\hline 45 & 9.6821349 & 9.9428643 & 9.7392707 & 10.2607293 & 15 \\
\hline & 9.6823651 & 9.9427949 & 9.7395702 & 10.2604298 & 14 \\
\hline & 9.6825952 & \[
9.9427255
\] & 9.7398696 & 10.2601304 & 13 \\
\hline 48 & 9.68288250 & 9.9426561 & 9.7401689 & 10.2598311 & 12 \\
\hline & 9.6830548 & 9.9425866 & 9.7404681 & 10.25953119 & 1 I \\
\hline \[
59
\] & 9.6832843 & 9.9425171 & 9.7407572 & 10.25923 .28 & 10 \\
\hline & 9.6835137 & 9.9424476 & 9.7410662 & 10.258338 & 9 \\
\hline 52 & 9.6837430 & 9.9423779. & \(9.7413650^{\circ}\) & 10.2586350 & \\
\hline 53 & 9.6839720 & 0.9423083 & \[
9.7416638
\] & \[
10.2583362
\] & 7 \\
\hline 54 & 9.6842010 & \[
2.9422386
\] & 9.7419624,
0.7422609 & \[
\begin{aligned}
& 10.2580376 \\
& 1 c .2577391
\end{aligned}
\] & 5 \\
\hline 55 & 9.6844.297. & 9.9421688 & 9.7422609 & 1c.2)77391 & 5 \\
\hline & 0.6845583 & 9.9420990 & 9.7425594 & 10.2574406 & \\
\hline & 9.6848868 & 9.942029 & 9.7428577 & \[
10.2571423
\] & \\
\hline 158 & 0.6851151 & 9.0.419592 & 9.7431559 & \[
10.2568441
\] & \\
\hline 59 & \[
9.68534 .32
\] & \[
9.9418893
\] & 9.7434540
9.7437520 & \[
\begin{aligned}
& 10.2505400 \\
& 10.2562480
\end{aligned}
\] & \\
\hline 60 & \[
9.685 .5712
\] & 9.9418193 & 9.7437520 & \(\underline{ }\) & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\frac{\operatorname{Sin} .29}{9.6855712}\) & 9.9418193 & \[
\frac{\text { Tang. } 29 .}{9.7437520}
\] & 10.2562480 & 60 \\
\hline I & 9.6857991 & 9.9417492 & 9.7440499 & 10.2559501 & 59 \\
\hline 2 & 9.6860267 & 9.9416791 & 9.7443476 & 10.2556524 & 58 \\
\hline 3 & 9.6862542 & 9.9416090 & 9.7446453 & 10.2553547 & 57 \\
\hline 4 & 9.6864816 & 9.9415388 & 9.7449428 & 10.2550572 & 56 \\
\hline 5 & 9.6867088 & 9.9414685 & 9.7452403 & 10.2547597 & 55 \\
\hline 6 & 9.6869359 & 9.9413982 & 9.7455376 & 10.2544624 & 54 \\
\hline 7 & 9.6871628 & 9.9413279 & 9.7458349 & 10.2541651 & 53 \\
\hline 8 & 9.6873895 & 9.9412575 & 9.7461320 & 10.2538680 & 52 \\
\hline 9 & 9.6876161 & 9.9411871 & 9.7464290 & 10.2535710 & 51 \\
\hline & 9.6878425 & 9.9411166 & 9.7467259 & 10.2532741 & 50 \\
\hline II & 9.6880688 & 9.9410461 & 9.7470227 & 10.2529773 & 49 \\
\hline 12 & 9.6882949 & 9.9409755 & 9.7473194 & 10.2526806 & 48 \\
\hline 13 & 9.6885209 & 9.9409048 & 9.7476160 & 10.2523840 & 47 \\
\hline 14 & 9.6887467 & 9.9408342 & 9.7479125 & 10.2520875 & 46 \\
\hline 15 & 9.6889723 & 9.9407634 & 9.7482089 & 10.2517911 & 45 \\
\hline & 9.6891978 & 9.9406927 & 9.7485052 & 10.2514948 & 44 \\
\hline 17 & 9.6894232 & 9.9406219 & 9.7488013 & \(10.2511987^{\circ}\) & 43 \\
\hline 18 & 9.6896484 & 9.9405510 & 9.7490974 & 10.2509026 & 42 \\
\hline 19 & 9.6898734 & 9.940480 I & 9.7493934 & 10.2506066 & 41 \\
\hline 20 & 9.6900983 & 9.9404091 & 9.7496892 & 10.2503-108 & 40 \\
\hline & 9.6903231 & 9.940338 I & 9.7499850 & 10.2500150 & 39 \\
\hline 22 & 9.6905476 & 9.9402670 & 9.7502806 & 10.2497194 & 38 \\
\hline 23 & 9.6907721 & 9.9401959 & 9.7505762 & 10.2494238 & 37 \\
\hline 24 & 9.6909964 & 9.9401248 & 9.7508716 & 10.2491284 & 36 \\
\hline 25 & 9.6912205 & 9.9400535 & 9.7511669 & 10.248833 I & 35 \\
\hline 26 & 9.6914445 & 9.9399823 & 9.7514622 & 10.2485378 & 34 \\
\hline 27 & 9.6916683 & 9.9399110 & 9.7517573 & 10.2482427 & 33 \\
\hline 28 & 9.6918919 & 9.9398396 & 9.7520523 & 10.2479477 & 32 \\
\hline 29 & 9.6921155 & 9.9397682 & 9.7523472 & 10.2476528 & 31 \\
\hline & \[
9.6923388
\] & \(\frac{9.9396968}{\operatorname{Sin} 60}\) & 9.7526420 & \(\frac{12.2473580}{\text { Tang 60. }}\) & \begin{tabular}{|c}
30 \\
\hline M
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & Sin. & & & & \\
\hline 3 & 9.69233 & 9.9396 & & 10.2473580 & 30 \\
\hline & 9.6 & 9. & 9.7529368 & 10.2470632 & 2 \\
\hline & 9.692785 & 9.9395537 & 9.7532314 & 10.2467686 & 28 \\
\hline 33 & 9.6930080 & 9.939+82I & 9.7535259 & 10.2464741 & 27 \\
\hline 34 & 9.6932308 & 9.9394105 & 9.7538203 & 10.2461797 & 26 \\
\hline 35 & 9.6934534 & 9.9393388 & 9.7541146 & 10.2458854 & 25 \\
\hline 36 & & 9.939267 I & 9. & 10.2455912 & 24 \\
\hline 37 & 9.693898 & 9.9391953 & 9.7547029 & 10.2452971 & 23 \\
\hline 38 & 9.6941203 & 9.9391234 & 9.7549969 & 10.2450031 & 22 \\
\hline 39 & 9.6943423 & 9.9390515 & 9.75 & 10.2447092 & 21 \\
\hline 40 & 9.6945642 & 9.9389796 & 9.7555846 & 10.2444154 & 20 \\
\hline 41 & & & 9.7558783 & & 19 \\
\hline 42 & 9.69 & 9.9388356 & 9.7561718 & 10.2438282 & 18 \\
\hline 43 & 9.695228 & 9.9387635 & 9.7564653 & 10.2435347 & 17 \\
\hline 44 & 9.6954501 & 9.9386914 & 9.7567587 & 10.2432413 & 16 \\
\hline 45 & 9.6956712 & 9.9386192 & 9.7570520 & 10.2429480 & 15 \\
\hline 46 & 9.6958922 & 9.9385470 & & 48 & 4 \\
\hline 47 & 9.6961130 & 9.9384747 & \[
9.7576383
\] & 10.2423617 & 13 \\
\hline 4 & 9.696333 .6 & 9.9384024 & \[
9.7579313
\] & IC. 2420687 & 2 \\
\hline & 9.6965541 & 9.9383300 & 9.7582242 & & 1 \\
\hline 50 & 9.6967745 & 9.9382576 & 9.7585170 & 10.2414830 & 10 \\
\hline & & & 9.7588096 & & \\
\hline 52 & 9.6972148 & 9.938 1 126 & 9.7591022 & 10.2408978 & 8 \\
\hline 53 & 9.6974347 & 9.9380400 & 9.7593947 & 10.2406053 & 7 \\
\hline 54 & 9.6976545 & 9.9379674 & 9.759687 I & & 6 \\
\hline 55 & 9.6978741 & 9.9378947 & 9.7599794 & 10.2400206 & 5 \\
\hline 56 & 9.6980936 & 9.9378220 & & 10.2397284 & 4 \\
\hline 57 & 9.6983129 & 9.9377492 & 9.7605637 & \[
10.2394363
\] & 3 \\
\hline 58 & 9.698532 I & 9.9376764 & 9.7608557. & 10.2391443 & 2 \\
\hline 159 & 9.69875 II & 9.937603 .5 & 9.7611476 & & I \\
\hline 60 & 9.6989700 & 9.9378506 & 9.7614394 & 10.2385606 & - \\
\hline & & & & Tang. 60. & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline - & \(\frac{\operatorname{Sin} 30}{9.7054689}\) & 9.9353204 & \(\frac{\text { Tang. } 30}{9.7701485}\) & 10.2298515 & 0 \\
\hline 3 I & 9.7056833 & 9.9352459 & 9.7704373 & 10.2295627 & 291 \\
\hline 3 & 9.7058075 & 9.9351715 & 9.7707261 & 10.2292739 & 28 \\
\hline & 9.7061116 & 9.9350969 & 9.7710147 & 10.2289853 & 27 \\
\hline & 9.7063256 & 9.9350223 & 9.7713033 & 10.2286967 & 26 \\
\hline 35 & 9.7065394 & 9.9349477 & 9.7715917 & 10.2284082 & 25 \\
\hline & 9.7067531 & 9.9348730 & 9.7718801 & 10.2281199 & \\
\hline 37 & 9.7069667 & 9.9347983 & 9.7721684 & 10.2278316 & 23 \\
\hline 38 & 9.7071801 & 9.9347235 & 9.7724566 & 10.2275434 & 22 \\
\hline 3 & 9.7093933 & 9.9346486 & 9.7727447 & 10.2272553 & 21 \\
\hline 40 & 9.7076064 & 9.9345738 & 9.7730327 & 10.2269673 & 20 \\
\hline & 9.7078194 & 9.9344988 & 9.7733206 & \[
10.2266794
\] & 19 \\
\hline 42 & 9.7080323 & 9.9344238 & 9.7736084 & 10.2263916 & 8 \\
\hline 4 & 9.7082450 & 9.9343488 & 9.7738961 & 10.2261039 & 17 \\
\hline 44 & 9.7084575 & 9.9342737 & 9.7741838 & 10.2258162 & 16 \\
\hline 45 & 9.7086699 & 9.9341986 & 9.7744713 & 10.2255287 & I 5 \\
\hline 4 & 9.7088822 & 1234 & 9.7747588 & 10.2252412 & 14 \\
\hline 47 & 9.7090943 & 9.9340482 & 9.7750462 & 10.2249538 & 13 \\
\hline 48 & 9.7093063 & 9.9339729 & 9.7753334 & 10.2246666 & 12 \\
\hline & -9.7095 182 & 9.9338976 & 9.7756206 & 10.2243794 & I I \\
\hline & 9.7097299 & 9.9338222 & 9.7759077 & 10.2240923 & 10 \\
\hline 51 & 9.7099415 & 9.9337467 & 9.7761947 & \[
.2238053
\] & \\
\hline & 9.7101529 & 9.9336713 & 9.7764816 & \[
10.2235184
\] & 8 \\
\hline 53 & 9.7103642 & 9.9335957. & 9.7767685 & \[
10.2232315
\] & 7 \\
\hline 54 & 9.7105753 & 9.9335201 & 9.7770552 & \[
10.2229448
\] & 6 \\
\hline 55 & 9.7107863 & 9.93344 & 9.7773418 & 10.2226582 &) \\
\hline & & 36 & 762 & 3716 & \\
\hline & 971 & 9.9333688
0.9332931 & & \[
20351
\] & 3 \\
\hline 57 & 9.71 I 2080 & 9.9332173 & & & 2 \\
\hline 158 & 9.7114186 & 9.9332173 & \[
9.7782012
\] & & 2 \\
\hline 159 & 9.7116290 & 9.9331415 & 9.7784875 & \[
10.2215125
\] & 1 \\
\hline 60 & 9.7118393 & 9.9330656 & 9.7787937 & \(10.22 \pm 22\) & 0 \\
\hline & & Sin. 59. & & g. 59 & M \\
\hline
\end{tabular}

Iiili
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Sin. 3 I. & & & & \\
\hline \(\bigcirc\) & 9.7118393 & 9.9330656 & 9.7787737 & 10.2212262 & 60 \\
\hline 1 & & 9.9329897 & 9.7 & 10.2209401 & \\
\hline 2 & 9.7122596 & 9.9329137 & 9.7793459 & 10.2206541 & 58 \\
\hline 3 & 9.7124695 & 9.9328376 & 9.7796318 & 10.2203683 & 57 \\
\hline 4 & 9.7126792 & 9.9327616 & 0.7799177 & 10.2200823 & 56 \\
\hline 5 & 9.7128889 & 0.9326854 & 9.7.802034 & 10.2197966 & 55 \\
\hline 6 & 9. & 9.9 & 9. & 10.2195109 & \\
\hline 7 & 9.7133077 & 9.9325330 & 9.7807747 & 10.2192253 & \\
\hline 8 & 9.7135169 & 9.9324567 & 9.7810602 & 10. & 52 \\
\hline 9 & 9.7137260 & 9.9323804 & 9.78 : 34556 & 10.2186544 & 5 \\
\hline 10 & 9.7139349 & 9.9323040 & 9.7815309 & 10.2183691 & 5 \\
\hline 1 I & & 9.9322276 & 9.7819162 & & \\
\hline 12 & 9.714352 & 9.9321511 & 9.7822013 & 10.2177987 & \\
\hline 13 & 9.7145609 & 9.9320746 & 9.7824864. & 10.2175136 & 4 \\
\hline 14 & 9.7147693 & 9.9319980 & 9.7827713 & 10.2172287 & \\
\hline Is & 9.7149776 & 9.9319213 & 9.7830562 & 10.2169438. & 45 \\
\hline \[
\frac{1}{16}
\] & & & 9.7833410 & & \\
\hline & 9.7153937 & 9.9317679 & 9.7836258 & 10.2163742 & 43 \\
\hline 18 & 9.7156015 & 9.9316911 & 9.7839164 & 10.2160896 & 42 \\
\hline & 9.7158092 & 9.9316143. & 9.7841949 & 10.2158051 & 1 \\
\hline 20 & 9.7160168 & 9.9315374 & 9.7844794 & 10.2155206 & \\
\hline & & & & 0.2152362 & \\
\hline & 2.716431 & 9.9313835 & 9.785048 I . & 10.2149519 & 8 \\
\hline 23 & 9.7166387 & 9.9313065 & 9.7853323 & 10.2146677 & 37 \\
\hline 24 & 9.7168458 & 9.9312294 & 9.7856164 & 10.2143836 & 析 \\
\hline 25 & 9.7170526 & 9.9311522 & 9.7859004 & 10.21.40996: & 5 \\
\hline 26 & 9.71725 & & 9.78618 .44 & 10.21381 & 34 \\
\hline 27 & 19.71.74660 & 9.9309978 & 9.7864682 & 10.21353 & 33 \\
\hline 28 & 9.7176725 & 9.9309205 & 9.7867 .520 & 10.21324 & 32 \\
\hline 29 & 9.7178789 & 9.9308432 & 9.7870357. & 10.21296 & 31 \\
\hline 30 & \(\underline{9.7180851}\) & 9.9307658 & 9.7873193 & 10.21268 & 0 \\
\hline & & & & g. 5 & M \\
\hline
\end{tabular}

Iiiliz
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Sim. 32. & & Tang. 32. & & \\
\hline 0 & 9. & 9.9284205 & 9.7957 & 10.2042108 & 60 \\
\hline I & 9.72441 & & 9.7960703 & 10.20 & 9 \\
\hline 2 & 9.7246138 & 9.9282625 & 9.7963513 & 10.2036487 & 58 \\
\hline 3 & 9.7248156 & 9.9281834 & 9.7966322 & 10.2033678 & 57 \\
\hline 4 & 9.7250174 & 2.9281043 & 9.7969130 & 10.2030870 & 56 \\
\hline 5 & 9.7252189 & 9.9280251 & 9.7971938 & 10.2028062 & 55 \\
\hline 6 & 9.725420 & 9.9279459 & 9.7974745 & 10.2025255 & 54 \\
\hline 7 & 9.7256217 & 9.9278666 & 9.7977552 & 10.2022449 & 53 \\
\hline 8 & 9.7258229 & 9.9277873 & 9.7980356 & 10:2019644 & 52 \\
\hline 9 & 9.7260240 & 9.9277079 & 9.7983160 & 10.2016840 & 51 \\
\hline 10 & 9.7262249 & 9.9276285 & 9.7985964 & 10.2014036 & . 50 \\
\hline 11 & 9.7264257 & 9.9275490 & 9.7988767 & 10.2011233 & 9 \\
\hline 12 & 9.7266264 & 9.9274695 & 9.7991569 & 10.2008431 & 48 \\
\hline 13 & 9.7268269 & 9.9273899 & 9.7994370 & 10.2 & 47 \\
\hline 14 & 9.7270273 & 9.9273103 & 9.7997170 & 10.2002830 & 46 \\
\hline 15 & 9.7272276 & 9.9272306 & 9.7999970 & 10.2000030 & 45 \\
\hline 15 & 9.7274278 & 9.9271509. & 9.8002 & 10.199723 1 & 4 \\
\hline 17 & 9.7276278 & 9.9270711 & 9.8005567 & IC.I994433 & 43 \\
\hline 18 & 9.7278277 & 9.9269913 & 9.8008365 & 10.1991635 & 42 \\
\hline 19 & 9.7280275 & 9.9269114 & 9.8011161 & 10.1988839 & 4 I \\
\hline 20 & 9.728227 I & 9.9268314 & 9.8013957. & IO.198604.3 & 40 \\
\hline 21 & & 9.926751. & 9.8016752 & IO.I983.248 & . \\
\hline 22 & 9.7286260 & 9.9266714 & 9.8019546 & 10.1980454 & 38 \\
\hline 23 & 9.7288253 & 9.9265913 & 9.8022340 & 10.1977660 & 37 \\
\hline 24 & 9.7290244 & 9.9265112 & 9.8025133 & 10.1974867 & 36 \\
\hline 25 & 9.7292234 & 9.92643: 0 & 9.8027925 & 10.1972075 & 35 \\
\hline 26 & 9.7294223 & 9.9263507 & 9.8030716 & 10.1969 .284 & 34 \\
\hline 27 & 9.7296211 & 9.9262704 & 9.8033506 & 10, & 33 \\
\hline 128 & 9.7298197 & 9.9261901 & 9.8036296 & 10.1963704 & 32 \\
\hline & 9.7300 .82 & 9.9261096 & 9.8039085 & 10.1960915 & 3 \\
\hline 30 & 9.73 .02165 & 9.9260292 & 9.8041873 & 10.1958127 & 30 \\
\hline & & & & Tang. 57. & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & Sin. 32. & & Tang.32. & & \\
\hline 30 & 9.7302165 & 9.9260292 & 9.8041873 & 10.1958127 & 30 \\
\hline & 9.7304148 & 9.9259487 & 9.8044661 & 10.1955339 & 29 \\
\hline 32 & 9.7306129 & 9.9258681 & 9.8047447 & 10.1952553 & 28 \\
\hline 33 & 9.7308109 & 9.9257875 & 9.9050233 & 10.1949767 & 27 \\
\hline 34 & 9.7310087 & 9.9257069 & 9.8053019 & 10.1946981 & 26 \\
\hline 35 & 9.7312064 & 9.9256261 & 9.8055803 & 10.1944197 & 25 \\
\hline 6 & 9.7314040 & 9.9255454 & 9.80 & 10.1941413 & 24 \\
\hline 37 & \[
9.7316015
\] & 9.9254646 & 9.8061370 & 10.1938630 & 23 \\
\hline 38 & 9.7317989 & 9.9253837 & 9.8064 .151 & 10.1935848 & 22 \\
\hline 39 & 9.7319961 & 9.9253028 & 9.8066933 & 10.1933067 & 21 \\
\hline 40 & 9.7321932 & 9.9252218 & 9.8069714 & I0.1930286 & 20 \\
\hline 41 & 9.7323902 & 9.9251408 & S. 807 & 10.1927506 & 19 \\
\hline 42 & 9.7325870 & 9.9250597 & 9.8075273 & 10.1924727 & 18 \\
\hline 43 & \(9.7327837^{\circ}\) & 9.9249786 & 9.8078052 & 10.1921948 & 17 \\
\hline 44 & 9.7329803 & 9.9248974 & 9.8080829 & 10.1919171 & 16 \\
\hline 45 & 9.7331768 & 9.9248161 & 9.8083606 & 10.1916394 & Is \\
\hline & & 9.9247349 & 9.80863 .83 & & 4 \\
\hline 46 & 9.7333731
9.7335693 & 9.92473 .49
9.9246535 & 9.8089158 & \[
10.1910842
\] & 13 \\
\hline 8 & 9.7337654 & 9.9245721 & 9.8091933 & 10.1908067 & 2 \\
\hline & 9.7339614 & 9.9244907 & 9.8094707 & 10.190 .5292 & II \\
\hline 50 & 9.7341572 & 9.9244092 & 9.8097480 & 10.1902520 & 0 \\
\hline & & & & 10.1899747 & \\
\hline 51. & 9.7343529
9.7345485
9.734740 & 9.9243277
9.9242461 & 9.8103025 & 10.1896975 & \\
\hline 52 & 9.7345485
9.7347440 & 9.9242461
9.9241644 & 9.8105796 & IC.1894204 & \\
\hline 5 & \[
\begin{aligned}
& 9.7347440 \\
& 9.7349393
\end{aligned}
\] & \[
9.9240827
\] & 9.8108566 & 10.1891434 & 6 \\
\hline 54 & 9.7349393
9.7351345 & 9.9240010 & 9.8111336 & 10.1888664 & 5 \\
\hline & & & & & \\
\hline 56 & 0.7353296 & 9.923919 .1 & 9.8114105 & 10.1885895 & \\
\hline 57 & 9.7355246 & 9.9238373 & 9.8116873 & 10.1883127 & \\
\hline 58 & 9.7357195 & 9.9237554 & 9.81 I 9641 & 10.1880359 & \\
\hline 59 & 9.735914 I & 9.9236734 & 9.9122408 & 10.1877592
10.1874826 & \\
\hline & 9.7361088 & 9.9235914 & 9.8125174 & 10.1874826 & \\
\hline & & Sin. 57. & & Tang. 5 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Sin. 33. & & Tang. 33. & & \\
\hline 0 & 9.7361088 & 9.9235914 & 9.8125174 & 10.1874826 & 60 \\
\hline & 9.7363 & 9.923509 & & 10.1872061 & 9 \\
\hline 2 & 9.7364976 & 9.9234272 & 9.8130704 & 10.1869296 & 58 \\
\hline 3 & 9.7366918 & 9.9233450 & 9.8133468 & 10.1866532 & 57 \\
\hline 4 & 9.7368859 & 9.9232628 & 9.8136231 & 10.1863769 & 56 \\
\hline 5 & 9.7370799 & 9.923 .865 & 9.8138993 & 10.1861007 & 55 \\
\hline 6 & 9.7372737 & 9.9230982 & 9.8141755 & 10.1858243 & 54 \\
\hline 7 & 9.7374675 & 9.9230158 & 9.8144516 & 10.1855484 & 53 \\
\hline 8 & 9.737661 I & 9.9229334 & 9.8147277 & 10.1852723 & 52 \\
\hline 9 & 9.7378546 & 9.9228509 & 9.8150036 & 10.1849964 & 51 \\
\hline 10 & 9.7380479 & 9.9227684 & 9.8152795 & 10.1847205 & 50 \\
\hline II & 9. & 9.9226858 & 9.8155554 & 10.1844446 & 9 \\
\hline 12 & 9.7384343 & 9.9226032 & 9.8158311 & 10.1841689 & 48 \\
\hline 13 & 9.7386273 & 9.9225205 & 9.8161068 & 10.1838932 & 47 \\
\hline 14 & 9.7388201 & 9.9224377 & 9.8163824 & 10.1836176 & 46 \\
\hline 15 & 9.7390129 & 9.9223549 & 9.8166580 & 10.1833420 & 45 \\
\hline 16 & 9.7392055 & 9.9222721 & 9.8165335 & 10.1830665 & 4 \\
\hline 17 & 9.7393980 & 9.9221891 & 9.8172089 & 10.1827991 & 43 \\
\hline 18 & 9.7395904 & 9.9221061 & 9.8174842 & 10.1825158 & 42 \\
\hline 19 & 9.7397827 & 9.9220232 & 9.8177595 & 10.1822405 & 41 \\
\hline 20 & 9.7399748 & 9.9219401 & 9.8180347 & 10.1819653 & 40 \\
\hline 21 & 9.7401668 & 9.9218570 & 9.8183098 & 10.1816902 & 39 \\
\hline 22 & 9.7403587 & 9.9217738 & 9.8185849 & 10.1814151 & 38 \\
\hline 23 & 9.7405505 & 9.9216906 & 9.8188599 & 10.1811401 & 37 \\
\hline 24 & 9.740742 I & 9.9216073 & 9.8191348 & 10.1808652 & 36 \\
\hline 25 & 9.7409337 & 9.9215240 & 9.8194096 & 10.1805904 & 5 \\
\hline 26 & 9.7411251 & 9.9214406 & 9.8196844 & 10.1803156 & 34 \\
\hline 27 & 9.7413164 & 9.9213572 & 9.8199592 & 10.1800408 & 33 \\
\hline 28 & 9.7415075 & 9.9212737 & 9.8202338 & 10.1797662 & 32 \\
\hline 29 & 9.7416986 & 9.9211902 & 9.8205084 & 10.1794916 & 31 \\
\hline 30 & 9.7418895 & 9.9211066 & 9.8207829 & Iこ.1792171 & 3 \\
\hline & & Sin. 56 & & Tang. 56 & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\overline{\mathrm{M}}\) & Sin. 33. & & Tang. 33. & & \\
\hline 30 & 9.7418895 & 9.92II 1066 & 9.8207829 & 10.1792.171 & 30 \\
\hline 31 & 9.7420803 & 9.9210229 & 9.8210574 & 10.1789426 & 29 \\
\hline 32 & 9.7422710 & 9.9209393 & 9.8213317 & 10.1786683 & 28 \\
\hline 33 & 9.7424616 & 9.9208555 & 9.8216060 & 10.1783940 & 27. \\
\hline 34 & 9.7426520 & 9.9207717 & 9.8218803 & 10.1781197 & 26 \\
\hline 35 & 9.7428423 & 9.9206876 & 9.8221545 & 10.17 .78455 & 25 \\
\hline 36 & 9.7430325 & 9.9206039 & 9.8224286 & 10.1775714 & 24 \\
\hline 37 & 9.7432226 & 9.9205200 & 9.8227026 & 10.1772974 & 23 \\
\hline 38 & 9.7.434126 & 9.9204360 & 9.8229766 & 10.1770234 & 22 \\
\hline 39 & 9.7436024 & 9.9203519 & 9.8232505 & 10.1767495 & 21 \\
\hline 40 & 9.743792I & 9.9202678 & 9.8235244 & 10.1764756 & 20 \\
\hline 4 T & 9.7439817 & 9.9201836 & ¢ 93237981 & 10.1762019 & 19 \\
\hline 42 & 9.7441712 & 9.9200994 & -9.8240719 & 10.1759281 & 18 \\
\hline 43 & 9.7443606 & 9.920015.1 & 9.8243455 & 10.1756545 & 17 \\
\hline 44 & 9.7445498 & 9.9199308 & 9.8246191 & 10.1753809 & 16 \\
\hline 45 & 9.7447390 & 9.9198464 & 9.8248926 & 10.1751074 & Is \\
\hline & 9.7449280 & & 9.8251660 & 10.1748340 & 14 \\
\hline & 9.7451169 & 9.9196775 & 9.8254394 & 10.1745606 & 13 \\
\hline 48 & 9.7453056 & 9.9195929 & 9.8257127 & 10. 1742873 & 12 \\
\hline & 9.7454943 & 9.9195083 & 9.8259860 & 10.1740140 & i \\
\hline 50. & 9.7456828 & 9.9 9.94237 & 9.8262592 & 10.1737408 & 10 \\
\hline & 9.7458712 & 9.9193390. & 9.8265323 & 10.1734677 & 9 \\
\hline 52 & 9.7460595 & 9.9192542 & 9.8268053 & 10.1731947 & \\
\hline 53 & 9.7462477 & 9.9191694. & 9.8270783. & 10.1729217 & 7 \\
\hline 54 & 9.7464358 & 9.9190845. & 9:8273513 & 10.1726487 & 6 \\
\hline 5 & 9.7.466237 & 9.9189996 & 9.827624 .1 & 10.1723759 & 5 \\
\hline & 9.7468115 & 9.9789146 & 9.8278969 & 10.172103 1 & . 4 \\
\hline & \[
9.7469992
\] & \[
9.9188296
\] & 9.8281 .696 & 10.1718304 & \\
\hline 58 & 9.7471868 & 9.9187445 & 9.82844 .23 & 10.1715577 & \\
\hline 59 & 9.7473742 & 9.9186594 & 9.8287149 & 10.1712851 & \\
\hline 60 & 9.7475617 & 9.91857 .42 & 9.8289874 & 10.1720126 & \\
\hline & & \(\operatorname{Sin} .56\). & & Tang. 56. & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\frac{\mathrm{M}}{\mathrm{o}}
\] & \(\frac{\text { Sin. } 34 .}{9.7475617}\) & \(9.9185742^{\circ}\) & \(\frac{\text { Tang. 34. }}{\text { 9.8239874 }}\) & 10.1710126 & 60 \\
\hline & 9.7 & 9.9184890 & 9.8292599 & & 5 \\
\hline 2 & 9.7479360 & 9.9184037 & 9.8295323 & 10:1704677 & 8 \\
\hline 3 & 9.7481230 & 9.9183183 & 9.8298047 & 10.1701953 & 57 \\
\hline 4 & 0.7483099 & 9.9182329 & 9.8300769 & 10.169923I & 6 \\
\hline 5 & 9.7484.967 & 9.9181475 & 9.8303492 & 10.1696508 & 55 \\
\hline 6 & 9.748 & 9.9180620 & 9.8306213 & 10.1693787 & 4 \\
\hline 7 & 9.7488699 & 9.9179764. & 9.8308934 & 10.1691066 & 3 \\
\hline 8 & 9.7490562 & 9.9178908 & 9.8311654 & 10.1688346 & 2 \\
\hline 9 & 9.7492425 & 9.9178051 & 9.8314374 & 10.1685626 & 1 \\
\hline 10 & 9.7494287 & 9.9177194 & 9.8317093 & 10.1 & S \\
\hline II & & 9.9176336 & 9.831981 I & 10.1680189 & 49 \\
\hline 12 & 9.7498007 & 9.9175478 & 9.8322529 & 10.167747 I & 48 \\
\hline 13 & 9.7499866 & 9.9174619 & 9.8325246 & 10.1674754 & 47 \\
\hline 14 & 9.7501723 & 9.9173760 & 9.8327963 & 10.1672037 & 46 \\
\hline 15 & 9.7503579 & 9.9172900 & 9.8330679 & \(\underline{10.1669321}\) & 5 \\
\hline 16 & & & 9.8333394 & 10.1666 & 44 \\
\hline 17 & 9.7507287 & 9.9171179 & 9.8336109 & 10.1663891. & 43 \\
\hline 18 & 9.7509140 & 9.9170317 & 9.8338823 & 10.1661177. & 42 \\
\hline 19 & 9.7510991 & 9.9169453 & 9.8341536 & 10.1658 & 41 \\
\hline 20 & 9.7512842 & 9.9168593 & 9.8344249 & 10.1655 & 40 \\
\hline 21 & 9.751460 & & 9.8346,61 & 10.1653039 & \\
\hline 22 & 9.7516538 & 9.9166866 & 9.8349673 & 10.1650327 & 38 \\
\hline 23 & 9.7518385 & 9.9166002 & 9.8352384 & 10.1647616 & 37 \\
\hline 24 & 9.752023 I & 9.9165137 & 9.8355094 & 10.1644906 & 36 \\
\hline 25 & 9.7522075 & 9.9164272 & 9.8357804 & 10.16421 & 5 \\
\hline 26 & & 9.9163406 & 9.8360513 & 10.1639487 & 34 \\
\hline 27 & \[
9.7525761
\] & 9.9162539 & 9.836322 I . & 10.1636779 & 3.3 \\
\hline 28 & 9.7527603 & 9.9161673 & 9.8365929 & \(10.163407 \pm\) & 2 \\
\hline 129 & 9.7529442 & 9.9160805 & 9.8368636 & 10.1631364 & 3 I \\
\hline 30 & 9.7531280 & 9.9159 .937 & 0.8371342 & 10.1628657 & 0 \\
\hline & & & & Tang. 55 & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 30 & \(\frac{\text { Sin. } 34 .}{9.7531280}\) & 9.9159937 & \(\frac{1 \text { ang. } 34 .}{} 9.8371343\) & 10.1626857 & 30 \\
\hline & 9.7533 & 9.9159069 & 9.8374049 & 10.1625951 & \\
\hline 31
32 & 9.75 & 9.9158200 & 9.8376755 & 10.1623245 & 28 \\
\hline 33 & 9.7536790 & 9.9157330 & & 10.1620540 & 27 \\
\hline 34 & 9.7538624 & 9.9156460 & 9.8382164 & 10.1617836 & 26 \\
\hline 35 & 9.7540457 & 9.9155589 & 9.8384867 & 10.161513 & 25 \\
\hline & 9.7 & & & 10.161242 & \\
\hline & 9.7544119 & 9.9153846 & 9.8390273 & 10.160972 & 23 \\
\hline 38 & 9.7545949 & 9.9152974 & 9.8392975 & \(10.160 \pm 025\) & \\
\hline & 9.7547777 & 9.9152101 & 9.8395676 & 10.1 & \\
\hline 40 & 9.7549604 & 9.9151228 & 9.8398377 & 10. & \\
\hline & 9.7551431 & & 9.8401077 & 10.1598923 & \\
\hline 42 & 9.7553256 & 9.9149479 & 9.84 & 10.1596224 & \\
\hline & 9.7555080 & 9.9148604 & 9.84 & 10.1593525 & 17 \\
\hline & 9.7556902 & 9.9147729 & 9.8409174 & 10. & \\
\hline 45 & 9.7558724 & 9.9146852 & 9.8411871 & 10 & 5 \\
\hline & & & & & 14 \\
\hline & 9.756238 & 9.9145099 & & 10.1582735 & 13 \\
\hline 48 & 9.756418 & 9.9144221 & 9:8419961 & 10.1580039 & \\
\hline & 9.7565 & 9.9143342 & 9.8422657 & & \\
\hline 50 & 9.7567815 & 9.9142464 & 9.8425351 & 10.1584649 & \\
\hline & 9.7569 & & & & \\
\hline & 9.7571 & 9.9140704 & 9.8430739 & & \\
\hline & 9.757325 & 9.9139824 & 9.8433432 & 10.1566568 & \\
\hline & 9.7575068 & 9.9138943 & 9.8436125 & & \\
\hline 55 & 9.7576878 & 9.9138061 & 9.8438817 & 10.1561183 & \\
\hline & & 9.913719 & 9.8441508 & & \\
\hline & 9.7580495 & 9.9136296 & 9.8444199 & 10.1555801 & \\
\hline 58 & 9.7582302 & 9.9135413 & 9.8446889 & 10.1553111 & \\
\hline & 9.7584108 & 9.9134530 & 9.8449569 & 1550 & \\
\hline 60 & 9.7585913 & 9.9133645 & 9.8452268 & I547 & \\
\hline & & & & Tang. & M \\
\hline
\end{tabular}

Kkkkk

\begin{tabular}{|c|c|c|c|c|c|}
\hline 30 & \(\frac{\text { Sin. } 35}{9.7639540}\) & 9.9106860 & \(\frac{1}{} \frac{1}{} 9.85 .32680\) & 10.1457 .320 & 30 \\
\hline & 9.7641311 & 9.9105959 & 9.85 & 10.1464648 & 9 \\
\hline & 9.7643080 & 9.9105057 & 9.8538023 & 10.1461977 & 28. \\
\hline 32
33 & 9.7644849 & -9.9104155 & 0.8540694 & 10.1459306 & 27 \\
\hline 3 & 9.7646616 & 9.910325. & 9.8543365 & 10.1456635 & 6 \\
\hline 35 & 9.7648382 & 9.9102348 & 9.8546034 & 10.1453966 & 5 \\
\hline & & & 9.8548704. & 10.145129 & 24 \\
\hline 37 & 9.76519 LIT & 9.9100538 & 9.8551372 & 10.1448628 & 23 \\
\hline 38 & 9.7653674 & 9.9099633 & 9.855 & 10.1445959 & \\
\hline 39 & 9.7655436 & 9.9098728 & 9.8556708 & 10.14432 & \\
\hline 40 & 9.7657197 & 9.909782 I & 9.8559376 & 10.1440624 & \\
\hline 41 & 9.765895 .7 & & 9.8 & 58 & 9 \\
\hline 42 & 9.7660715 & 9.9006007 & 9.850 & 10.1435292 & \\
\hline 43 & 9.766247 .3 & 9.9095099 & 9.8567374 & 10.1432626 & \\
\hline 44 & 9.7664229 & 9.9094190 & 9.8570039 & 10.14299 & \\
\hline 45 & 9.7665985 & 9.9093281 & 9.8572704 & 10.14272 & 5 \\
\hline 46 & & 9.9092371 & 9.8 & 10.1424632 & 14 \\
\hline 47 & 9.7669492 & 9.9091461 & 9.8578030 & 9 & \\
\hline 48 & 9.7671244 & 9.9090550 & 9.8580694 & 10.1419306 & I \\
\hline 49 & 9.7672996 & 9.9089639 & 9.8583357 & 10.1416643 & I \\
\hline 50 & 9.7674746 & 9.9088727 & 9.8586019 & IO & \\
\hline & 9.7676494 & & & & \\
\hline \(\mathrm{j}_{2}\) & 9.7678242 & 9.9086901 & 9.8591341 & & \\
\hline 53 & 9.7679989 & 9.9085988 & 9.8594002 & 10.1405998 & \\
\hline 54 & 9.7681735 & 9.9085073 & 9.8596661 & 10.1403339 & \\
\hline 55 & 9.7683480 & 9.9084159 & 9.8599321 & 10.1400679 & \\
\hline 56 & 9.7685223 & 9.9083243 & 9.8601980 & 10.1398020 & \\
\hline & 9.7686966 & 9.9082327. & 9.8604638 & 10.1395362 & \\
\hline 58 & 9.7688707 & 9.9081411 & S. 86007296 & 10.1 & \\
\hline & 9.7690448 & 9.9080494 & 9.8609954 & 10.1390046 & \\
\hline 60 & 9.7692187 & 9.9079576 & 9.8612610 & 10.1387390 & \\
\hline & & & & Tang. 54 & M \\
\hline
\end{tabular}

Kkkkkz
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Sin. 3 & & Tang. 36. & & \\
\hline \(\bigcirc\) & 9.7692187 & 9.9 & 9.8612610 & 10.1387390 & 60 \\
\hline 1 & 9.7693925 & 9.907865 & 9.861526 & 10.13847 & 9 \\
\hline 2 & 9.7695662 & 9.9077740 & 9.8617923 & 10.13820 & 5 \\
\hline 3 & 9.7697398 & 9.9076820 & 9.8620578 & 10.1379422 & 57 \\
\hline 4 & 9.7699134 & 9.9075901 & 9.8623233 & 10.1376767 & 56 \\
\hline 5 & 9.7700868 & 9.9074980 & 9.8625887 & 10. & 55 \\
\hline 6 & 9.7 & 9.9074059 & 9.86285 & 10.1371459 & \\
\hline 7 & 9.7704332 & 9.9073138 & 9.8631 & 10.13688 & 53 \\
\hline 8 & 9.7706063 & 9.9072216 & 9.86338 & 10.1366152 & 2 \\
\hline 9 & 9.7707793 & 9.9071293 & 9.8636500 & 10.1363500 & 1 \\
\hline 10 & 9.7709522 & 9.9070370 & 9.8639152 & \({ }^{10.1360848}\) & 50 \\
\hline 1 I & 9.77112 & & & & 9 \\
\hline 12 & 9.7712976 & 9.9068522 & 9.8644454 & 10.1355546 & 8 \\
\hline 13. & 9.7714702 & 9.9067597 & 9.8647105 & 10 & 47 \\
\hline 14 & 9.7716426 & 9.9066671 & 9.8649755 & 10.1350245 & 6 \\
\hline 15 & 9.7718150 & 9.9065745 & 9.8652404 & 10.1347596 & 5 \\
\hline 16 & 9. & 9.9064819 & 9.8655053 & & 44 \\
\hline 17 & 9.77215 & 9.9063892 & 9.8657702 & 18.1 & 43 \\
\hline 18 & 9.77233 & 9.9062964 & 9.8660350 & 10.13396 & 42 \\
\hline 19 & 9.7725 & 9.9062036 & 9.8662997 & 10.1337003 & 41 \\
\hline 20 & 9.7726751 & 9.9061107 & 9.8665644 & 10.1334356 & \\
\hline 21 & & 9.9060177 & 9.8668291 & 10.1 & \\
\hline 22 & 9.7730185 & 9.9059247 & 9.8670937 & 10.1329063 & 38 \\
\hline 23 & 9.7731900 & 9.9058317 & 9.8673583 & 10.1326417 & 7 \\
\hline 24 & 9.7733614 & 9.9057386 & 9.8676228 & 10.1323772 & 36 \\
\hline 25 & 9.7735 & 9.9056454 & 9.8678873 & 10.1321127 & 5 \\
\hline 26 & & & 9.8681517 & 10.1318483 & \\
\hline 8 & \[
9.7738749
\] & \[
9.9054589
\] & 9.8684160 & 10.1315840 & 3 \\
\hline 28 & 9.7740459 & \[
9.9053656
\] & 9.8686804 & 10.1313196 & 32 \\
\hline 29 & 9.7742168 & \[
9.9052722
\] & 9.8689446 & \(10.13: 0554\) & 1 \\
\hline , & 9.7743876 & 9.9051787 & 9.8692089 & 10.1307911 & 0 \\
\hline & & & & Tang. 53 & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & Sin. 36. & & Tang. 36. & & \\
\hline 30 & 9.7743876 & 9.905 1787 & 9.8692089 & 10.1307911 & 30 \\
\hline 31 & 9.7745583 & 9.9050852 & 9.8694831 & 10.1305269 & 29 \\
\hline 32 & 9.7747288 & 9.9249916 & 9.8697372 & 10.1302628 & 28 \\
\hline 33 & 9.7748993 & 9.9048980 & 9.8700013 & 10.1299987 & 27 \\
\hline 34 & 9.7750697 & 9.9048043 & 9.8702653 & 10.1297347 & 26 \\
\hline 35 & 9.7752390 & 9.9047106 & 9.8705293 & 10.1294707 & 25 \\
\hline 36 & 9.7754101 & 9.9046168 & 9.8707933 & 10.1292067 & 24 \\
\hline 37 & 9.7755801 & 9.9045230 & 9.8710572 & 10.1289428 & 23 \\
\hline 38 & 9.7757501 & 9.9044291 & 9.8713210 & IC. 1286790 & 22 \\
\hline 39 & 9.7759199 & 9.904335 I & 9.8715848 & 10.1284152 & 2 I \\
\hline 40 & 9.7763897 & 9.90424 I I & 9.8718486 & 10.1281514 & 20 \\
\hline -1 & 9.7762593 & 9.9041470 & 9.8721123 & 10.1278877 & 19 \\
\hline 42 & 9.7764289 & 9.9040529 & 9.8723760 & 10.1276240 & 18 \\
\hline 43 & 9.7765983 & 9.9039587 & 9.8726396 & 10.1273604 & 17 \\
\hline 44 & 9.7767676 & 9.9038644 & 9.8729032 & 10.1270968 & 16 \\
\hline 45 & 9.7769369 & 9.9037701 & 9.8731668 & 10.1268332 & 15 \\
\hline 46 & 9.7771060 & 9.9036758 & 9.8734302 & 10.1265698 & 14 \\
\hline 46 & \[
9.7772750
\] & 9.9035813. & 9.8736937 & 10.1263063 & 13 \\
\hline 48 & 9.7774439 & 9.9034868 & 9.8739571 & IC.1260429 & 12 \\
\hline 49 & 9.7776128 & 9.9033923 & 9.8742204 & 10.1257796 & II \\
\hline 50 & 9.7777815 & 9.9032977 & 9.874483 ? & 10.1255162 & 10 \\
\hline & & 9.9032031 & 9.8747470 & 10.1252530 & 9 \\
\hline 51 & 9.7781186 & 9.903 .1084 & 9.8750102 & IC. 1249898 & 8 \\
\hline \(5^{2}\) & 9.7782870 & 9.9030136 & 9.8752734 & 10.1247266 & 7 \\
\hline 54 & 9.7784553 & 9.9029188 & 9.8755365 & 10.1244635 & \\
\hline 55 & 9.778623 & 9.9028239 & 9.8757996 & 10. 242004 & 5 \\
\hline 56 & 9.7787916 & 0.9027289 & 9.8760627 & 10.1239373 & 4 \\
\hline & 9.7789596 & 0.9026339 & 9.8763257 & 10.1236743 & \\
\hline 15 & 9.7791275 & 9.9025389 & 9.8765886 & 10.1234114 & \\
\hline 159 & 9.7792953 & 9.9034438 & 9.8768515 & 10.1231485 & \\
\hline 60 & 9.7794630 & 9.9023486 & 9.877 II 44 & & \\
\hline & & & & TanQ. 53 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\overline{\mathrm{M}} \overline{\mathrm{o}} \mid
\] & \(\frac{\operatorname{Sin} .37}{9.7794630}\) & 9.9023486 & \[
\frac{\text { Tang. } 37 .}{9.8771144}
\] & 10.1228856 & 0 \\
\hline I & 9. & \[
9.4
\] & & & 9 \\
\hline 2 & 9.779798 & 9.90215 & 9.8776400 & 10.1223600 & 8 \\
\hline 3 & 9.7799655 & 9.9020628 & 9.8779027 & 10.1220973 & 7 \\
\hline 4 & 9.7801328 & 9.9019674 & 9.8781654 & 10.1218345 & \\
\hline 5 & 9.7803000 & 9.9018719 & 9.878428 T & & 5 \\
\hline 6 & 9.780 & 9. & & & \\
\hline 7 & 9.78063 & 9.9016808 & 9.8789533 & 467 & 54 \\
\hline 8 & 9.78080 & 9.9015852 & 9.8792158 & 10.1207842 & 52 \\
\hline 9 & 9.7809677 & 9.9014895 & 9.8794782 & 10.1205218 & I \\
\hline 10 & 9.7811344 & 9.9013938 & 9.8797407 & 10.1202592 & 50 \\
\hline II & & & & & \\
\hline 12 & 9.7814 & 9.901202 F & 9.8802654 & 7346 & 48 \\
\hline 13 & 9.7816339 & 9.90 & 9.8805277 & 10.1194723 & 47 \\
\hline 14 & 9.7818002 & 9.90 & 9.8807900 & 10.1192100 & 46 \\
\hline Is & 9.7819664 & 9.9009142 & 9.8810522 & 10.1189478 & 45 \\
\hline 16 & 9.7821324 & 9.900818 & 9.8813144 & & 44 \\
\hline 17 & 9.7822984 & 9.9007219 & 9.8815765 & 10.1184235 & 43 \\
\hline 18 & 9.7824643 & 9.9006257 & 9.8818386 & 10.1181614 & 42 \\
\hline 19 & 9.7826301 & 9.9005294 & 9.8821007 & 10.1178993 & 41 \\
\hline 20 & 9.7827958 & 9.900433 I & 9.8823627 & 10.1176374 & 40 \\
\hline 2 I & & 9.9003367 & 9.88262 & & \\
\hline 22 & 9.7831268 & 9.9002403 & 9.8828866 & 10.1171134 & 38 \\
\hline 23 & 9.7832922 & 9.9001438 & 9.8831484 & 10.1168516 & 37 \\
\hline 24 & 9.7834575 & 9.9300472 & 9.8834103 & 10.1165897 & 36 \\
\hline 25 & 9.7836227 & 9.8999506 & 9.8836721 & 10.1163279 & 35 \\
\hline 26 & 9.7837878 & 9.8998539 & 9.8839338 & 10 & 34 \\
\hline 27 & 9.7839528 & 9.8997572 & 9.8841956 & 10.1158044 & 33 \\
\hline 28 & 9.7841877 & 9.8996604 & 9.8844572 & 10.1155428 & 32 \\
\hline 29 & 9.7842824 & 9.8995636 & 9.8847189 & 10.1152811 & 31 \\
\hline 30 & 9.7844471 & 9.8994667 & 9.8849805 & 12.1150195 & 30 \\
\hline & & Sin. 52. & & Tang. 52. & M \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\frac{\mathrm{M}}{\mathrm{o}}
\] & \(\frac{\operatorname{Sin} .38 .}{9.7893420}\) & 9.896532I & \[
\frac{\text { Tang. } 38 .}{9.8928098}
\] & 10.1071902 & \(c\) \\
\hline & & & & & \\
\hline 2 & 9.789665 & 9.8963346 & 9.8933306 & 10.1066694 & 58 \\
\hline 3 & 9.7898266 & 9.8962358 & 9.8935909 & 10.1064091 & 57 \\
\hline 4 & 9.7899880 & 9.8961369 & 9.893851 I & 10.1061489 & 56 \\
\hline 5 & 9.7901493 & 9.8960379 & 9.8941114 & 10.1058886 & 55 \\
\hline 6 & 9.7903104 & 9.895 & 9.8943715 & 10. & 54 \\
\hline 7 & 9.7904715 & 9.8958398 & 9.89463 & 10.1053683 & 53 \\
\hline 8 & 9.7906325 & 9.8957406 & 9.8948918 & 10.1051082 & 52 \\
\hline 9 & 9.7907933 & 9.8956414 & 9.8951519 & 10.104848I & 51 \\
\hline 10 & 9.7909541 & 9.8955422 & 9.8954119 & 10.104588 I & 50 \\
\hline 1 I & 9.7911148 & & & & 49 \\
\hline 12 & 9.7912754 & 0.8953435 & 9.8959319 & 10 & 48 \\
\hline 13 & 9.7914359 & 9.8952440 & 9.8961918 & 10.1038083 & 47 \\
\hline 14 & 9.7915963 & 0.8951445 & 9.8964517 & 10.1035483 & 46 \\
\hline 15 & 9.7917566 & 9.8950450 & 9.8967116 & 10.1 & 4 \\
\hline 16 & 9.7919168 & & 9.896 & & 44 \\
\hline 17 & 9.7920769 & 9.8948457 & 9.8972312 & 10.1027688 & 43 \\
\hline 18 & 9.7922369 & 0.8947459 & 9.8974910 & 10.1025090 & 42 \\
\hline 19 & 9.7923968 & 9.894646I. & 9.8977507 & 10.1022493 & 41 \\
\hline 20 & 9.7925566 & 9.8945463 & 9.8980104 & 10.1019896 & 40 \\
\hline 21 & 9.7927163 & 9.8944463 & & & 39 \\
\hline 22 & 9.7928760 & 9.8943464 & 9.8985296 & 10.1014704 & 38 \\
\hline & 9.7930355 & 9.8942463 & 9.8987892 & 10.1012108 & 37 \\
\hline 24 & 9.7931949 & 9.8941462 & 9.8990487 & 10.1009513 & 36 \\
\hline 25 & 9.7933543 & 9.8940461 & 9.8993082 & 10.1006918 & 35 \\
\hline 26 & 9.7935135 & 9.8939458 & 9.8995677 & 10.1004323 & 34 \\
\hline 27 & 9.7936727 & 9.8038456 & 9.8598271 & 10.1001729 & 33 \\
\hline 28 & 9.7938317 & 9.8937452 & 9.9000865 & 10.0999135 & 32 \\
\hline 29 & 9.7939907 & 9.8936448 & 9.9003459 & 10.0996541 & 31 \\
\hline 30 & 9.7941496 & 9.8935444 & 9:9006052 & I 2.0993948 & - \\
\hline & & S & & Tang. 51 & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\frac{\operatorname{Sin} .38 .}{9.7941496}\) & 9.8935444 & \(\frac{1 \text { ang. } 38 .}{9.9006052}\) & 10. & 0 \\
\hline & 9.7943083 & 9.8934439 & 9.9008645 & \[
55
\] & 9 \\
\hline & 9.7944670 & 9.8933433 & 9.9011237 & 10.0988763 & 8 \\
\hline & 9.7946256 & 9.8932426 & 9.9013830 & 10.0986170 & 析 \\
\hline & 9.7947841 & 9.8931419 & 9.9016422 & 10.0983578 & 6 \\
\hline 35 & 9.7949425 & 9.8930412 & 9.9019013 & 10.0980987 & 5 \\
\hline 36 & 9.7 & 9.8929404 & 9.9021604 & IC.0978396 & 4. \\
\hline & 9.79525 & 0.8928395 & 9.9034195 & 10.0975805 & 23 \\
\hline 38 & 9.795417 & 9.8927385 & 9.9026786 & 10.0973214 & 22 \\
\hline 39 & 9.795575 & 9.8926375 & 9.9029376 & 10.0 & 1 \\
\hline 40 & 9.79573 & 9.8925365 & 9.9031966 & 10.0968034 & 20 \\
\hline & 9. & 0.8924354 & 9.9034555 & & 9 \\
\hline 42 & 9.796048 & 9.8923342 & 9.9037144 & 10. & 8 \\
\hline 43 & 9.7962062 & 9.8922329 & 9.9039733 & 10.096026 & 7 \\
\hline & 9.7963638 & 9.8921316 & 9.9042321 & '10.0957679 & 6 \\
\hline 45 & 9.7965 & 9.8920303 & 9.9044910 & 10.0955090 & 5 \\
\hline 46 & 9.79667 & 9.8919289 & 9:9047497 & & 4 \\
\hline & 9.79683 & 9.8918274 & 9.9050085 & 10.094995 & 3 \\
\hline 48 & 9.796993 & 9.8917258 & 9.9052672 & 10.0947328 & 12 \\
\hline & 9.7971501 & 9.8916242 & 9.9055259 & 10.0944741 & I \\
\hline 50 & 9.7973071 & 9.8915226 & 9.9057845 & 10.0942155 & \(\bigcirc\) \\
\hline & 9.7 & 9.8914208 & 9.906043 I & & 9 \\
\hline & 9:7976208 & 9.8913191 & 9.9063017 & 10.0936983 & 8 \\
\hline & 9.797777 & 9.8912172 & 9.9065603 & 10.0934397 & \\
\hline 54 & 9.7979341. & 9.8911153 & 9.9068188 & 10.0931812 & 6 \\
\hline 55 & 9.7980906 & 9.8910133 & 9.9070773 & 10.0929227 & \\
\hline 56 & 9.798247 & 9.8909113 & 9.9073357 & 10.0926643 & \\
\hline 57 & \[
9.7984034
\] & 9.8908092 & 9.9075942 & 10.0924059 & \\
\hline 5 & \[
9.7985596
\] & 9.890707 I & 9.9078525 & 10.0921475 & \\
\hline 59 & 9.7987158 & 9.8906049 & 9.9081109 & & \\
\hline 60 & 9.7988718 & 9.8905026 & 9.9083692 & & \\
\hline & & & & Tang. 5 & M \\
\hline
\end{tabular}
L. IIII
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & \(\frac{\text { Sin. } 39}{} 9.798871\) & 9.8905026 & \(\frac{\text { Tang. } 39 .}{}\) & 10.0916308 & 60 \\
\hline I & 278 & 9.8904003 & 086 & & \\
\hline 2 & 9.7991836 & 9.8902979 & 9.9088858 & 10.0911141 & 58 \\
\hline 3 & 9.7993394 & 9.8901954 & 9.9091440 & 10.0908560 & 57 \\
\hline 4 & 9.799495 I & 9.8900929 & 9.9094022 & 10.290597 .8 & 56 \\
\hline 5 & 9.7996507 & 9.8899903 & 9.9096603 & 10.0903397 & 55 \\
\hline 6 & 9.79980 & 9.8898877 & 9.9099185 & & 54 \\
\hline & 9.7999616 & 9.8897850 & 9.9101766 & 10.0898234 & 53 \\
\hline 8 & 9.8001169 & 0.8896822 & 9.9104347 & 10.089565 .3 & 52 \\
\hline 9 & 9.800272 I & 9.8895794 & 9.9106927 & 10.0893073 & 51 \\
\hline IO & 9.8004272 & 9.8894765 & 9.9109507 & 10.0890493 & 50 \\
\hline II & 9. & 9.8893736 & 9.9112087 & & 49 \\
\hline 12 & 9.80073 & 9.8892706 & 9.9114666 & 10.0885334 & 48 \\
\hline 13 & 9.800892 I & 9.8891675 & 9.9117245 & 10.0882755 & 47 \\
\hline 14 & 9.8010468 & 9.8890644 & 9.9119824 & 10.0880176 & 46 \\
\hline 15 & 9.80120'5 & 9.8889612 & 9.9122403 & 10.0877597 & 45 \\
\hline - & & 9.8888)80 & 9.9124981 & 10.0875019 & 44 \\
\hline 17 & 9.8015106 & 9.8887547 & 9.9127559 & 10.0872441 & 3 \\
\hline 18 & 9.8016649 & 9.8886513 & 9.9130127 & 10.0869863 & 42 \\
\hline 19 & 9.8018190 & 9.8885479 & 9.9132714 & 10.0867286 & 41 \\
\hline 20 & 9.8019735 & 9.8884444 & 9.9135291 & 10.0864709 & 40 \\
\hline 21 & & 9.8883408 & 868 & 10.0862132 & \\
\hline 22 & 9.8022816 & 9.8882372 & 9140444 & 10.0856556 & 8 \\
\hline 23 & 0.8024355 & 9.8881335 & 9.9143020 & 10.0856980 & 37 \\
\hline 24 & 9.8025894 & 9.8880298 & 9.9145596 & 10.0854404. & 36 \\
\hline 25 & 9.802743 I & 9.8379260 & 9.9148171 & 10.0851829 & 35 \\
\hline 26 & 9.8028968 & 9.8878221 & 9.915 .074 & 10.084953 & 4 \\
\hline 27 & 9.8030504 & 9.8877182 & 9.9153322 & 10.0846678 & 3 \\
\hline 28 & 0.8032038 & 9:8876142 & 9.9155856 & 10.0844 .104 & 2 \\
\hline 29 & 9.8033 .572 & 9.8875102 & 9.9158471 & 10.0841529 & 3 I \\
\hline 30 & 0.8035105 & 9.8874061 & 9.9161045 & 12.0838955 & 30 \\
\hline & & Sir.50. & & Tang. 50. & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & \(\frac{\operatorname{Sin} .39 .}{9.8035105}\) & 9.8874061 & \(\frac{-T a n g .39 .}{9.9161045}\) & 10.0838955 & 30 \\
\hline & & & 9.9163018 & 10.0836382 & 29 \\
\hline 32 & 9.8038168 & 9.8871977 & 9.91661 & 10.0833808 & 28 \\
\hline 33 & 9.8039699 & 9.8870934 & 9.91687 & 10.0831235 & 27 \\
\hline 34 & 9.8041228 & 9.8869890 & 9.9171338 & 8662 & 20 \\
\hline 35 & 9.8042757 & 9.8868846 & 9.9 & 10. & 25 \\
\hline & & & 9.91764 .83 & 823517 & 4 \\
\hline 37 & 9.8045811 & 9.8866755 & 9.9179055 & 10.0820945 & 23 \\
\hline 38 & 9.8047336 & 9.8865710 & 9.9181627 & 10.0818373 & 2 \\
\hline 39 & 9.804836 L & 9.8864663 & 9.9184198 & 10.0815802 & 1 \\
\hline 40 & 9.8050385 & 9.8863616. & 9.9186769 & 10.081323 I & 0 \\
\hline 41 & 9.8051908 & & 9.9189340 & 10.0810660 & 9 \\
\hline 42 & 9.805343 .0 & 9.8861519 & 9.91919 & 10.0808089 & 8 \\
\hline 43 & 9.8054951 & 9.8860470. & 9.91944 & 10.0805519 & 17 \\
\hline 44 & 9.8056472 & 9.8859420. & 9.919705 & 10.0802949 & \\
\hline 45 & 9.8057991 & 9.8858370 & 9.9199621 & 10.0800379 & 5 \\
\hline & & & 9.9202191. & 10.0797806 & 14 \\
\hline & 9.8061027 & 9.8856267 & 9.9204760 & 10.0795240 & 13 \\
\hline 148 & 9.8062544 & 9.8855215 & 9.9207329 & 10.07926 & \\
\hline & 9.8064060 & 9.8854162 & 9.9209898 & 10.0790102 & 1 \\
\hline 50 & 9.806557 .5 & 9.8853109 & 9.9212466 & 10.078 & \\
\hline & 9.8067089 & 9.8852055 & 9.92 & & \\
\hline 52 & 9.8068601 & 9.8851000 & 9.9217602 & 10.0782398 & \\
\hline 53 & 9.8070114 & 9.8849945 & 9.9220170 & 10.0779830 & \\
\hline 4 & 9.8071626 & 9.8848889 & 9.9222737 & 10.0777263 & 6 \\
\hline 55 & 9.8073136 & 9.8847832 & 9.9225304 & 10.0774696 & \\
\hline & & 9.8846775 & 9.9227871 & 10.0772129 & \\
\hline & 9.8076154 & 9.8845717 & 9.9230437 & 10.0769563 & \\
\hline 58 & 9.8077662 & 9.8844659 & 9.923300 & 10.0766996 & \\
\hline & 9.8079169 & 9.8843599 & 9.9235570 & 10.0 & \\
\hline 60 & 9.808067 .5 & 9.8842540 & 9.9238135 & 10.0761865 & \\
\hline & & & & Tanf. 50 & M \\
\hline
\end{tabular}

11112
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(|\)\begin{tabular}{c}
\(M\) \\
\hline 0
\end{tabular} & \[
\frac{\sin .40}{9.808067}
\] & 9. & \(\frac{\text { Tang. } 40}{9.9238135}\) & 10.0761865 & 60 \\
\hline & & & & & \\
\hline 2 & 9.8083684 & & & 10.0756734 & 8 \\
\hline 3 & 9.8085188 & 9.883 .9357 & 9.924583 I & 10.0754169 & 57 \\
\hline 4 & 9.8086690 & 9.8838294 & 9:9248396 & 10.5751604 & 56 \\
\hline 5 & 9.8089192 & 9.8837232 & 9.9250960 & 10.0749040 & 55 \\
\hline 6 & 9.808 & 9.8836168 & 9, & 10.0746476 & 54 \\
\hline 7 & 9.8091192 & 9.8835104 & 9.9256088 & 10.0743912 & 53 \\
\hline 8 & 9.8092691 & 9.8834039 & 9.9258652 & 10.0741348 & 52 \\
\hline 9 & 9.8094189 & 9.8832974 & 9.92612 F & 10.0738785 & 5 I \\
\hline 10 & 9.8095686 & 9.8831908 & 9.9263778 & 10.0736222 & 50 \\
\hline & 9.80 & 9.8830841 & 9.926634 I & 10.0733659 & 49 \\
\hline 12 & 9.8098678 & 9.8829774 & 9.9268904 & 10.073.1096 & 48 \\
\hline 13 & 9.8100172 & 9.8828706 & 9.9271466 & 10.0728534 & 47 \\
\hline 14 & 9.8101666 & 9.8827638 & 9.9274028 & 10.072597 .2 & 46 \\
\hline 15 & 6.8103159 & 9.8826568 & 9.9276590 & 10.0723410 & 45 \\
\hline 16 & 9.8 & & 9.9 & 10.0720848 & 4 \\
\hline 17 & 9.810614 & 9.8824428 & 9.92817 T 3. & 10.0718287 & 3 \\
\hline 18 & 9.8107631 & 9.8823357 & 9.9284274 & 10.0715726 & \\
\hline -19 & 9.8109121 & 9.8822285 & 9.9286835 & 10.0713165 & 4 I \\
\hline 20 & 9.8110609 & 9.8821213 & 9.9289396 & 10.0710604 & 40 \\
\hline 21 & 9.8112096 & 9.8820140 & 9.9291956 & 10.0708044 & 39 \\
\hline 22 & 9.8113583 & 9.8819067 & 9.9294516 & 10.0705484 & 38 \\
\hline 23 & 9.8115069 & 9.8817992 & 9.9297076 & 10.0702924 & 37 \\
\hline 24 & 9.8116554 & 9.8816918 & 9.9299636 & 10.0700364 & 36 \\
\hline 25 & 9.8118038 & 9.8815842 & .9302195 & 10.0697805 & 35 \\
\hline & 9.31.1952I & 9.8814766 & 9.9304755 & & 4 \\
\hline 27 & 9.8121003 & 9.8813689 & 9.9307314 & 10.0692686 & 33 \\
\hline 28 & 9.8122484 & 9.8812612 & 9.9309872 & 10.0690128 & 32 \\
\hline 29 & 9.8123965 & 9.8811534 & & 10.0687569 & 31 \\
\hline 30 & 9.8125444 & \(9.8810455^{\circ}\) & 9.931498 & I 2.068501. & 30 \\
\hline & & Sin.49. & & Tang. 49. & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\frac{\mathrm{M}}{-}\) & \(\frac{\text { Sin. } 40 .}{\text { 9.8525444 }}\) & 9.8810455 & \(\frac{\text { Tang. } 40}{} 9.9314989\) & 10.0685011 & 30 \\
\hline 31 & 9.8126923 & 9.8809376 & 9.9317547 & 10.0682453 & 29 \\
\hline 32 & 9.8128401 & 9.8808296 & 9.9320105 & 10.0679895 & 28 \\
\hline 33 & 9.8129878 & 9.8807215 & 9.9322662 & 10.0577338 & 27 \\
\hline 34 & 9.8131354 & 2.8806134 & 9.9325220 & 10.0674780 & 25 \\
\hline 35 & 9.8132829 & 9.8805052 & 9.9327777 & 10.067222 & 25 \\
\hline 36 & 9.8134303 & & 9.9330334 & 10.0669666 & \\
\hline 37 & 9.8135777 & 9.8802887 & 9:9332890 & 10.0667110 & 23 \\
\hline 38 & 9.8137250 & 9.8801803 & 9.9335446 & 10.0664554 & \\
\hline 39 & \(9.813872 i\) & 9.8800719 & 9.9338003 & 10.0661997 & 0 \\
\hline 40 & 9.8140192 & 9.8799634 & 9.9340559 & \(\underline{10.0659441}\) & 0 \\
\hline 41. & 9.8141662 & 9.8798548 & 9.9343114 & 10.0656886 & 9 \\
\hline 42 & 9.814313 I & 9.8797462 & 9.9345670 & 10.0654330 & \\
\hline 43. & 9.8144000 & 9.8796375 & 9.9348225 & 10.0651775 & 7 \\
\hline 44 & 9.8146067 & 9.8795287 & 9.9350780 & 10.0649220 & 16 \\
\hline 45 & 9.8147534 & 9.8794199 & 9.9353335 & 10.0646665 & Is \\
\hline 46 & 9.8148999 & 9.8793110 & 9.9355889 & 10.0644 III & 14 \\
\hline & 9.8150464 & 9.879202 I & 9.9358444 & 10.0641556 & I3 \\
\hline 48 & 9.8151928 & 9.8790930 & 9.9360998 & 10.0639002 & 12 \\
\hline & 9.8153391 & 9.8789840 & 9.9363552 & 10.0636448 & 11 \\
\hline 50 & 9.8154854 & 9.8788748 & 9.9366105 & 10.0633895 & 10 \\
\hline & 9.815635 & 9.8787656 & 9.9368659 & 10.0631341 & -9 \\
\hline 52 & 9.8157776 & 9.8786563 & 9.9371212 & 10.0678788 & \\
\hline & 9.8159235 & 9.8785470 & 9.9373765. & 10.0626235 & 6 \\
\hline \[
54
\] & 9.8160694 & 9.8784376 & 9.9376318 & 10.0623682
10.0621129 & 6 \\
\hline 55 & 9.8162152 & 9:878328I & 9.937887 T & 10.0621129 & 5 \\
\hline 56 & 9.8163609 & 9.8782186 & 9.9381423 & 10.0618577 & \\
\hline & 9.8165066 & 9.8781090 & 9.9383975 & 10.0616325 & \\
\hline 58 & 9.8166521 & 9.8779994 & 9.9386527 & 10.0613473 & \\
\hline 59 & 9.8167975
0.8169425 & \[
\begin{aligned}
& 9.8778896 \\
& 9: 8777799
\end{aligned}
\] & 9.9389079
9.9391631 & \[
\begin{aligned}
& 10.0610921 \\
& 10.0608369
\end{aligned}
\] & c \\
\hline \(\underline{60}\) & 9.8169425 & \(\frac{98777799}{\sin 40}\) & 9.9391631 & \(\underline{ }\) & M \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline M & Sin.41. & & Tang. 41. & & \\
\hline 30 & 9.8212646 & 9.8744561 & 9.9468084 & 10.0531916 & 30 \\
\hline 3 I & 9.8214073 & 0.8743443 & 9.9470630 & 10.0529370 & 29 \\
\hline 32 & 9.8215500 & 9.8742325 & 9.9473175 & 10.0526825 & 28 \\
\hline 33 & 9.8216926 & 9.8741205 & 9.9475720 & 10.0524280 & 27 \\
\hline 13 & 9.8218351 & 9.8740085 & 9.9478265 & 10.0521735 & 26 \\
\hline 13.5 & 9.8219775 & 9.87.38965 & 9.9480810 & 10.0519190 & 25 \\
\hline 36 & 9.8221198 & 9.8737844 & 9.94833 & 10.0516645 & 24 \\
\hline 37 & 9.8222621 & 9.8736722 & 9.9485899 & 10.0514101 & 23 \\
\hline 38 & 9.8224042 & 9.8735599 & 9.9488443 & 10.0511557 & 2 \\
\hline 39 & 9.8225463 & 9.8734476 & 9.9490987 & 10.0509013 & \\
\hline 40 & 9.8226883 & 9.8733352 & 9.9493531 & 10.0506469 & 20 \\
\hline 41 & 9.8228302 & 9.8732227. & 9.9496075 & 10.0503925 & 19 \\
\hline 42 & 9.8229721 & 9.8731102 & 9.9498619 & 10.0501381 & 18 \\
\hline 43 & 9.8231138 & -9.8729976 & 9.9501162 & 10.0498838 & 7 \\
\hline 44 & 9.8232555 & 9.8728849 & 5.3503705 & 10.0496295 & \\
\hline 45 & 9.823397 F & 9.8727722 & 9.9506248 & 10.0493752 & \\
\hline 46 & 9.8235386 & 9.8726594 & 9.9508791 & 10.0491209 & 14 \\
\hline 47 & 9.8236800 & 9.8725466 & 9.9511334 & 10.0488666 & 13 \\
\hline 48 & 9.8238213 & 9.8724337 & 9.9513876. & 10.0486124 & 2 \\
\hline 49 & 9.8239626 & 9.8723207 & 9.9516419 & 10.0483581
10.0481039 & 1 \\
\hline 50 & 9.8241037 & 9.8722076 & 9.9518961 & 10.0481039 & 10 \\
\hline 51 & 9.8242448 & 9.8720945 & 9.9521503 & 10.0478497 & \\
\hline 52 & \(9.824385^{8}\) & 9.8719813. & 9.9524045 & 10.0475 .955 & \\
\hline 53 & 9.8245267 & 9.8718682 & 9.9526587 & 10.0473413 & 17 \\
\hline 54 & 9.8246676 & 9.8717548 & 9.9529128 & 10,04.70872 & \\
\hline 55 & 9.8248083 & 9.8716414 & 9.9531670 & 10.0468330 & \\
\hline 56 & 9.8249490 & 9.8715279 & 9.953421 I & 10.0465789 & \\
\hline 57 & 9.8250896 & 9.8714144 & 9.9536752 & 10.0463248 & \\
\hline 58 & 9.8252301 & 9.8713008 & 9.9539293 & 10.04607 .07 & \\
\hline 59 & 9.8253705 & 9.8711872 & 9.9541834 & 10.0458166 & \\
\hline 60 & 9.8255109 & 9.8710735 & 9.9544374 & 10,04556 & \\
\hline & & Sin. 48. & & Tang.48. & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Sin. 42. & & \[
\text { Tang. } 42
\] & & \\
\hline \(\bigcirc\) & 9.8255109 & 9.8710735 & 9.9544374 & 10.0455626 & 60 \\
\hline 1 & 9.8256512 & 9.870959 & 9.9546915 & 10.0453085 & 59 \\
\hline 2 & 9.8257913 & 9.8708458 & 9.9549455 & 10.0450545 & 58 \\
\hline 3 & 9.8259314 & 9.87073.19 & 9.9551995 & 10.0448005 & 57 \\
\hline 4 & 9.8260715 & 9.8706179 & 9.9554535 & 10.0445465 & 56 \\
\hline 5 & 9.8262114 & 9.8705039 & 9.9557075. & 10.0442925 & 55 \\
\hline 6 & 9.8 & 9.8703898 & 9.9559615 & 10.0440285 & 54 \\
\hline 7 & 9.8264910 & 9.8702756 & 9.9562154 & 10.0437846 & 53 \\
\hline 8 & 9.8266307 & 9.8701613 & 9.9564693 & 10.0435307 & 52 \\
\hline 9 & 9.8267703 & 9.8700470 & 9.9567233 & 10.0432767 & 51 \\
\hline 10 & 9.8269098 & 9.8699326 & 9.9569772- & 10.0430228 & 50 \\
\hline II & 9.8 & 9.8698182 & 9.9572311 & 10.0427 & 9 \\
\hline 12 & 9.8271887 & 9.8697037 & 9.9574850 & 10.0425150 & 48 \\
\hline 13 & 9.8273279 & 9.8695891 & 9.9577389 & 10.0422611 & 47 \\
\hline 14 & 9.8274671 & 9.8694744 & 9.9579927 & 10.0420073 & 46 \\
\hline 15 & 9.8276063 & 9.8693597 & 9.9582465 & 10.0417535 & 45 \\
\hline 1 & 9.8277453 & 9.8692449 & 9.9589004 & 10.0414996 & 44 \\
\hline 17 & 9.8278843 & 9.8691301 & 9.9587542 & 10.0412458 & 43 \\
\hline 18 & 9.8280231 & 9.8690152 & 9.9590080 & 10.0409920 & 42 \\
\hline 19 & 9.8281619 & 9.8689002 & 9.9592618 & 10.0407382 & 4 I \\
\hline 20 & 9.8283006 & 9.868785 I & 9.9595155 & 10.0404845 & 40 \\
\hline & 9.8 & 9.8686700 & 9.9597693 & 10.0402307 & 39 \\
\hline 22 & 9.8285778 & 9.8685548 & 9.9600230 & 10.0399770 & 38 \\
\hline 23 & 9.8287163 & 9.8684396 & 9.9602767 & 10.0397233 & 37 \\
\hline 24 & 9.8288547 & 9.8683242 & 9.9505305 & 10.0394695 & 36 \\
\hline 25 & 9.8289930 & 9.8682088 & 9.9607842 & 10.0392158 & 35 \\
\hline 2 & 9.8291312 & 9.8680934 & 9.9610378 & 10.0389622 & 34 \\
\hline 27. & 9.8292694 & 9.8679779 & 9.9612915 & 10.0387085 & 33 \\
\hline 28 & 9.8294075 & 9.8678623 & 9.9615452 & 10.0384548 & 32 \\
\hline 29 & 9.8295454 & 9.8677466 & 9.9617988 & 10.0382012 & 3 I \\
\hline 30 & 9.8296833 & 9.8676309 & 9.9620525 & 10.0379475 & 30 \\
\hline & & & & Tang. 47. & M \\
\hline
\end{tabular}

M mmmm
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Si & & Ta & & \\
\hline 0 & & 9.8641.275 & 9.96965:59 & 10.030 & 60 \\
\hline & c. \(333: 0\) & & & & \\
\hline 2 & 9.8340 & 9.9638917 & 9.97016 & 10.02983 & 58 \\
\hline 3 & 9.83418 & 9.8637737 & 9.9704157 & 10.029 .584 .3 & 57 \\
\hline 4 & 9.834 .3246 & 9.8636557 & 9.9706689 & 10.22933311 & 56 \\
\hline 5 & 9.834 & 0.8635376 & 9.9709221 & 10.0290779 & 55 \\
\hline - 6 & & & 9.9711754 & 10.0288246 & 54 \\
\hline 7 & 9.8347297 & 9.8633011 & 9.971428 & 10 & 53 \\
\hline 8 & 9.8348646 & 9:8631828 & 9.9716818 & 10. & \(5{ }^{2}\) \\
\hline 9 & 9.834 & 9.863 .0644 & 9.9719351 & 10.0280659 & 5 \\
\hline 10 & 9:8351341 & 9.8629460 & 9.972 .1882 & 10.0 & 50 \\
\hline 11 & 9.83 & & 9.9724413 & & \\
\hline 12 & 9.8354032 & 9.8627088 & 9.9726945 & 10.0273055 & 48 \\
\hline I 3 & 2.9355378 & 9.8625932 & 9.9729477 & 10.0270523 & 47 \\
\hline 14 & 9.8356722 & 9.8624714 & 9.9732008 & 10.0267992 & 46 \\
\hline 15 & 9.8358066 & 9.8623.526 & 9.9734539 & 10.0265461 & 5 \\
\hline 16 & & & 9.9737071 & & 4 \\
\hline 17 & & 9.8621148 & 9.9739602 & & 43 \\
\hline 18 & 9.83 & 9.8619958 & 9.9742133 & 10.0257867 & 42 \\
\hline 19 & 9.836 & 9.8618767 & 2.9744664 & & 41 \\
\hline 20 & 9.8364771 & 9.8617576 & 9.9747195 & 10.0252805 & 40 \\
\hline & & & & & 9 \\
\hline & 9.83 & 9:8615.190 & 9.9752257 & 10.0247743 & 38 \\
\hline & 9.83687 .84 & 9.8613997 & 9.9754787. & 10:0245213 & 7 \\
\hline & 9.837012 .1 & 9.8612803 & 9.975 .7318 & 10.0242682 & 36 \\
\hline 25 & 9.8371456 & 9.8611608 & 9.9759849 & 10,02401.51 & 35 \\
\hline & & 9.8610412 & 9.9762379 & 10.023721 & 34 \\
\hline & 9.8374.1.2 & 9.8609215 & 9.9764909 & 10.0235091 & 33 \\
\hline 128 & 9.8375458 & 9.8608018 & 9.9767440 & 10.0232560 & 32 \\
\hline 29 & \[
9.8376790
\] & 9.8606821 & 9.9769970 & 10.0230030 & 3 \\
\hline 30 & \[
9.8378122
\] & 9.8605622 & 9.9772500 & 15.0227500 & \\
\hline & & & & ng. 4 & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline M & Sin. 43. & \\
\hline 30 & 9.8378122 & 9.8605622 \\
\hline 3 & 9.8379453 & 9.8604423 \\
\hline 32 & 9.8380783 & 9.8603223 \\
\hline 33 & 9.8382112 & 9.8602022 \\
\hline 34 & 9.8383441 & 9.360382 I \\
\hline 35 & 9.8384769 & 9.8599619 \\
\hline 3.6 & 9.8386096 & 9.8598416 \\
\hline 37 & 9.83874 .22 & 9.9597213 \\
\hline 38 & 9.8388747 & 9.8596009 \\
\hline 39 & \(9: 8390072\) & ¢. 8594804 \\
\hline 40 & 9.8391396 & 9.8593599 \\
\hline 4 I & 9.8392719 & 9.8592393 \\
\hline 42 & 9.839404 r & 9.8591186 \\
\hline 43 & 9.8395363 & 9.8589978 \\
\hline 44 & 9.839668 + & 9.8588770 \\
\hline 45 & 9.8398004 & 9.8587561 \\
\hline & 9.8399323 & 9.8586351 \\
\hline & 9.8400642 & 9.3585141 \\
\hline 8 & 9.8401959 & 9.8583929 \\
\hline & 9.8403276 & 9.8582718 \\
\hline 50 & 9.8404593 & 9.8581505 \\
\hline & \(9.840590 \overline{8}\) & 9.8580292 \\
\hline 52 & 9.8407223 & 9.8579078 \\
\hline 53 & 9.8408537 & 9.8577863 \\
\hline & 9.8409850 & 9.8576648 \\
\hline 55 & 9.8411162 & 9.8575432 \\
\hline & 9.8412474 & 9.8574215 \\
\hline & 9.8413785 & 9.8572998 \\
\hline 58 & 9.8415095 & 9.8571779 \\
\hline & 9.8416404 & 9.8570561 \\
\hline 60 & 9.8417713 & 9,8569341 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Tang. 43. & & \\
\hline 9.9772500 & 10.0227500 & 30 \\
\hline 9.9775030 & 10.0224970 & 29 \\
\hline 9.9777560 & 10.0222440 & 8 \\
\hline 9.9780090 & 10.0219910 & 27 \\
\hline 9.9782620 & 10.0217380 & 26 \\
\hline 9.9785149 & 10.0214851 & 25 \\
\hline 9.9787679 & 10.0212321 & 24. \\
\hline 9.9790209 & 10.0209791 & 23 \\
\hline 9.9792738 & 10.0207262 & 22 \\
\hline 9.9795268 & 10.0204732 & 2 I \\
\hline 9.9797797 & 10.0202203 & 20 \\
\hline 9.9800326 & 10.0199674 & 19 \\
\hline 9.9802856 & 10.0197144 & 18 \\
\hline 9.9805385 & 10.0194615 & 17 \\
\hline 9.9807914 & 10.0192086 & 16 \\
\hline 9.9810443 & 10.0189557 & 15 \\
\hline 9.9812972 & 10.0187028 & 14. \\
\hline 9.9815501 & 10.0184499 & I3 \\
\hline 9.9818030 & 1c.0181970 & 12 \\
\hline 9.9820559 & 10.0179441 & II \\
\hline 9.9823087 & 10.0176913 & 10 \\
\hline 9.9825616 & 10.0174384 & 9 \\
\hline 9.9828145 & 10.0171855 & 8 \\
\hline 9.9830673 & 10.0169327 & 7 \\
\hline 9.9833202 & 10.0166798 & 6 \\
\hline 9.9835730 & 10.0164270 & 5 \\
\hline 9.9838259 & 10.0161741 & 4 \\
\hline 9.9840787 & 10.0159213 & 3 \\
\hline 9.9843315 & 10.0156685 & 2 \\
\hline 9.9845844 & 10.0154156 & 1 \\
\hline 9.9848372 & 10.0151628 & 0 \\
\hline & Tane.46: & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 9.8417713 & & \(\frac{\text { Tang. } 44 .}{} 9.9848372\) & 10 & \\
\hline 1 & & & 9.9850900 & 10.0149100 & \\
\hline 2 & 9.8420328 & 9.8566900 & 9.9853428 & 10.0146572 & 8 \\
\hline 3 & 9.8421634 & 9.8565678 & 9.9855956 & 10.0 & 57 \\
\hline 4 & 9.8422939 & 9.8564455 & 9.9858484 & 10.0141516 & \\
\hline 5. & 9.8424244 & 9.8563232 & 9.9861012 & 10.0138988 & 5 \\
\hline 6 & & & & & \\
\hline 7 & 9.842685, 1 & 2.8560784 & 9.9866008 & 10.0 & \\
\hline 8 & 9.8428154 & 9.8559558 & 9.9869596 & 10.0 & 52 \\
\hline 9 & 9.8429456 & 9.8558332 & 9.9871123 & 10.012887 & \\
\hline 10 & 9.8430757 & 9.8557106 & 9.9873651 & 10.012634 & 0 \\
\hline Ir & & & 9.8 & & \\
\hline 12 & 9.8433356 & 9.9554650 & 9.9878706 & 10.012129 & 8 \\
\hline 13 & 90. 8434655 & 9.855342 I & 9.9881234 & 10.011876 & 47 \\
\hline 14 & 9.8435953 & 9.8552192 & 9.988376 T & 10.0116239 & \\
\hline 15 & 9.8437250 & 9.8550961 & 9.9886289 & 10.0 & 5 \\
\hline 16 & 9. & & & & \\
\hline , & 9.8439842 & 9.854849 & 9.9891344 & & \\
\hline 18 & 9.8441137 & 9.8547206 & 9.9893871 & 10.0106129 & \\
\hline 19 & 9.8442432 & 9.8546033 & 9. 9896399 & 10.010360 & 4. \\
\hline 20. & 50.3443725 & 9.8544799 & 9.9898926 & 10.010107 & 40 \\
\hline I & & & & & \\
\hline 22 & 9.8446 & 9.85423 & 9.990398 & .009501 & 8 \\
\hline 23 & 9.8447601 & 9.8541093 & 9.9906508 & 10.009349 & 7 \\
\hline \({ }^{2} 4\) & 9.8448891 & 9.8539856 & 9.990903 & & 36 \\
\hline 25 & 9.8450181 & 9.8538619 & 9.991156 & 10.0088438 & \\
\hline 26 & & 9.8537381 & 9.9914089 & & 4 \\
\hline & 9.8452758 & 9.8536142 & 9.9916616 & 10.0. & 33 \\
\hline 28 & 9.8454045 & 9.8534902 & 9.9919143 & 10 & 32 \\
\hline 29 & 9.8455332 & 9.8533662 & 9.9921670 & 10.0078330 & 31 \\
\hline 30 & 9.8456618 & 9.853242 I & 9.9924107 & 10.007 & 0 \\
\hline & & & & & M \\
\hline
\end{tabular}

\section*{Lectori practicx Mathefeos Itudiofo, S. P.}

CANON nofter ufumb babet in Triangulorwes Spharicorum Solutione, exndem quems tabsla Sinusm rectornm © Tangentium ab alis edita, Sed praxin paulo faciliorem; Nam eorum multiplicationem per additioness, of divifonem per fubtractionem of extractionens radicis quadrata per bipartitionem evilamus.

Vt fi datis tribus lateribus quaratyr angulus, erits
Vt Rectangulum fub finibus cruram, ad guadkatum Radii;
Ita Rectangulum Swb finibus femifumma trixm laternm, or differcstia inter banc Semifummam * Bafin,
Ad quadratum Co- finus Semianguli quafiti.
Ut in Triangwlo PZS, (referente Polum, Zenith \& Solem) datis lateribus, \(P S\) gr. 70 , of \(Z P\) gr. \(38, m .30\), © \(Z S\) gr. 40 , 今i quaratur angulus \(P Z S\), скjus Bafos oft \(P S:\) fummalaterum erit gr. 148, m. 30 , femifumma gr. 74 in. 15, differentia inter femisummam of bafin, gr. 4 , m. 15.

Hic nos pro gwadrato Radiz ponimus 2.00000000 Radii duplum, cui addimus 9.9833805 Sinum gri 74, m. 15, 8.8698679 Sinum gr. 4, m. 14, fient
 38.8532484. Deinde pro rectangulo divifore addentes 9.7941495 Sinum gr. \(38, \mathrm{~m}\). 30, ơ 9.8080675 Sinum gr' 40 facimus 19.6022170 , ơ- auferimus e 38.8532484 , ita reffant 19.2510314 . Horum Semiffis eft 9.6255157 Sinus Semiangali externi gr. 24, m.58, 1.24: © Co-frnus Semianguli isterni gr. \(65, \mathrm{miI}, \mathfrak{C} .36\), Or proinde totus anginius guafites off \(\mathrm{gr} .130, \mathrm{~m}, 3\), fi 12.

Oucd fi quis pro Sinibus auferendis addat corum complementa ad Ra= ditum, non alia indigebit fubtractione; wi patere poteft ex collatione merring \(\dot{g}_{3}\) praxcos.
\begin{tabular}{|c|c|c|c|}
\hline Gr. M. & & & \\
\hline 70 co & 20.0000000 & & \\
\hline \[
\begin{array}{ll}
38 \\
30 \\
40
\end{array}
\] & \[
9.7941495
\]
\[
9.8080675
\] & & .2058505 \\
\hline & & & \\
\hline 14830 & 19.6022170 & & \\
\hline 74.15 & 9.9833805 & & 9.9833805 \\
\hline 0415 & 8.8698679 20.00 .00000 & +ats at ynd & \[
8.8698679
\] \\
\hline & 38.8532484 & & \\
\hline Gr. M. S. & 19.2510314 & Gr. M. S. & 1902510314 \\
\hline 24.5824 & 9.6255157 & 65136 & 9.625 .5157 \\
\hline 495648 & & \(130 \quad 3 \quad 12\) & \\
\hline
\end{tabular}

Eadem ratione, fed majori compendio folvwnitur catera que queri folent inTriangulis iphericis, fine ope Secantium aut Sinwsm ver forsm, ut plario bus non fit opus axt praceptis aut exemplis.

Idem fo defideres in Triangulis reetilineis, adjunge noftris Ansici co Collega Henrici Brigii Logarithmos. Nam eo niutmur fundamento, codero utimur oper andi modo.

\section*{FINIS.}

\title{
TEN CHILIADES OF LOGARITHMS of Abfolute Numbers, from an Unite to Ten thoufand.
}

\section*{The ve of the Canon.}

THis Canon hath likeure as the Tables of Right Sines and Tangents fer forth by others, but the Practice fomewhat more cafie. For keeping to their Rules, and working by thele Tables, you may ufe Addition inftead of their Mulciplication, and Subtraction inAtead of their Divifion: And fo refolve all Spherical Triangles without the help of Secants or Verfed Sines.
The like may be done for the Solution of right-lined Triangles, by help of the Logarithms of my old Collegue and worthy Friend Mr. Henry Briggs (10000 whereof follow.) For both proceed from the fame ground, and fo require the fame manner of work, as I often thew in my publick Lectures in Grefbam-College: Where I reft a Friend to all that are ftudious of Mathematical Practice,

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Nam. Logaritbm.} & \multicolumn{2}{|l|}{Nunt Logirithm.} & \multicolumn{2}{|l|}{Num. \({ }^{\text {L L garithm. }}\)} & Nuin 1 & \\
\hline \[
1412
\] & \[
2.1492191
\] & 176 & 2.2455120 & 211 & 2.3242824 & 24612 & 2 \\
\hline 142 & 2.1522883 & 177 & 2.2479732 & 212 & 2.3263358 & 472 & 6969 \\
\hline 1432 & 2.1553360 & 178 & 2.2504200 & 213 & 2.3283796 & & 2.3944517 \\
\hline 42 & 2.1583625 & 179 & 2.2528530 & 214 & 2.3304138 & 2 & 2.39619931. \\
\hline 14) \({ }^{2}\) & 2.1613680 & 180 & 2.2552725 & 215 & 2.3324384 & 250 & 00 \\
\hline & 2.16 & 1 & & 210 & 2.3 & 2512 & 3996737 \\
\hline 1472 & 2.1673 & 182 & 2.2600714 & 217 & 2.3364597 & 25212 & 2.4014005 \\
\hline 14812 & 2.1702617 & 183 & 2.26 & 218 & 12.3384565 & 25312 & 205 \\
\hline 1492 & 2.2731862 & 184 & 2.264 .8 & 219 & 2.3404441 & 2542 & \\
\hline 150 & 2.1760912 & 185 & 2.2671717 & 22 & 2.3424226 & 2552 & 2.4065402 \\
\hline & & 2 & 2.2 & & 2.3443923 & 5 & \\
\hline 152 & 2.1818436 & 187 & 2.2718416 & 222 & 2.3463530 & 257 & 1 \\
\hline 153 & 2.1846914 & 188 & 2.2741578 & 223 & 2.3483048 & 258 & 2.4116197 \\
\hline 154 & 2.1875207 & 189 & 2.2764618 & 224 & 2.3502480 & 259 & 2.4132997 \\
\hline 155 & 2.1903317 & 190 & 2.2787536 & 225 & 2.3521825 & 260 & 2.7149733 \\
\hline & 2.193124 & 191 & 2.2810333 & 226 & 2.3541084 & 1 & 2.4166405 \\
\hline & 2.1958996 & 192 & 2.2833012 & 227 & 2.3560258 & 262 & 2.4183013 \\
\hline 8 & 2.1986571 & 193 & 2.2855573 & 228 & 2.3579348 & 263 & 2.4199557 \\
\hline 159 & 2.2013971 & 194 & 2.2878017 & 229 & 2.3598355 & 4 & 2.4216039 \\
\hline 16 & 2.2041200 & 195 & 2.2900346 & 230 & 2.3617278 & 265 & 2.4232459 \\
\hline & 2.2068258 & 196 & 2.2 & 231 & 12.3636120 & & 2.4248816 \\
\hline 2 & 2.2095150 & 197 & 2.2944662 & 232 & 2.3654880 & 267 & 2.4265112 \\
\hline 3. & 2.2121876 & 198 & 2.2966652 & 233 & 32.3673559 & 68 & 2.4281348 \\
\hline & 2.2148438 & 9 & 2.298853 I & & \(4{ }^{2.3692158}\) & 269 & 2.4297523 \\
\hline 165 & 2.2174839 & 20 & 2.3010300 & & \(5{ }^{2.3710678}\) & 270 & 2.4313637 \\
\hline & 2. & 201 & 2.30 & . & 62.3729120 & 271 & 2.4329693 \\
\hline 167 & 2.2227164 & 202 & 2.3053513 & & 72.3747483 & 272 & 2.4345689 \\
\hline 168 & 2.2253093 & 20 & 2.3074960 & & 8:2.3765770 & & 2.4361626 \\
\hline 169 & 2.2278867 & 204 & 2.3096301 & 239 & 92.3783979 & 274 & 2.4377505 \\
\hline 170 & 2.2304489 & 205 & 2.3117538 & & 02.3802112 & 275 & 2.4393327 \\
\hline & 12.2329961 & & 2.3138672 & & 12.3820170 & & 2.4409091 \\
\hline 172 & 2.2355284 & 207 & 2.3159703 & & 22.3838153 & 277 & 2.4424797 \\
\hline 173 & 2.2380461 & 208 & 82,318063 3 & & 32.3856063 & 27 & 2.4440448 \\
\hline & 42.2405492 & 209 & 2.3201463 & & 2.3873898 & & 2.4456042 \\
\hline & \(l_{2.2430380}\) & 210 & 12.3222193 & 24 & 52.3891660 & 280 & 2,4471580 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Num. 1 Logarithm.} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{c}
Num \({ }^{\text {Logarithm. }}\) \\
\hline \(316 \mid 2.4996871\)
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\frac{\text { Num. } 1 \text { Logarishm. }}{351 / 2.5453071}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\left.\frac{\text { Num. } \mid \text { Logaritbmu. }}{386 \mid 2.5865873} \right\rvert\,
\]}} \\
\hline 281 & 2.4487063 & & & & & & \\
\hline 282 & 2.4502491 & 317 & 2.5010593 & 352 & 2.5465426 & & \\
\hline 283 & 2.4517864 & 318 & 2.5024271 & 353 & 2.5477747 & & 2.5888317 \\
\hline 284 & 2.4533183 & 319 & 2.5037907 & 354 & 2.5490033 & & 2.5899496| \\
\hline 285 & 2.4548448 & 320 & ,.5051500 & 355 & 2.5502283 & 39 & 2.5910646 \\
\hline 286 & 2.75636 & 1 & 2.5065050 & 356 & 2.5514500 & 39 & 2.5921767 \\
\hline 287 & 2.4578819 & 22 & 2.5078559 & 357 & 2.5526682 & 39 & 2.5932861 \\
\hline 28.8 & 2.4593925 & 323 & 2.5692025 & 35 & 2.5538830 & 39 & 2.5943925 \\
\hline 289 & 2.4608978 & 324 & 2.5105450 & 359 & 2.5550944 & 39 & 2.5954962 \\
\hline 290 & 2.7623980 & 325 & 2.5118833 & 360 & 2.5563025 & 39 & 2. \\
\hline & 2.4638930 & 326 & ?.513217 & 361 & 2.55 & & 2.5976952 \\
\hline 292 & 2.4653828 & 327 & 2.5145477 & 362 & 2.5587086 & 39 & 2.5987905 \\
\hline 293 & 2.4668676 & 328 & 2.5158738 & 363 & 2.5.599066 & 39 & 2.5998831 \\
\hline 294 & 2.4683473 & 329 & 2.5171959 & 364 & 2.5611014 & 3 & 2.6009729 \\
\hline 295 & 2.4698220 & 330 & 2.5185139 & 365 & 2.5622929 & 40 & 0 \\
\hline 296 & 2.4712917 & 331 & 2.5198280 & 66 & 2.5634 & & \\
\hline 297 & 2.4727564 & 332 & 2.52 II 38 I & 367 & 2.5646661 & & \\
\hline 298 & 2.4742162 & 333 & 2.5224442 & 368 & 2.5658478 & & \\
\hline 299 & 2.4756712 & 34 & 2.5237464 & 369 & 2.5670263 & & \\
\hline 300 & 2.4771212 & 335 & 2.5250448 & 370 & 2.5682017 & & \\
\hline & & & 2.5263393 & 371 & 2.5693739 & & \\
\hline 302 & 2.4800069 & 337 & 2.5276299 & 372 & 2.5705429 & 40 & 2.6095944 \\
\hline 303 & 2.4814426 & 33.8 & 2.5289167 & 373 & 2.5717088 & & 2.6106602 \\
\hline 304 & 2.4828736 & 339 & 2.5301997 & 374 & 2.5728716 & & \\
\hline 305 & 2.4842998 & 340 & 2.5314789 & 375 & 2.5740313 & & \\
\hline 306 & 2.4857214 & 341 & 2.5327544 & 370 & 2.5751878 & & \\
\hline 97 & 2.4871384 & 342 & 2.5340261 & 377 & -.5763413 & & 2:6148972 \\
\hline 3081 & 12.4885507 & 343 & 2.5352941 & 378 & 2.5774918 & & 2.6159500 \\
\hline 309 & 2.4899585 & 344 & 2.5365584 & 370 & 2.5786392 & 41 & 2.6170003 \\
\hline 310 & 2.4913617 & 355 & 2.5378191 & 38 & 2.5797836 & 41 & 2.6180481 \\
\hline & & & 2.5390761 & & 2.5809250 & & 2.6190933 \\
\hline & & 347 & 2.5403295 & 38 & 2.5820634 & 4 & 2.6201360 \\
\hline & & 348 & 2.5415792 & 38 & 2.5831988 & & 2.6211763 \\
\hline & 2.4969296 & 349 & 2.5428254 & 38 & 2.5843312 & & 2.6222140 \\
\hline & 2.4983105 & 350 & 2.5440680 & & 2.5854607 & & 2.6232493 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Num.I Logatithm.}} & \multicolumn{2}{|l|}{Num. I Logatitbm.} & \multicolumn{2}{|l|}{Num. Logaritibm.} & \multicolumn{2}{|l|}{Num.I Logarithmi.} \\
\hline & & \multicolumn{2}{|l|}{87612.9425041} & 911 \({ }^{2}\) & 2.9595184 & 946 & 2.9758911 \\
\hline 8422.9 & 2.9253121 & 8772 & 2.9429996 & 9122 & 2.9599948 & 947 & \\
\hline 843 2. & 2. 22258276 & 8782 & 2.9434945 & 913 & 2.9604708 & 948 & \\
\hline 8442 & 2.9263424 & 8792 & 2.9439889 & 914/2 & 2.9609462 & 949 & 2.9772662 \\
\hline 845 & 2.9268567 & 830 & 2.9444827 & 915 & 2.9614211 & 950 & 2.9777236 \\
\hline & & ! & & 2 & 2.9618955 & 951 & \\
\hline 8472 & & 882 & 2.9454 & 9172 & 2.9623693 & 952 & 2.9786369 \\
\hline 848 & 2.9283958 & 88312 & 2.9459607 & 918 & 2.9628427 & 953 & 2.9790929 \\
\hline 849 & 2.9289077 & 884 & 2.9464523 & 919 & 2.9633155 & 954 & 2.9795484 \\
\hline 8502 & 2.9294189 & 885 & 2.9469433 & 220 & 2.9637878 & 955 & 2.9800034 \\
\hline & 2.9299296 & 886 & & 921 & 2.9 & 956 & \\
\hline 852 & 2.9304396 & 87 & 2.9479236 & 922 & 2.96 & 957 & 2.9809119 \\
\hline 853 & 2.9309490 & 888 & 2.9484130 & 923 & 2.9652017 & 958 & 2.9813655 \\
\hline 854 & 2.9314579 & 889 & 2.9489018 & 2 & 2.9656720 & 959 & \\
\hline 855 & 2.9319661 & 890 & 2.9493900 & 925 & 2.9661417 & 960 & 2.9822712 \\
\hline 2 & 2.9324738 & 91 & & 926 & 2.9 & 961 & 2.3827234 \\
\hline 2 & 2.9329808 & 892 & 2.9503648 & 927 & 2.96 & 962 & 2.9831750 \\
\hline 858 & 2.9334873 & 893 & 2.9508514 & 928 & 2.9675480 & 963 & 2.9836263 \\
\hline 859 & 2.933 .9932 & 894 & 2.9513375 & 929 & 2.9680157 & 964 & 2.9840770 \\
\hline 860 & 2.9344984 & 895 & 2.9518230 & 93 & 2.9684829 & 965 & 2.9845273 \\
\hline 861 & & 896 & 2.9523080 & & 2.9689497 & & \\
\hline 86 & 2.9355073 & 897 & 2.9527924 & 932 & 2.9694159 & . 967 & 2.9854265 \\
\hline 863 & 2.9360108 & 898 & 2.9532763 & 933 & 2.9698816 & | 968 & 2.9858753 \\
\hline 864 & 2:9365137 & 899 & 2.9537597 & 934 & 2.9703470 & 969 & 2.9863238 \\
\hline 865 & 5.9370162 & 900 & 2.9542425 & 935 & 2.9708116 & . 97 & 2.9867717 \\
\hline & 2.937 & 901 & 2.9547248 & & 2.97127 .5 & 7 & 12.9872192 \\
\hline 867 & 72.9380191 & 902 & 2.9552065 & 937 & 2.9717396 & 772 & 22.9876663 \\
\hline 86 & 2.9385197 & 903 & 2.9556877 & 938 & 2.9722028 & 973 & \\
\hline 869 & 92.9390198 & 904 & 2.9561684 & - 939 & 2.9726656 & 97 & \\
\hline 870 & 02.9395192 & 905 & 2.9566485 & 940 & 2.9731278 & 975 & 2.9890046 \\
\hline & 12.9400181 & 906 & 2.9571282 & & 2.97 .35896 & & \\
\hline 872 & \(22^{294405165}\) & 5907 & 2.9576073 & 942 & 2.9740509 & 97 & 278, \({ }^{2.9898946}\) \\
\hline 873 & 732.9410142 & 2908 & 2.9580858 & 94 & \(2.9745^{117}\) & 97 & 2,9903388 \\
\hline 874 & 42.9415114 & 4909 & 2.9585639 & 9 & 42.9749720 & 979 & 2.9907827 \\
\hline & 2.94200 & & . 959 & 4945 & 2.9 & & 2.991226 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline | Num. & 1 Logarithm. & N & n. & & \({ }_{1}\) Logarithm. & & \\
\hline 1121 & 3.0490056 & II50 & 3.0629578 & 1191 & \(\therefore .0759118\) & 12 & \(\therefore .0884905\) \\
\hline I & 7.0499928 & 1157 & 3.0633333 & 1192 & 3.0762762 & 1227 & \\
\hline I & 3.0503797 & 115 8 & 3.0637085 & 1193 & 3.0766404 & 1228 & \(3.289158 \div\) \\
\hline 1124 & 3.0507663 & 1159 & 3.0640834 & I 194 & 3.0770043 & 1229 & 19 \\
\hline I & 3.0511525 & 1160 & 3.0644580 & 1195 & 3.0773679 & 1230 & 3.0895051 \\
\hline 1126 & 3.051538 & I 1 & 3.0648322 & 1196 & 3.0777312 & 1231 & \\
\hline & -.0519239 & I 1 & 3.0652061 & 1197 & 3.0780941 & 1232 & 3.0906107 \\
\hline II 2 Q & 3.0523091 & 1163 & ?.0655797 & 1198 & 13.0784568 & 3 & 3.0909631 \\
\hline & 3.0526939 & 1164 & 3.0659530 & I 199 & 2.0788192 & 4. & 1 \\
\hline 1130 & 3.0530784 & 1165 & 3.0663259 & 1200 & 3.0791812 & 1235 & \\
\hline & 13.05 34626 & 1166 & 3.0666985 & I 201 & 3.0795430 & 1236 & \\
\hline 32 & 3.0538464 & 1167 & 3.0670708 & 1202 & 3.0 & 7 & 3.0923696 \\
\hline II 33 & 3.0542299 & I 168 & 2.0674428 & 1203 & 3.0802656 & 1238 & :.0927206 \\
\hline & 3.0546130 & I169 & 3.0678145 & 120 & 3.0806265 & I239 & \(3.0930 \% 12\) \\
\hline II 15 & \(3.054995^{8}\) & I170 & 3.0681859 & 1205 & 3.0809870 & 1240 & 3.0934217 \\
\hline 6 & 3.0553783 & 117 & 3.06855 .69 & 206 & 3.0813473 & 1241 & 3.0937718 \\
\hline 1137 & 3.0557604 & 1172 & 3.0689276 & 1207 & 2.0817073 & 2 & 3.0941216 \\
\hline 1138 & 3.0561423 & 1173 & 3.0692980 & 1208 & :3.0820669 & 1243 & 3.09447-1 \\
\hline & 3.0565237 & 1174 & 3.0696681 & 1209 & 3.0824263 & 1244 & \\
\hline 1140 & 3.0569048 & 1175 & 3.0700379 & 1210 & 3.0837854 & 1245 & \\
\hline & 3.0572856 & 1176 & 3.0704073 & \(\mathrm{I}_{2} \mathrm{II}\) & 3.0831441 & & \\
\hline 42 & 3.0576661 & 1177 & 3.0707765 & 1212 & 3.0835026 & 1247 & 3.0958664 \\
\hline I I 4.3 & 3.0580462 & 1178 & 3.0711453 & I2I3 & 3.0838608 & 1248 & 3.0962146 \\
\hline 1144 & 2.0584260 & 1179 & 3.0715138 & 1214 & 3.0842187 & 1249 & 3.0965624 \\
\hline 1145 & 3.0588055 & II80 & 3.0718820 & 1215 & 3.0845763 & 12 & 3.0269100 \\
\hline 1.146 & 3.0591846 & I181 & 3.0722799 & 1216 & 3.0849336 & 1251 & 2573 \\
\hline & 3.0595634 & I 182 & 3.0726175 & 1217 & 3.0852906 & 1252 & 3.097604 \\
\hline II 48 & 3.0599419 & 1183 & 2.0729847 & & 3.0856473 & 1253 & 1 \\
\hline 49 & 3.0603200 & 1184 & 3.0733517 & 1219 & 3.0860037 & 1254 & 3.0982975 \\
\hline II 50 & 3.0606978 & 1185 & 3.0737183 & 12 & 2.0863598 & 1255 & 3.0986437 \\
\hline II5 1 & . 0610753 & I 182 & 3.0740847 & 1221 & 3.0867156 & 1256 & 3.0989896 \\
\hline 152 & 3.0614525 & I : 87 & 3.0744507. & 1222 & 3.0870712 & 1257 & 3.0093353 \\
\hline & 2.0618293 & I 188 & 3.074 .8164 & 1223 & 3.0874264 & 1258 & 3.0996806 \\
\hline II54 & 3.0622058 & 1189 & 3.0751818 & 1224 & 3.0877814 & 1259 & 3.1000257 \\
\hline 115 & 3.0625820 & 19 & 3.0755470 & 122 & 3.0881361 & 1260 & 3.1003705 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline N & L & N & Log & & Logarithm & Numi. 1 & Logarithm:-1 \\
\hline 1261 & \(\bigcirc 1007151\) & 1296 & 3.1120050 & I331 & 3.1241780 & 1365 & 3.1354507 \\
\hline 1262 & :.1010593 & -1297 & 3.1129400 & 1332 & 3.1245042 & 1367 & 2.1357685 \\
\hline 1263 & 3.1014033 & 1293 & 3.11 32747 & 1333 & \(\therefore\).1248301 & 13683 & 3.1360861 \\
\hline 1264 & .1017471 & 1299 & 3.1136091 & 1334 & .1251558 & I 369 & 3.13640341 \\
\hline :265 3 & 3.1020,05 & 1300 & \(\therefore 1139433\) & 1335 & 3.1254813 & 1370 & :.1367206 \\
\hline 1266 & 3.1024337 & 1 & 3. & 1336 & .1258064 & 7.1 & \\
\hline 1267 & 3.1027766 & 1302 & \(\therefore\) II & 1337 & 2.1261314 & 1372 & \\
\hline 1268 & 13.1031192 & 1303 & \(\therefore 1149444\) & 1338 & . 1264561 & 1373 & 3.1376;05 \\
\hline 1269 & 3.1034616 & 1304 & 2.1152776 & 1339 & 2.1267806 & 1374 & 3.1379867 \\
\hline 1270 & \(\therefore .1038037\) & 1305 & 3.1156105 & 1340 & 3.1271048 & 1375 & 3.1383027 \\
\hline 1 & 3.10+1455 & 1 & 3.1159432 & & & & \\
\hline 1272 & 3.1044871 & 1307 & 3.1162756 & 1342 & 3.1277525 & 1377 & 2.1389334 \\
\hline 1273 & 3.1048284 & 1308 & 3.1166077 & I 343 & 3.1280760 & 1378 & 3.1392492 \\
\hline I274 & 3.1051694 & 1309 & 2.1169396 & 1344 & 3.1283993 & 9 & 3.13.95643 \\
\hline 1275 & 3.1055102 & 1310 & 3.1172713 & 1345 & 3.1287223 & 1380 & 3.1398791 \\
\hline 12 & 1.1058507 & & 3.1176027 & 1346 & 3.1290450 & 1381 & 3.1401937 \\
\hline 12 & 3.1061909 & & 3.1179338 & 1347 & 2.1293678 & 1382 & ?.1405080 \\
\hline 127 & 2.1065308 & 13 & 3.1182647 & 1348 & 3.1296899 & & 3.1408222 \\
\hline 1279 & 3.1068705 & 1314 & 2.1185954 & 1349 & 3.1300119 & 1384 & 3.1411361 \\
\hline 1280 & 3.1072100 & 1315 & 3.1189257 & 1350 & ?.1303338 & 1385 & 3.1414498 \\
\hline & 3.10 & & & 1351 & 3.130655 & & \\
\hline 1282 & 3.1078880 & 1317 & 3.1195858 & 1352 & 3.1309767 & 1387 & 3.1420765 \\
\hline 1283 & \(3 \cdot 1082266\) & 1318 & 3.1199154 & 1353 & 3.1312978 & 1388 & 3.1423895 \\
\hline 1284 & 3.1085 & 1319 & 3.1202448 & & 2.1316187 & 9 & 3.1427022 \\
\hline 1285 & 3.1089 & & . 1205739 & 1355 & 3.1319393 & 1390 & 5.1430148 \\
\hline 128 & 3.1092410 & 1321 & 3.1209028 & 1356 & -.1322597 & 1391 & 2.1433271 \\
\hline 1287 & 72.1095785 & 1322 & 3.121231 & 1357 & 3.1325798 & 1392 & 3.1436392 \\
\hline 1288 & :1099159 & 323 & 3.1215598 & I 358 & 3.1328998 & 1393 & 2.14395 II \\
\hline 1289 & 3.1102529 & 1324 & 3.1218880 & 1359 & -.1332195 & 4 & 3.1442628 \\
\hline 1290 & 3.1105897 & 1325 & 2.1222159 & I 360 & 3.1335389 & 1395 & 3.1445742 \\
\hline & 3.1109262 & 1326 & 3.1225435 & 136 & 3.1338581 & & 3.1448854 \\
\hline 1292 & \(2{ }^{1} 3.1112625\) & 1327 & 3.1228709 & 1362 & 3.1341771 & & 3.1451964 \\
\hline 1293 & 33.1115985 & 1328 & 83.1231980 & 1363 & 3.1344958 & 1398 & 3.1455071 \\
\hline & 4 2.1119343 & 1329 & 3.1235250 & 1364 & 3.1348144 & 1399 & \(3.145^{8177}\) \\
\hline 1295 & 5 2.1122698 & 1330 & 3.1238516 & 1365 & 12.1351326 & 1400 & 3.1461280 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Nunn. Logarithm.} & \multicolumn{2}{|l|}{Num. 1 Logirithm.} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Num. 1 Logaritbm.
\[
14713.1676127
\]}} & \multicolumn{2}{|l|}{} \\
\hline 1401 & 13.1404351 & 1436 & 3.15715 & & & & \\
\hline 2 & 3.1467480 & 14.37 & 3.1574568 & 1472 & 3.1679078 & 1507 & 2 \\
\hline 3 & 3.1470577 & 1438 & 3.1577589 & 1473 & 3.1682027 & 15 & 3.1784013 \\
\hline 1404 & 3.1473671 & 1439 & ?. 1580608 & I 47 & 3.1684975 & 150 & \(3.178689^{2}\) \\
\hline 1405 & 2.1476763 & 1440 & 3.1583625 & 1475 & 3.1687920 & 151 & 3.1789769 \\
\hline & 3.1479853 & 1 & 3.15866 & 1.4 & 3.16908 & 15 & \\
\hline 1407 & \(\therefore 14829+1\) & 1442 & 3.1589653 & 147 & ;. 693805 & 15 & 3.17955181 \\
\hline 08 & 13.1486026 & 1443 & 3.1592663 & 147 & . 1696744 & 15 & \\
\hline 1409 & 3.1489110 & 1444 & 3.1595672 & J 479 & 3.1699682 & 15 & 3.1801259 \\
\hline 1410 & 3:1492191 & 1445 & i. 1598678 & 1480 & 3.1702617 & 15 & 3.1804126 \\
\hline & & 14 & 3.1601683 & & 3.1705550 & 15 & 3.1806992 \\
\hline I4I2 & 3.1498347 & 1447 & 3.1604685 & 1482 & 3.1708482 & 151 & 3.1809852 \\
\hline 1413 & 3.15014 .22 & 1448 & 3.1607686 & 1483 & 3.1711411 & 15 & 2.1812718 \\
\hline 1414 & 3.1504494 & 1449 & 3.1610684 & 1484 & 3.1714339 & & 15578 \\
\hline 1415 & 3.1507564 & 1450 & 3.1613680 & & 3.1717264 & 15 & \\
\hline & 3. & 1451 & 3.161667 & 14 & \(3.1720: 38\) & 15 & 821292 \\
\hline & 3.1513698 & 1452 & 3.1619666 & 148 & 3.1723110 & 15 & 7.1824146 \\
\hline & 3.15!6762 & 145 & 2.1622656 & 1488 & -.1726029 & 15 & 3.1826999 \\
\hline 19 & 3.1519824 & 1454 & 3.1625644 & 1489 & ?.1728947 & 15 & 3.1829850 \\
\hline 1420 & i.1522883 & 1455 & 3.1628630 & 1490 & 3.1731863 & 1525 & 3.1832698 \\
\hline & 3.1525941 & & & & -. 1734776 & 152 & 3.1835545 \\
\hline 1422 & 3.1528996 & 1457 & 3.1634595 & 149 & 2.1737688 & 15.27 & 3.1838390 \\
\hline 1423 & 3.1532049 & 1458 & 3.1637575 & 1493 & 2.1740598 & 1528 & 7.1841233 \\
\hline 1424 & \(\because .1535100\) & 1459 & 3.164 .0553 & I 49 & 3.1743506 & 152 & 2075 \\
\hline 1425 & 3.1538149 & I460 & 3.1643528 & & 131746412 & 15 & 4 \\
\hline 1426 & 3.1541195 & 1461 & 3.1646502 & 149 & 3.1749316 & 153 & 52 \\
\hline & ¢.1544240 & 1462 & 3.1649474 & 149 & 3.1752218 & 15 & 852588 \\
\hline 128 & 3.1547282 & 1463 & 3.1652443 & 14 & 3.1755118 & & 5542 I \\
\hline 1429 & 3.1550322 & 1464 & 3.1655411 & 1499 & 3.1758016 & 15 & 3.1858253 \\
\hline 1430 & 3.1553360 & 1465 & 3.1658376 & 1500 & 3.1760913 & 153 & \\
\hline , & -.1556396 & 1406 & F. 166134.0 & 1501 & 3.1763807 & & 12 \\
\hline 32 & 3.1559430 & 1467 & 3.1664301 & 1502 & 3.1766699 & 153 & 3.1866739 \\
\hline & 2.1562462 & 1468 & 3.1667260 & 1503 & 3.1769590 & 153 & 3.1869563 \\
\hline & 3.1565491 & 1469 & 3.1670218 & 150 & 3.1772478 & 153 & 3.1872366 \\
\hline & 3-156819 & 14 & 3.1673173 & 150 & 3.1775365 & 15 & 3.1875207 \\
\hline
\end{tabular}

\section*{000002}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 12 & Num & Logarithrm. & & & & \\
\hline 1541.1578026 & 1.)70 & 3.19/5502 & & (9)5 & & 3.2164298 \\
\hline \(1542 \therefore 1880,344\) & 1577 & 3.197837 & 1012 & \(\therefore 2073650\) & 1647 & \(2.216693 C\) \\
\hline 15433.7883059 & 1578 & 2.19810\%0 & 1ヶI3 & \(\because 20763\) & 1648 & 3.216957 .2 \\
\hline 1544 2.1886473 & 1579 & 3.1983821 & 16I4 & .2079035 & 1649 & 3.2172200 \\
\hline 154513.1889285 & 1580 & . 1986571 & 1615 & . 2081725 & 1650 & \\
\hline 15463.1892095 & 1581 & \[
13 \cdot
\] & 1616 & & 1 & \\
\hline 15473.1894903 & 1582 & \(\therefore 199205\) & 1017 & .208?100 & 1652 & \\
\hline 154813.1897709 & 1583 & -1994809 & 1618 & 3.2089785 & 1653 & 3.2182728 \\
\hline 15492.1900514 & 1584 & \(2.199755^{2}\) & 1619 & 3.2092468 & 1654 & \\
\hline \(1550 \mid\) '1903317 & 1585 & 3.2000293 & 1620 & - 2095150 & 1655 & \\
\hline \begin{tabular}{l|l|l|}
1551 & 3.1906118
\end{tabular} & & 3.2003032 & & & & \\
\hline 15523.1908917 & 1587 & 3.2005769 & 1622 & \(\bigcirc .2100508\) & 1657 & 3.2193225 \\
\hline 1553 3.1911714 & -1588 & ?.2008505 & 1623 & 2.2103185 & 1658 & 3.2195845 \\
\hline 115543.19 & 1589 & 2.2011239 & 1624 & \(\therefore .2105860\) & 1659 & 3.2198464 \\
\hline 1555 3.1917304 & 1590 & 3.2013971 & 1625 & 3.2108534 & 1660 & 3.2201081 \\
\hline 1556 \(\because\) '1920096 & 1591 & 3.2016 & 1626 & , 21111205 & 6 I & 3.2203696 \\
\hline 155733.1922886 & 1592 & 3.201943 & 1627 & 3.2113876 & 2 & 2.2206310 \\
\hline 155812.1925674 & 1593 & 3.2022158 & 1628 & 2.2116544 & & 3.220892 I \\
\hline 15593.1928461 & 1594 & 3.2024883 & 1629 & ?.2119211 & 1664 & 3.2211533 \\
\hline 15603.1931246 & 1595 & 3.2027607 & 1630 & 3.2121876 & 1665 & 2.2214142 \\
\hline & & 3.2030329 & & 3.2124540 & & 2.2216750 \\
\hline 15623.193 & & 3.2033049 & 1632 & -.2127201 & 1667 & ?.2219356 \\
\hline 156313.1939590 & 1598 & 3.2035768 & 1633 & 3.2129862 & 1668 & 2.2221960 \\
\hline 1564 -1942367 & 1599 & 3.2038485 & 1634 & \(\therefore .2132521\) & 1669 & 3.2224563 \\
\hline 1565191945143 & 1600 & . 2041200 & 1635 & 3.2135178 & & 3.2227165 \\
\hline 15663.1947917 & 1 COI & 3.3043913 & 163 & . 2137833 & & \(\therefore .2229764\) \\
\hline 15673.1950690 & 1602 & 3.2046625 & & 2.2140487 & & \\
\hline 1568 ?.1953460 & 1603 & 3.2049335 & 1638 & 3.2143139 & 1673 & \[
2.2234959
\] \\
\hline 15693.1956229 & 1604 & 3.2052044 & 1639 & \(\bigcirc .2145789\) & 1674 & 3.2237555 \\
\hline \(1570{ }^{1} 1958996\) & 1605 & ¢.2054750 & 1640 & 3.2148438 & 1675 & 2.2240148 \\
\hline \[
15712.1961762
\] & & & 1641 & 3.2151086 & & ?,2242740 \\
\hline 1572 3.1964525 & 160 & \[
3.2060159
\] & 1642 & 3.2153732 & 1677 & 3.2245331 \\
\hline 1573 \(3: 1967287\) & 160 & 8 3.2062869 & 1643 & 3.2156376 & 1678 & 3.2247920 \\
\hline 1574 2.1970047 & 1600 & 3.2065560 & I 644 & 3.2159018 & 1679 & 3.2250507 \\
\hline 15753.1972806 & 16 & 13.2068259 & 1645 & 3.2161659 & 1680 & 3.2253093 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Logarithm. & Num. & 1 Logarithm. & Numil & 1 Logatithm. & Num & Logarithm. \\
\hline & 3.2003099 & 1856 & 13.2685780 & 1891 & 3.2760915 & 1920 & |3.2840563 \\
\hline & 3.2605484 & 1857 & 3.2688119 & 1892 & 3.2769211 & 19273 & 3.2848817 \\
\hline 1823 & \(\therefore\) 2607867 & 1858 & 3.3690457 & 1893 & 3.2771506 & 1928 & 3.2851070 \\
\hline & 3.261024.8 & 1859 & 3.2692794 & 1894 & 3.2773800 & 19293 & 3.28533 \\
\hline 1825 & 3.2612629 & 1800 & 3.269529 & 1895 & 3.2776092 & 193013 & 3.2855573 \\
\hline & & & & 1896 & & & \\
\hline & 2.2617 & 1862 & :.26 & 1897 & 3.2780673 & 1932 & 3.28 \\
\hline 1828 & 3.2619 & 1863 & 2.27 & 1898 & 3.2782962 & 3313 & 3.28 \\
\hline & 3.2622137 & 1864 & 3.2704459 & 1899 & 3.2785 .250 & 1934 & 3.28645 \\
\hline 1830 & 3.262 & 1865 & 3.2706788 & 1900 & 3.2783536 & 1935 & 3.28668 \\
\hline & & 1866 & & 1901 & 3.2789821 & & \\
\hline 18 & 3.2629255 & 1867 & 3.2711443 & 1902 & 3.2792105 & 19373 & 3.2 \\
\hline 18 & \(\therefore 2631625\) & 1868 & 3.2713769 & 1903 & 3.2794388 & 1938 & \\
\hline I8 & 3.2633993 & & 3.2716093 & 1904 & 3.2796669 & 1938 & \\
\hline 18 & 3.2636361 & 1870 & 3.2718416 & \(190{ }^{1}\) & 3.2798950 & 1940 & \\
\hline & 3.263 & & & 1906 & & 3 & \\
\hline & 3.26410 & & 2.2723 & 1907 & 3.2803507 & , & \\
\hline & 3.2643455 & & 2.2725378 & 1908 & . 2805784 & 1943 & \\
\hline 1839 & 3.2645 S17 & 1874 & 3.2727696 & 19093 & 3.2808059 & 1944 & 63 \\
\hline 1840 & 3.2648178 & 1875 & 3.2730013 & 1910 & 3.2810034 & 3 & \\
\hline & & & & & & & \\
\hline 1842 & .2652896 & 1877 & 3.2734643 & 1912 & 3.2814879 & 19 & \\
\hline 18 & 655253 & 1878 & 3.2736956 & 1913 & 3.2817150 & 194 & \\
\hline 1844 & 2657609 & 1879 & 3.2739268 & 19143 & 3.2819419 & 1949 & 龶 \\
\hline 18 & 3.2659964 & 189 & 3.2741578 & 1915 & & 1950 & \\
\hline & 3.2662317 & 188 I & 3.2743888 & & & 1951 & \\
\hline 1847 & 3.2664669 & 18 & 3.2746196 & 1917 & 2.282622 & 1952 & 3.29 \\
\hline 1848 & . 2667020 & I883 & 3.2748503 & 1918.3 & 3.2828486 & 1953 & 3.2 \\
\hline 1849 & 3.2669369 & 1884 & 2.2750809 & 1919|328 & 3.2830750 & 1954 & 3,29 \\
\hline 1850 & 3.267 Imp 97 & 1885 & 3.2753113 & 1920 & 2.2833012 & 1955 ! & 3 \\
\hline & & & 3.2755417 & & 3.2835274 & 95 & \\
\hline 185 & 3.2676410 & 1887 & 3.2757719 & 192 & 3.2837534 & 1957 & 3.2915908 \\
\hline & 3.2678754 & 1888 & 3.2760020 & 1923 & 3.2839793 & 1958 & 3.2918127 \\
\hline & 3.2687097 & 1889 & 3.2762320 & 1924|3 & 3.2842051 & 19593 & 3.2920344 \\
\hline 185 & 683 & 1890 & 3.2764618 & 1925 & 2.2844307 & 19 & 3.29225 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Num.1 Logarithm.} & \multicolumn{2}{|l|}{Num [Logarithm.} & \multicolumn{2}{|l|}{Num.1 Logarithm.} & \multicolumn{2}{|l|}{Num.1 Logarithm.} \\
\hline 19 & 3.2924776 & 1996 & 3.3001605 & 203 & 3.3077099 & 2066 & 303 \\
\hline 1962 & 3.2926990 & I9973 & \(3 \cdot 3003781\) & 20 & 3.3079237 & 2067 & 405 \\
\hline 1963 & 3.2929203 & 19983 & 3.300595 & 2033 & 3.3081374 & 2068 & 3155505 \\
\hline 1964 & 3.2931415 & 19993 & 3.3008128 & 2034 & 3.3083509 & 2069 & \\
\hline 1965 & 3.2933626 & 290013 & 13.30 & 2035 & 13.3085644 & 2070 & 3159703 \\
\hline & & 2 & & & & 1 & \\
\hline 19 & \(3.29380+1\) & 2002 & 3.301464 & & 3.30899 & 2072 & \\
\hline 196 & 3.29402 & & 13.3016809 & 2038 & 13.3092042 & 2073 & \\
\hline 19 & \(3.29+2457\) & 2004 & 3.3018977 & 2039 & 3. & 20743 & \\
\hline 1 & 3.2944662 & 2005 & 3.3021144 & 2040 & 3.3096302 & 2075 & \\
\hline & 13.2940866 & & & & 3. & & \\
\hline 19 & 3.2949069 & & 3.3025474 & 20 & \(3 \cdot 310055\) & 2077 & . 3174365 \\
\hline 19 & 3.2951271 & 2008 & 3.3027637 & 2043 & \(3 \cdot 310268\) & 2078 & \(3 \cdot 31764.55\) \\
\hline 1974 & 3.295 & 20 & 3.3029799 & 20 & 3.31048 & & . 3178545 \\
\hline 1975 & 3.2955671 & 2010 & 3.3031961 & 20 & 3.3100 & & \\
\hline & 3.2957869 & 2011 & 3. & & & 2981 & \\
\hline & 3.2960067 & 20 & 3.3036280 & \[
204
\] & 3.3111178 & 20 & \[
307
\] \\
\hline & 3.2962263 & & 3.3038438 & & 3.3113299 & -83 & . 3186893 \\
\hline & 3.2964458 & 2014 & 3.3040595 & 2049 & 3.3115420 & 2084 & \\
\hline 1980 & 3.2966652 & \(2=15\) & 3.3042751 & 2050 & 3.3117539 & & 061 \\
\hline & 3.2968845 & & & 205 & 3.3119657 & & .3193143 \\
\hline 1982 & 3.2971036 & 2017 & 73.3047059 & 2052 & 3.312177 & 2087 & .3195224 \\
\hline 1983 & 3.2973227 & 2018 & 3.3049212 & 2053 & 3.3123889 & 2088 & 3.3197305 \\
\hline 1984 & 3.2975417 & 201 & 3.3051363 & & 3.3126004 & 89 & \\
\hline 1985 & 3.2977605 & 2020 & O.3053514 & 20 & \[
3.3128118
\] & & 63 \\
\hline 1986 & 3.2979792 & 2021 & 13.3055663 & 2056 & 3.3130231 & I 1 & 3.3203540 \\
\hline 1987 & 3.2981979 & 202 & 23.3057812 & 2057 & 3.313234.3 & 292 & 3.3205517 \\
\hline & 3.2984164 & 2 & 33.3059959 & & 3.3134454 & & . 3207692 \\
\hline 1989 & 3.2986348 & 2024 & 43.3062105 & 2059 & 3.3136563 & 2094 & 67 \\
\hline 1990 & 3.2988531 & 2025 & 53.3064250 & 2060 & 3.3138672 & 2095 & 3.3211840 \\
\hline 1991 & 3.2990713 & 2026 & 3.3066394 & & & & \\
\hline 1992 & 3.2992893 & 2027 & 7 \(\mid 3.3068537\) & 2062 & \[
3.3142887
\] & 20 & \\
\hline 1993 & 3.2995073 & 202 & 8 3.3070679 & 2063 & \[
3.3144992
\] & \[
20
\] & \[
3.3218055
\] \\
\hline & 3.2997251 & 2029 & 3.3072820 & 2 & 3.3147097 & & 3.3220124 \\
\hline & 3.2999429 & 2030 & 13.3074960 & 2065 & 3.3149200 & 2100 & 3.3222193 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Num.1 & 1 Logarithm. & Num I & 1 Logarithm. & Num. 1 & 1 Logarithm. & Num.] & Logarithm. \\
\hline 2101 & 3.3224260 & 2136 & 3296012 & 217 & 8 & 2200 & +30055 \\
\hline 2102 & 3.3226327 & 2137 & 3.3298045 & 2172 & 3.3368598 & 2207 & 3.3438023 \\
\hline 2103 & 3.3228393 & 2138 & 3.3300077 & 2173 & 3.3370597 & 2208 & \(3 \cdot 3439991\) \\
\hline 2104 & 3.3230457 & 2139 & 3.3302108 & 2174 & 3.3372595 & 2209 & 3.3441957 \\
\hline 2105 & 3.323252 I & 2140 & 3.3304138 & 2175 & 3.3374593 & 2210 & 3.3443923 \\
\hline 2106 & 3.3234584 & 2141 & 3.3306167 & 217 & 3.3376589 & 22 II & 3.3445887 \\
\hline 2107 & 3.3230645 & 2142 & 3.3308195 & 2177 & 3.3378584 & 2212 & \(3.34478 \mathrm{~s}^{1}\) \\
\hline 2108 & 3.3238706 & 2143 & 3.3310222 & 2178 & 3.3380579 & 2213 & 3.3449814 \\
\hline 2109 & 3.3240766 & 2144 & 3.3312248 & 2179 & 3.3382572 & 2214 & 3.3451776 \\
\hline 2110 & 3.3242825 & 2145 & 3.3314273 & 2180 & 3.3384565 & 2215 & 3.3453737 \\
\hline & \(3 \cdot 3244882\) & 2146 & 3.3318297 & 2 & 3.3386557 & 2216 & \\
\hline 21 & 3.3246939 & 2147 & 3.3318320 & 2182 & 3.3388547 & 2217 & 3.3457657 \\
\hline 2 II 3 & \(3 \cdot 3248995\) & 2148 & 3.3320343 & 2183 & 3.3390537 & 2218 & 3.3459615 \\
\hline 2114 & 3.3251050 & 2149 & 3.3322364 & 2184 & 3.3392526 & 22193 & 3.34615731 \\
\hline 2115 & 3.3253104 & 2150 & 3.3324385 & 2185 & 3.3394514 & 2220 & 3.3463530 \\
\hline 2116 & 3.3255157 & 2.151 & 3.3326404 & 2186 & 3.3396501 & 22.21 & 3.3465486 \\
\hline 2117 & 3.3257209 & 2.52 & 3.3328423 & 2187 & 3.3398488 & 2222 & 3.346744 I \\
\hline 21.18 & 3.3259260 & 2153 & 3.3330440 & 2188 & \(3 \cdot 3400473\) & 2223 & 3.3469395 \\
\hline 2119 & 3.3261310 & 2154 & 3.3332457 & 2189 & \(3 \cdot 3402458\) & 2224 & 3.347, 348 \\
\hline 2120 & 3.3263359 & 2155 & 3.3334473 & 2190 & 3.340444 I & 2225 & 3.3473300 \\
\hline & 265407 & 2156 & 3.3336488 & 2191 & 3.3406424 & 2226 & 3.3475252 \\
\hline 2122 & 3.3267454 & 2157 & 3.3338501 & 2192 & 3.3408405 & 2227 & 3:3477202 \\
\hline 2123 & 3.3269500 & 2158 & 3.3340514 & 2193 & 3.3410386 & 2228 & 3.3479152 \\
\hline 2 & 3.3271545 & 2159 & 3.3342526 & 2194 & 3.3412366 & 2229 & 3.348 IIOI \\
\hline 2125 & 3.3273589 & & 3.3344537 & 2195 & \(3 \cdot 3414345\) & 2230 & 3.3483049 \\
\hline 21.26 & 3.3275633 & 2161 & 3.3346548 & 2196 & 3.3416323 & 2231 & 3.3484996 \\
\hline 2127 & \(3 \cdot 3277675\) & 2162 & 3.3348557 & 2197 & 3.3418301 & 2232 & 3.3486942 \\
\hline 2128 & 3.3279716 & 2163 & 3.3350565 & 2198 & 3.3420277 & 2233 & 3.3488887 \\
\hline 2129 & 3.3281757 & 2164 & 3.3352572 & 2199 & 3.3422252 & 2234 & 3.3490832 \\
\hline 2130 & 3.3283796 & 2165 & 3.3354579 & 2200 & 3.3424227 & 2235 & 3.3492775 \\
\hline 2131 & 3.3285834 & 2166 & 3.3356585 & 2201 & 3.3426200 & 2236 & 3.34947 .18 \\
\hline 2132 & 3.3287872 & 2167 & 3.3358589 & 2202 & \(3 \cdot 3428173\) & 22373 & 3.3496660 \\
\hline 2133 & 3.3289909 & 2168 & 3.3360593 & 2203 & 3.3430145 & 2238 & 3.3498601 \\
\hline 2134 & 3.3291944 & 2169 & 3.3362596 & 2204 & 3.3432116 & 2239 & 3.350054 I \\
\hline 3 & 3.3293979 & 2170 & 3.3364597 & 220, & 3.3434086 & 2240 & 3.3502480 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Log & Nun. 1 & & & & & \\
\hline 224 I & 3.3504419 & 2276 & 3.3571722 & 23 II & 3.3638000 & 2346 & 3.3703280 \\
\hline 2242 & 3.3506356 & 2277 & 3.3573630 & 2312 & 3.3639878 & 2347 & 3.3705131 \\
\hline 2243 & 3.3508293 & 2278 & 3.3575537 & 2313 & \(3 \cdot 3641756\) & 2348 & \(3 \cdot 3706981\) \\
\hline 224 & 3.3510228 & 2279 & 3.3577443 & 2314 & 3.3643633 & 2349 & 3.37088301 \\
\hline 2245 & 3.3512163 & 2280 & 3.3579348 & 2315 & 3.3645510 & 2350 & 3.3710678 \\
\hline 2246 & 3.3514098 & 2281 & 3.3581253 & 2316 & 3.3647386 & 2351 & 2.3712526 \\
\hline 2247 & \(\therefore 3516031\) & 2282 & \(3 \cdot 3583156\) & 2317 & 3.3649260 & 2352 & 3.37143731 \\
\hline 2248 & 3.3517963 & 2283 & 3.3585059 & 2318 & 3.3651534 & 2353 & 3.3716219 \\
\hline 2249 & 3.3519895 & 2284 & 3.3586961 & 2319 & 3.3653007 & 2354 & 3.3718065 \\
\hline 2250 & 3.3521825 & 2285 & 3.3588862 & 2320 & 3.3654880 & 2355 & \(3 \cdot 3719909\) \\
\hline 22 I & 2.3523755 & 22 & 3.3590762 & 2321 & 13.36 & 0 & \\
\hline 2252 & 3.3525684 & 2287 & 3.3592662 & 2322 & 3.3658622 & 2357 & 3.37235 .96 \\
\hline 2253 & 3.3527613 & 2288 & 2.3594560 & 2323 & 3.3660492 & 2358 & \(\therefore 3725438\) \\
\hline 2254 & 3.3529539 & 2289 & 3.3596458 & 2324 & \(3 \cdot 3662361\) & 2359 & \(3 \cdot 3727279\) \\
\hline 2255 & 3.3531465 & 2290 & 3.3598355 & 2325 & 3.3664 & 2360 & 3.3729120 \\
\hline 2256 & 3.3533391 & 2291 & 3.3600251 & 2326 & \(? .3666097\) & 236 I & 3.3730960 \\
\hline 2257 & 3.3535316 & 22.92 & 3.3602146 & 2327 & 3.3667964 & 2362 & 3.3732799 \\
\hline 2258 & 3.3537239 & 2293 & 3.3604041 & & 3.3669830 & & 3.3734637 \\
\hline 2259 & 3.3539162 & 2294 & 3.3605934 & 2329 & 3.3671695 & 2364 & \(3 \cdot 3736475\) \\
\hline 2260 & 5.3541084 & 2295 & 3.3607827 & 2330 & 3.3673559 & 2365 & 3.37383 II \\
\hline & 3.3543006 & 2296 & 3.3609719 & 233 & 3.3675423 & & 3.3740147 \\
\hline 2262 & \[
3.3544926
\] & 2297 & \(3 \cdot 3611610\) & 2332 & 3.3677285 & 2367 & 3.3741983 \\
\hline 2263 & \[
3.3546846
\] & 2298 & 3.3613500 & 2333 & 3.3679147 & 2368 & ?.37438171 \\
\hline \[
2264
\] & 3.3548764 & 2299 & 3.3615390 & 2334 & 4.3681008 & 2369 & 3.3745651 \\
\hline 2265 & 3.3552682 & 2300 & 3.3617278 & 2335 & 2.3682869 & & \(3 \cdot 3747483\) \\
\hline 2265 & 3.3552599 & 2301 & 3.3619166 & 2336 & 3.3684728 & 2371 & I 3.3749316 \\
\hline 2267 & 3.3554515 & 2302 & 3.3621053 & 2337 & 73.3686587 & 2372 & 23.3751147 \\
\hline 2268 & 3.3556430 & 2303 & 13.3622939 & 2338 & 81.3688445 & 23.73 & 3.3752977 \\
\hline 2269 & 3.3558345 & 2304 & 3.3624825 & |2339 & 3.3690302 & 2374 & 43.3754807 \\
\hline 2270 & 3.3560259 & 2305 & 3.3626709 & 2340 & - 2.3692159 & 2375 & 3.375663 .6 \\
\hline 2271 & 2.3562171 & 2306 & +3.3628593 & 2341 & 13.3694014 & 2376 & 3.3758464 \\
\hline 2272 & 3.3564083 & 2307 & 3.3630476 & 2342 & 23.3695869 & 2377 & \(7: 3760292\) \\
\hline 2273 & 3.3565994 & 2308 & 3.3632358 & 12343 & \[
3.3697723
\] & 2378 & \(8 \cdot 3762118\) \\
\hline 2274 & 3.3567905 & 2309 & 3.3634239 &)2344 & 4.3 .3699576 & 2379 & 3.3763944 \\
\hline 2275 & 13.3569814 & 2310 & 12.3636120 & 12345 & 5 3.3701428 & 2380 & 012.3765769 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Im. 1 & Logarithm. & Num I & Logarithm. & Num. 1 & Logarithm. & Num & tm \\
\hline \(2381 / 3\) & 3.3767504 & 2416 & 3.3830969 & 2451 & 3.3893433 & 248 & 3.3955011 \\
\hline 2382 & 3.3769418 & 24173 & 3.3832766 & 2452 & 3.3895305 & 2487 & 956758 \\
\hline 238313 & 3.3771240 & 2418 |3 & 3.3834563 & 2453 & 3.3896975 & 2488 & 958504 \\
\hline \(2384 \mid 3\) & 3.3773062 & 24193 & 3.3836359 & 2454 & 3.3898746 & 2489 & 3960249 \\
\hline 238513 & 3.3774884 & 2420/3 & 3.3838154 & 2455 & 3.3900515 & 2490 & 961993 \\
\hline & 3.3 & 24 & & 2456 & & 2491 & \\
\hline 238713 & 3.3778524 & 2422 & 3.3841741 & 2457 & 3.3904052 & 2492 & 3.3965480 \\
\hline 238813 & 3.3780343 & 242313 & 3.3843534 & 2458 & 3.3905819 & 2493 & 3.3967223 \\
\hline 23893 & 3.3782161 & 24243 & 3.3845326 & 2459 & 3.3907585 & 2494 & 3.3968964 \\
\hline 2390 & 3.3783979 & 2425 & 3.3847117 & 2460 & 3.3909351 & 2495 & 3.3970705. \\
\hline 23913 & & & 3.3848908 & 246 I & 3.3 & & - \\
\hline 23.92 & 3.3787612 & 24 & 3.3850698 & 2462 & 3.39 & 24 & 3.3974 \\
\hline & 3.3789427 & 24 & 3.3852487 & 2463 & 13.3914644 & 2498 & 3.39759 \\
\hline 23.9 & 3.3791241 & 2429 & 3.3854275 & 2464 & |3.3916407 & 2499 & \(3 \cdot 3977\) \\
\hline 2395 & 3.3793055 & 2430 & 3.3856063 & 2465 & 3.391816 & 2500 & 3.3 \\
\hline 96 & 3.3794868 & 2431 & 3.3857850 & 2466 & 3.391993 & 2501 & \\
\hline 978 & 3.3796680 & 2432 & 3.3859636 & 2467 & 3.3921691 & 2502 & 3.3982873 \\
\hline 2398 & 3.3798492 & 2433 & 13.386142I & 2468 & 3.3923452 & 2503 & 3.3984608 \\
\hline 2399 & 3.38003 .02 & 2434 & 3.3863206 & 2469 & 3.3925211 & 2504 & 3.3986343 \\
\hline 2400 & 3.3802112 & 2435 & 3.3864990 & 2470 & 3.3926969 & 2505 & \\
\hline & 3.3 & 2436 & 3.3866773 & 2471 & 3.3928727 & 25 & 3.3989811 \\
\hline 2 & 3.3805730 & 2437 & 3.3868555 & 2472 & 3.3930485 & 250 & 3.3991543 \\
\hline 403 & 3.3807538 & 2438 & 3.3870337 & 2473 & \(3 \cdot 3932241\) & 250 & 3.3993275 \\
\hline 24.04 & 3.3809345 & 2439 & 3.3872118 & 2474 & 3.3933997 & 2509 & 3.3995005 \\
\hline 2405 & 3.3811151 & 2440 & 3.3873898 & 2475 & 3.3935752 & 2510 & 3.3996737 \\
\hline & 63.3812956 & 2441 & 13.3875678 & 2476 & 63.3937506 & 25 & 3.3998467 \\
\hline 2407 & 73.3814761 & 2442 & 23.3877457 & 2477 & 3.393926 & 2512 & 3.4000196 \\
\hline 2408 & 83:3816565 & 2443 & 33.3879235 & 2478 & 813.3941013 & 2513 & 3.4001925 \\
\hline 2409 & 9.3818368 & 2444 & 438881012 & 2479 & 93.3942765 & 2514 & 3.4003653 \\
\hline 2410 & O.3820170 & 2445 & 5.3882789 & 2488 & 3 3.3944517 & 2515 & 3.4005380 \\
\hline & 13.3821972 & 2446 & 6.3884565 & & 13.3946268 & 251 & 3.4007106 \\
\hline 2412 & \(2 \mid 3.3823773\) & 2447 & 73.3886340 & 2482 & 23.3948018 & 251 & 3.4008832 \\
\hline & 33.3825573 & 2448 & 83.3888114 & 2483 & 33.3949767 & 25 & 3.4010557 \\
\hline & 4333827373 & & 93.3889888 & 248 & 4.3951516 & 25 & 3.4012282 \\
\hline & 53.3829171 & 24 & O3.3891661 & 248 & 53.395326 & 2520 & . 4014005 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Logaritb m. & Num. & Logarithm. & Num. & Logarithm. & Nun. 1 & Logarithm. \\
\hline 2521 & 3.7015728 & 2556 & 3.4075008 & 2591 & 3.4134674 & 2626 & 3.41929 \\
\hline 2522 & 3.4017451 & 2557 & 3.4077307 & 2592 & 3.4136350 & 2627 & 3.419 \\
\hline 2523 & 3.4019173 & 2558 & 3.4079005 & 2593 & \(3: 4138025\) & 2628 & 3.41 \\
\hline 2524 & 3.4020893 & 2559 & 3.4080703 & 2594 & \(\therefore 4139700\) & 2629 & 3.4 \\
\hline 2525 & 3.4022614 & 2560 & 3.4082400 & 2595 & 3.4141374 & 26301 & 57 \\
\hline & & 2501 & 3.4084096 & 2596 & 3.4143047 & 2631 & \\
\hline 27 & 3.4026052 & 2562 & i-4085791 & 2597 & 3.4144719 & 2632 & 3.42 \\
\hline 2528 & \(3 \cdot 4027771\) & 2563 & 3.4087486 & 2598 & 3.4146391 & 2633 & \(3 \cdot 4\) \\
\hline 2529 & \(3 \cdot 4029488\) & 2564 & 3.4089180 & 2599 & 3.4148063 & 2634 & \(3 \cdot 42061\) \\
\hline 2530 & 3.4031205 & 2565 & 3.4090874 & 2600 & 3.4149733 & 2635 & \(3 \cdot 42078\) \\
\hline & 3.4032921 & 25 & 3.4092567 & 2601 & & 2636 & \\
\hline 2532 & 3.4034637 & 2567 & 3.4074259 & 2602 & 3.4153073 & 2637 & 7.4 \\
\hline 2533 & 3.4036352 & 2568 & 3.4095950 & 2603 & 3.4154742 & 2638 & 3.42 \\
\hline 2534 & 3.4038066 & 2569 & \(3-4097641\) & 2604 & 3.1156410 & 2639 & 3.4214394 \\
\hline 2535 & 3.4039780 & 2570 & 3.409933 I & 2605 & 3.4158078 & 2640 & 3. \\
\hline & 3.4041492 & 2571 & & 2606 & 3.4159744 & 26 & \\
\hline 2537 & 3.40 43205 & 2572 & 3.4102710 & 2607 & 3.4161410 & 26 & 2. \\
\hline & 3.4044916 & 2573 & 3.4104398 & 2608 & 3.4163076 & 264 & 3.4220972 \\
\hline 2539 & 3.4046527 & 2574 & 3.4106085 & 2609 & 3.4164741 & 26 & 3.4222614 \\
\hline 2540 & 3.4048337 & 2575 & \(3 \cdot 4107771\) & 2610 & 3.4166405 & 26 & 3.4224257 \\
\hline & 3.4050047. & 2576 & 3.4109459 & 26 & 3.4168069 & & 3.4225898 \\
\hline 2 & 3.4051755 & 2577 & \(3 \cdot 4111144\) & 26 & 3.4169732 & 26 & 3.4227539 \\
\hline 2543 & 3.4053463 & 2578 & 3.4112829 & 2613 & 3.4171394 & 26 & 3.422 \\
\hline 2544 & 3.4055171 & 2579 & 3.4154513 & 2614 & 3.4173056 & 264 & 3.4230820 \\
\hline 2545 & 34056878 & 2580 & 3.4116197 & 2615 & 3.4174717 & 265 & 3.4232459 \\
\hline & 3.4058584 & 2581 & 3.4117880 & 2616 & 3.4176377 & 2651 & 3.4234097 \\
\hline 2547 & 3.4060289 & 2582 & 3.4119562 & 2617 & 3.4178037 & 2652 & 3.4235735 \\
\hline 2548 & 3.4.061994 & 2583 & 3.4121244 & 2618 & 3.4179696 & 265 & 3.4237372 \\
\hline 2549 & 3.4063698 & 2584 & 3.4122925 & 2619 & 2.4181355 & 26 & 3.4239009 \\
\hline 2550 & 3.4065402 & 2585 & 3.4124605 & 2620 & 3.4183013 & 2655 & 3.4240645 \\
\hline & 3.4067105 & 25 & 3.4126285 & 2621 & 3.4184670 & 265 & 3.4242281 \\
\hline & 3.4068807 & & 3.4127964 & 2622 & 3.41863 & 2657 & 3.4243916 \\
\hline & 3.4070508 & 2588 & 3.4129642 & 262 & 3.418798 & 2658 & 3.42 \\
\hline & 3.4072209 & 2589 & 3.4131320 & 262 & 3.4189638 & 2659 & 3.4247 \\
\hline 2555 & 13.4073909 & 25 & 3.413299 & 2625 & 1912 & 26 & 3.4248810 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Num & ogarithm. & & I Logarithm. & & aritjom. & & m. \\
\hline & + 250449 & 200 & .4307199 & 27 & 3.4363217 & 27 & 3.4418522 \\
\hline 2662 & 3.4252080 & 2697 & 3.4308809 & 2732 & 3.4364807 & 2767 & \(3 \cdot 4420092\) \\
\hline 2663 & 3.4253712 & 2698 & 3.4310419 & 2733 & 3.4366396 & 2768 & 3.4421661 \\
\hline 12664 & 3.4255342 & 2690 & 3.4312029 & 2734 & 13.4367985 & 27.69 & \(3 \cdot 44232: 29\) \\
\hline 2665 & 3.4256972 & 2700 & 3.4313638 & 2735 & 3.4369573 & 2770 & 3.4424798 \\
\hline 2666 & & 2701 & 3.4315246 & 2736 & \(3 \cdot+371161\) & 27 & \\
\hline 2667 & 3.4260230 & 27.02 & 3.4316853 & 2737 & 3.43727.48 & 2772 & \(2 \cdot 4427932\) \\
\hline 2668 & \(3 \cdot 1261858\) & 27.03 & 3.4318460 & 27.38 & 3.4374334 & 2773 & 3.442949 .9 \\
\hline 2669 & 3.42634 .86 & 2704 & 3.4320066 & 2739 & 3.7375920 & 27 & 3.4431065 \\
\hline 2670 & 3.4265113 & 2705 & 3.4321673 & 2740 & 3.4377506 & 2775 & 3.4432630 \\
\hline 26 & 3.4 & 2706 & & 27411 & 3.4379090 & 2776 & 3.4434195 \\
\hline 2672 & 3.4268365 & 2707 & 3.4324883 & 2742 & 3.4380674 & 2777 & 3.4435 .75 .9 \\
\hline 2673 & 3.4269990 & 2708 & 3.4326487 & 2743 & 3.4382258 & 2778 & 3.4437 .322 \\
\hline 2.674 & 3.4271614 & 2709 & \(3.432809^{\circ}\) & 2744 & 3.4383841 & & 3.4438885 \\
\hline 2675 & 3.4273238 & 2710 & 3.4329693 & 2745 & 3.4385423 & & 8 \\
\hline 2676 & 3.4274861 & 2711 & 3.4331295 & 2746 & 3.4387005 & 2781 & 3.4442010 \\
\hline 2677 & 3.4276484 & 2712 & 3.4332897 & 2747 & 3.4388587 & 2782 & 3.444357 I \\
\hline 267 & \(3: 4278106\) & 2713 & 3.4334498 & 2748 & \(3 \cdot 4390167\) & 2783 & \(3 \cdot 4445^{1} 32\) \\
\hline 2679 & 3.4279727 & 2714 & 3.4336098 & 2749 & 3.4391747 & 2784 & 3.4446692 \\
\hline 2680 & 3.4281348 & 2715 & 3.4337698 & 2750 & 3.4393327 & 2785 & 3.4448252 \\
\hline 268 & 3.4282968 & 2716 & & & & 2:86 & 3.4449811) \\
\hline 2682 & 3.4284588 & 2717 & 3.43.40896 & 2752 & 3.4396484 & 2787 & 3.4451370 \\
\hline 2683 & 3.4280207 & 2718 & \(3 \cdot 43424.94\) & 2753 & 3.4398062 & 2788 & \(3 \cdot 4452928\) \\
\hline 26.84 & 3.4287825 & 2719 & \(3 \cdot+344092\) & 2754 & 3.4399639 & 2789 & 3.4454485 \\
\hline 2685 & 3.4289442 & 2720 & 3.4345689 & 2755 & 3.4401216 & 2.790 & 3.4456042 \\
\hline 2686 & 3.4291060 & 2721 & 3.4347285 & 2756 & 3.4402792 & 2791 & 3.4457598 \\
\hline 2687 & 3.4292677 & 2722 & 3.43.48881 & 2757 & 3.4404368 & 2792 & 3.4459154 \\
\hline & 3.4294293 & 2723 & 3.4350476 & 2758 & 3.4405943 & & 3.4460709 \\
\hline 2689 & 3.4295908 & 2724 & 3.435207 .1 & 2759 & 3.4407517 & & \\
\hline 2690 & \(3 \cdot 7297522\) & 2725 & 3.4353665 & 2760 & 3.440909! & 2795 & 3.4463818 \\
\hline 1269 & 3.4299137 & 2726 & 3.4355258 & 2761 & 1066 & & 3.446537 T \\
\hline 12692 & 3.430075 .1 & 2727 & 3.4350851 & 2762 & 3.1412237. & 279 & 3.4466925 \\
\hline 2693 & 3.4302364 & 2728 & 3.4358444 & 2763 & 3.4413809 & 279 & 3.4468477 \\
\hline 2694 & 3.43039 .76 & 2729 & 3.4360035 & 2764 & 3.4415380 & & 3.4470029 \\
\hline 26.95 & 3.4305588 & 2730 & 3.4361626 & 2765 & 3.4416951 & 280 & 3.4471580 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Num. \(\overline{\text { Logarithm. }}\) |} & \multicolumn{2}{|l|}{Num [Logarithm.} & \multicolumn{2}{|l|}{Num. Liogarithmo} & \multicolumn{2}{|l|}{Nuni. Logarithm.} \\
\hline 2801 & & & & 2871
2872 & & 2907 & 3.4634450 \\
\hline 2802 & 3.4474681
3.4476231 & & 3.7528593
3.4530124 & 2873 & 3.4 & 2908 & 3.4635944 \\
\hline & 3.4476
3.4477 & 2838 & 3.4530164
3.4531654 & 2874 & 3.4383356 & 2909 & 3.4637437 \\
\hline & 3 & 2840 & 3.4533183 & 287 & 3.4586378 & 2910 & \\
\hline & & & & & & & \\
\hline & & 2842 & i.4536241 & 2877 & 3.4589399 & 2912 & \\
\hline & 3.44839 & 2843 & 3.4537769 & 2878 & 3.4590908 & 2913 & \\
\hline 2809 & 3.4485517 & 2844 & 3.4539296 & 2879 & 3.4592417 & 291 & \\
\hline 2810 & 3.4487063 & 2845 & \(3.4540823^{\circ}\) & 28 & 3.4593925 & 2915 & \\
\hline & & & & & & & \\
\hline 28 & \(3 \cdot 4490153\) & & 3.4543875 & 2882 & 3.4596940 & 2917 & \\
\hline 28 & 3.4491697 & 2848 & \(\cdot .4545400\) & 2883 & \(3 \cdot 4598446\) & 2918 & 3.4650853 \\
\hline & 3.4493241 & 2849 & 2.4546 & 2884 & 3.6599953 & 2919 & \\
\hline & 3.4494784 & 2850 & 3.454 & 288 & & 2920 & \\
\hline 2816 & 3.4496326 & 2851 & 3.4549772 & 2886 & 2.4602963 & 2921 & . 4655316 \\
\hline 2817 & 3.4497868 & 2852 & 3.4551495 & 288 & 3.4604468 & 2922 & 3.4656802 \\
\hline 28 & 3.449 & 2853 & 3.45 & 2888 & . 4605972 & 2923 & \\
\hline & 3.4 & & 2.45 & 2889 & 2. 4607475 & & \\
\hline 2820 & 3.450 & 285 & i.4556061 & 2890 & 3.4608978 & 292 & \\
\hline 2821 & 3.450403.1 & 28.5 & 3.4557582 & 2891 & 3.4610481 & 2926 & \(\therefore \cdot 662743\) \\
\hline 128 & 3,4505570 & & 3.4559102 & 2892 & i. 4611983 & & 3.4664227 \\
\hline & 3.45071 & 28 & 3.4560 & 2893 & 3.4613484. & 2. & 3.4.665711 \\
\hline & ¢0.7508647 & 2859 & 3.4562741 & 2894 & 3.4614985 & & \\
\hline & 345.10184 & 2860 & . 4563660 & 28.5 & 3.4516486 & & \\
\hline \multirow[t]{2}{*}{2826} & & \multirow[t]{2}{*}{2861} & \multirow[t]{2}{*}{3.4565179} & \multirow[t]{2}{*}{2896} & \multirow[t]{2}{*}{3.4617986} & \multirow[t]{2}{*}{2931} & \(2 \cdot 4670158\) \\
\hline & 3.4511721 & & & & & & \multirow[t]{2}{*}{3.4671640} \\
\hline & 3.45514794 & \[
\begin{aligned}
& 2862 \\
& 2863
\end{aligned}
\] & \[
3 \cdot 4566696
\] & \[
\begin{aligned}
& 2897 \\
& 2898
\end{aligned}
\] & 2.4619485 & \multirow[t]{2}{*}{\[
\begin{array}{r}
2933 \\
2934
\end{array}
\]} & \\
\hline 12829 & 3.4516329 & \[
\left|\begin{array}{l}
2863 \\
2864
\end{array}\right|
\] & \[
\begin{aligned}
& 3.45682 \text { I } 3 \\
& 3.4569730
\end{aligned}
\] & \[
\begin{aligned}
& 2898 \\
& 2899
\end{aligned}
\] & \[
\begin{aligned}
& 3.4620987 \\
& 2.4622482
\end{aligned}
\] & & \[
2.4673!20
\] \\
\hline 2830 & 3.4517864 & 2865 & 3.4571246 & 2900 & 2.4623980 & 2935 & 2. 6.676081 \\
\hline & & 2866 & 3.457 .2762 & & 2.46 & & \\
\hline 2832 & \[
3.4520932
\] & 2867 & 3.4574276 & 20 & 3.462 & & 9 \\
\hline & & 2868 & 3.4575791 & 2903 & 3.46284 & & ?. 4680518 \\
\hline & \(3 \cdot 45239\) & 2869 & 3.4577305 & 290 & 3.46299 & & 3.4681996 \\
\hline & 3.4) & 287 & 13.4578359 & 29 & . 46314 & & 4683473 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Num. & Logevith & Num. & I Logarithm. & Num. & . Logarithm. & & \\
\hline & & 297 & , & & & & \\
\hline & & 2977 & - & 30 & & 3047 & \\
\hline 43 & 3.4 & 2978 & 3.4739247 & 30 & \(3 \cdot 4789991\) & 3048 & 15 \\
\hline 29 & 3.4689378 & 2979 & 3.4740705 & 3014 & 3.4791432 & 3049 & 74 \\
\hline 2945 & 3.4690853 & 2980 & 3.4742163 & 3015 & 3.4792873 & 3050 & 3.4842998 \\
\hline & & & & 3016 & & 3051 & \\
\hline 2947 & :.4693 & 2982 & 3.4745076 & 3017 & 3.4795753 & 3052 & \\
\hline 2948 & 2.4695275 & 2983 & 13.4746533 & 30 & 1.4797192. & 3053 & \\
\hline 2949 & 3.469674 .8 & 2984 & 3.4747988 & -3019 & 3.479863 .1 & 305 & 3.4848690 \\
\hline 2950 & 3.4698220 & 2985 & \(3 \cdot 4749443\) & 302 & 3.4800069 & 3055 & \\
\hline & & & & & & 3056 & \\
\hline 2952 & 3.4701163 & 2987 & \(3 \cdot 4752352\) & 3022 & 3.4802945 & 305 & 3.4852954 \\
\hline 295 & 3.4702634 & 2988 & ?.4753806 & 3023 & 3.480438 I & 305 & 3.485437 \\
\hline 29 & 3.4704105 & 2989 & 3.4755259 & 3024 & \(3.480,818\) & 305 & 3.485579 \\
\hline 2955 & 3.4705575 & 2990 & \(3 \cdot 4756712\) & 3025 & 3.4807254 & 3060 & \\
\hline 2956 & & 2991 & & & & & \\
\hline 295 & 3.4708513 & 2992 & 3.4759616 & 302 & 3.4810124 & 3062 & 3.4860052 \\
\hline 295 & 3.4709982 & 2 & 3.4761067 & 302 & 7.4811559 & 306; & \\
\hline 2959 & 3.4711450 & 2994 & 3.4762518 & 3029 & 3.4812993 & 306 & 3. \\
\hline 2960 & 3.4712917 & 2995 & 3.4763968 & 303 & 3.4814426 & 3065 & \\
\hline & & & & & & & \\
\hline 296 & 3.4715852 & 2997 & . 4766867 & 3032 & 3.4817292 & 3067 & 3.4867138 \\
\hline 2963 & 3.4717 & 2998 & 3.4768316 & 30 & 3.4818724 & 3068 & \\
\hline 2964 & 3.4718782 & 999 & 3.4769765 & 30 & 3.4820156 & 306 & \\
\hline 2965 & 3.472024 & O0 & 4771212 & 303 & 3.4821587 & 3070 & \\
\hline 296 & & 3001 & & & & 3071 & \\
\hline 296 & 4723 & 300 & . 477 & 3037 & 3.4824448 & 3072 & \\
\hline 2968 & 3.4724639 & 3003 & . 477 & 3038 & 3.4825878 & 3073 & \\
\hline 2969 & 3.4726102 & 3004 & 3.477 & 3039 & 3.4827307 & 3074 & 3.4877039 \\
\hline 2970 & 3.4727564 & 3005 & 3.47784 & 3040 & 3.4828736 & 3075 & 3.4878451 \\
\hline & & & & & & & \\
\hline & 2.4730488 & 3007 & 3.4781334 & 3042 & 3.4831592 & 3077 & 3.4 \\
\hline 29 & 3.4731 & 3008 & 3.478277 & 30 & 3.4833019 & 3078 & 3.4882686 \\
\hline 2974 & 3.4733410 & 3009 & 3.4784222 & 3044 & 3.4834446 & 3079 & 7 \\
\hline 2975 & 3.4734870 & 3010 & 789665 & 3045 & 3.4835873 & & 885 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Num. 1 Logatrithm.}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\frac{\text { Num. } \frac{\text { Logaritbm. }}{3116 \mid 3.4935974}}{}
\]}} & \multicolumn{2}{|l|}{Num. 1 Logarithm.} & \multicolumn{2}{|l|}{} \\
\hline & & & & 31513.4 & 3.4984484 & \[
3186
\] & \[
3.5032458
\] \\
\hline & 3.4888326 & 3117 & 3.493 .7368 & 3152. & T. 49 & 31873 & 033821 \\
\hline & 3.4889735 & 1183 & 3.4938761 & 31533 & 3.4987240 & 3188 & 3.5035183 \\
\hline & 3.4891144 & 31193 & 3.4940154 & 31543 & 3.4988617 & 3189|3 & 3.5036545 \\
\hline 3 & 3.4892552 & 3120 & 3.4941546 & \(3155{ }^{3}\) & 3.4989994 & 3190 & 3.5037907 \\
\hline & & 3121 & & 3156 & 3, & 1 & \\
\hline & 3.489 & 3 & 3.4944329 & 31573 & 3.4992746 & \(3192 \mid 3\) & \\
\hline & 3.489677 & 31 & 3.4945720 & 3158 & 3.4994121 & 3193 & \\
\hline & 3.4898179 & 31 & 3.4947110 & 31593 & 3.4995496 & 31943 & 3.5043349 \\
\hline 3090 & 3.4899585 & 3125 & 3.4948500 & 3160 & 3.4996871 & 3195 & 3.5044709 \\
\hline & & & \(3 \cdot 4949890\) & & & & \\
\hline 3092 & 3.4902395 & 3127 & 3.4951279 & 3162 & 3.4999619 & 97 & \\
\hline 3093 & 3.4903799 & 31.28 & 3.49526 & 3163 & 3.5000992 & & \\
\hline 3094 & 3.4905203 & 3129 & 3.4954056 & 3164 & 3.5002365 & & 42 \\
\hline 3.095 & 3.4906607 & 313 & 3.4955443 & & \(3 \cdot 5003737\) & & \\
\hline 3096 & 3.4908009 & 3131 & & 3166 & 3.500510 & & \\
\hline 3097 & 3.4909412 & 3132 & 3.495 & 3167 & 3.50064 & & 3.5054213 \\
\hline 3098 & 3.4910814 & 313 & 3.4959 & & 3.50 & & 5055591 \\
\hline 9 & 3.4912216 & 3134 & 3.4960990 & 3169 & 3.5 & & .5956925 \\
\hline 3100 & \(3 \cdot 4913617\) & 3135 & 3.4962375 & 317 & 3.5 & & 3.5058280 \\
\hline & & 3136 & & & & & \\
\hline 2 & 3.4916418 & 3137 & 3.4965145 & 3172 & 3.50133 & & \\
\hline 3 & \(3 \cdot 4917818\) & 3138 & 3.4966529 & 3173 & 3.5014701 & & \\
\hline & 3.4919217 & 139 & 3.4967913 & 3174 & 43.5016069 & & \\
\hline & 3.4920616 & 354 & \(3 \cdot 4969296\) & 3175 & 3.5017437 & & \\
\hline & 3.492 & 3141 & I 3.4970679 & 3.76 & 3.5018805 & 3211 & 13.5066403 \\
\hline & 3.4923 & 3142 & 23.4972062 & 3177 & 3.5020172 & 3212 & 3.5067755 \\
\hline & 2.4924810 & 3143 & 3.4973444 & 31 & 3.5021539 & 3213 & 33.5069107 \\
\hline & 3.4926207 & 3144 & 43.4974825 & 3179 & 93.5022905 & 3214 & 43.5070459 \\
\hline 3110 & 3.4927604 & 3145 & 53.4976206 & 31.90 & 3.5024271 & 3215 & \\
\hline & & 3146 & 63.4977587 & 3181 & 13.5025637 & 3216 & 63.5073 \\
\hline & 23.4930396 & 3147 & 73.4978967 & 3182 & 23.5027001 & 3217 & 73.50745 \\
\hline 3113 & \(33^{*} 4931791\) & 3148 & 83.4980347 & 31 & 3.5028366 & \[
3218
\] & \[
\begin{array}{l|l}
18 & 36 \\
19 & 3.50
\end{array}
\] \\
\hline & 43.4933186 & 31 & 3.4981727 & & \begin{tabular}{l}
3.502973 \\
1,503009
\end{tabular} & & \\
\hline & 53.4934580 & 13150 & . 4983106 & \[
31
\] & \[
1.503009
\] & & \[
2013.507 .
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline um.1.Logarithra. & Num. I Logarithm. & Num: \({ }^{\text {L L L Garitbm. }}\) & Num. [Logarithm. \\
\hline 1 1:5079907 & 32563.5126844 & \begin{tabular}{l|l|l|}
\hline 32913.5173279
\end{tabular} & \begin{tabular}{|l|l|}
\hline 3326 & 3.5219222 \\
\hline
\end{tabular} \\
\hline \(32223.5081255^{\circ}\) & 32573.5128178 & 32923.5174598 & 3327 3.5220528 \\
\hline 3223305082603 & 32583.5129511 & 32.933 .5175917 & 33283.5221833 \\
\hline 3224 3.5083950 & 3250|3.5130844 & 3.2943 .5177236 & 33293.5223138 \\
\hline 322513.5085297 & 32603.5132176 & 329512.5178554 & 333013.5224442 \\
\hline 32263.5086644 & 32613.5133508 & 3296 -5:79872 & 33313.5225746 \\
\hline |3227|-5087990 & \(3262 \geqslant .5134840\) & 32973.5181189 & 33323.52270501 \\
\hline 32283.5089335 & 3263 2.5136171 & 329313.5182506 & 333313.5228353 \\
\hline 32293.5090680 & \(32643 \cdot 5 \mathrm{I} 37501\) & \(3290 \mid 3.5183823\) & 33343.5229656 \\
\hline 32303.5092025 & 3265 3.5138832 & 3300 :.5185139 & 33353.5230958 \\
\hline 32313.50933 .70 & 32653.5140162 & 33013.5186 .55 & 33363.52 .32260 \\
\hline 32323.5094713 & \(3267{ }^{5 \cdot 5141491}\) & 33023.5187771 & \(33.37 \cdot 3 \cdot 5233562\) \\
\hline 3233 3.5056057 & 3268 .3.5142820 & 3303 3.5189086 & \(33388.5234863^{\circ}\) \\
\hline 32343.5097400 & 3269 ?.5144142 & 33043.5190400 & \(33393.52 ; 6164\) \\
\hline 32353.5098743 & 32703.5145478 & 33053.5191715 & 3340 3.52,37465 \\
\hline 32363.5100085 & 327 I 3.5146805 & 3306365193028 & 33413.5238765 \\
\hline 32373.5101427 & 3272305148133 & \(330 \%\) 3.j I 94342 & 33423.5240064 \\
\hline 32383.5102768 & 32733.5149460 & 33083.5195655 & 3343 3.5241364 \\
\hline 32393.5104109 & 32743.5150787 & 33093.5196968 & 33443.5242663 \\
\hline 32403.5105450 & 32753.5152113 & 33103.5198280 & 33453.5243961 \\
\hline 13.5106790 & 32763.5153439 & 13.5199592 & 33463.5245259 \\
\hline 32423.5108130 & 3.2773 .5154764 & 33123.5200903 & 3347 |3.5246551| \\
\hline 32433.5109469 & 32783.5156089 & 33133.5202214 & 3348 3.5247854 \\
\hline 32443.5110808 & 32793.5157414 & 33143.5203525. & 33.493 .5249151 \\
\hline \(3245,3.5112147\) & 3280 3.5158738 & 3315 3.5204835 & 33503.5250448 \\
\hline 3246 3.5II3485 & 32813.5160062 & 3316305206145 & 335 I 3.5251744 \\
\hline \(32473 \cdot 5\) I 48823 & 3282 2.5161386 & 331793.5207455 & 3352 \\
\hline 3248.2 .5116160 & 3283 2.5 62709 & 33183.5208764 & 335313.5254335 \\
\hline 32493.5117497 & 32843.516403 I & 33193.5210073 & 33543.5255631 \\
\hline 3250.7 .5118834 & 32853.51653 .54 & 33203.5211381 & 3355305256925 \\
\hline 32513.5120170 & 32861305166676 & 33213.5212689 & 33563.5258219 \\
\hline \(3252 \mid 3.5121505\) & 32873.5167997 & 3322 3.5213996 & 33573.5259513 \\
\hline 32533.5122841 & 32883.5169318 & 33233.5215303 & 33583.5260806 \\
\hline 32543.5124175 & 3289. 3.5170639 & 33243.5276610 & 3359355262100 \\
\hline 325513.5125510 & 329013.5171959 & 33253.5217916 & 33603.5263292 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Num.| Logarithm.}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Num. I Logarithm.}} & \multicolumn{2}{|l|}{Num.1 Logarithm.} & \multicolumn{2}{|l|}{Num.[Logarithm.} \\
\hline & & & 13.5309677 & 34 & 3.5354207 & 3460 & 3.5398286 \\
\hline 3362 & & 3397 & 3.5310955 & 34.32 & 3.5355473 & & \\
\hline 3363 & 3.5267269 & 3398 & 3.5312234 & 3433 & 3.5356738 & & \\
\hline 3364 & 3.5268560 & 3399 & 3.53 I 3512 & 3434 & 3.5358003 & & \\
\hline 33 & 3.526985 I & 3400 & 3.5314789 & 3435 & 3.5359267 & 34 & \\
\hline & & & & & & & \\
\hline & - 3.527 & 3402 & .)5317343 & 34 & 3.5361795 & & \\
\hline & 3.527 & 3403 & 3.5318619 & 34 & 3.5363059 & & \\
\hline & 3.527501 & 3404 & 3.5319895 & 3439 & 3.5364322 & & \\
\hline 3370 & 3.5276299 & 340.5 & 3.3521171 & 3440 & 3.5365584 & & \\
\hline & & & & & & & \\
\hline & ?.52788 & 3407 & 3.5323721 & 3442 & 3.5368109 & & \\
\hline & 3.52801 & 3408 & 3.5324996 & 3443 & 3.5369370 & 347 & . 5413296 \\
\hline & 3.5281 & 3409 & 3.5326270 & 3444 & 3.5370631 & & \\
\hline 3375 & 3.5 & 3410 & 3.5327544 & 3445 & 3.5321892 & & \\
\hline & & & 3.5328817 & 3446 & & & \\
\hline & 3. & 3412 & 3.5330090 & 3447 & 3.53744 I 3 & & \\
\hline & 3.52865 & 3413 & 3.5331363 & 3448 & 3.5375672 & & \\
\hline & 3.5287882 & 3414 & 3.5332635 & 3449 & 3.5376932 & & \\
\hline & 3.5289167 & 3415 & 3.5333907 & 3450 & 3.5378191 & & \\
\hline & & & & 34 & & & \\
\hline & 3.5291 & 3417 & 3.5336450 & 3452 & 3.5380708 & & \\
\hline & 3.5293 & 3418 & 3.5337721 & 3453 & 3.5881966 & & \\
\hline & 3.5294 & 3419 & 3.5338991 & 3454 & 3.5383223 & & \\
\hline & 3.5295 & 3420 & 3.5340261 & 3455 & & & \\
\hline & & & & 3456 & & 3491 & \\
\hline & 3.52981 & 3422 & 3.5342800 & 3457 & 3.5386994 & 3492 & \\
\hline & 3.5299434 & 34 & 3.534406 & 3458 & & & . 5431986 \\
\hline 3389 & 3.530071 & & 3.5345338 & 3459 & & & . 5433229 \\
\hline 3390 & 3.5301 & 3425 & 3.5346606 & 3460 & & & \\
\hline & 3.5303278 & & 3.5 & & .592327 & & \\
\hline & 3.530455 & & 3.5349 & 3462 & 3.5393271 & & \\
\hline & 3.5305839 & 34 & 3.53504 & 3463 & 3.5394525 & & \\
\hline & 3.5307118 & 3429 & 3.5351675 & 3464 & 3.5395779 & & \\
\hline & 3.53083 & & 3529 & 346 & \[
12.5397032
\] & & 3.5440630 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline N & Logarithm. & Num. & Logarl & Nuni. 1 & I Logarithm. & & \\
\hline 3 & 305441921 & 3536 & 3.5485123 & & [3.5527 & & 7 \\
\hline 3502 & \(3 \cdot 5443161\) & 3537 & 3.548635 & 3562 & & 3607 & 5571461 \\
\hline 3503 & \(3 \cdot 5444401\) & 3538 & 3.5487578 & 3573 & 3.5530330 & 3608 & 3.557 .2665 \\
\hline 3504 & 3.5445641 & 3539 & 3.5488806 & 3574 & 3.5531545 & 3609 & 3.5573869 \\
\hline 3505 & 3.5446880 & 3540 & \(3 \cdot 5490033\) & 3575 & 3.5532760 & 3610 & 5575072 \\
\hline 35 & & 3541 & 3.549125 & 3576 & 3.553397 & 3611 & \\
\hline 35 & 2.5449358 & 3542 & . 5492486 & 3577 & 3.5535189 & 3612 & - \\
\hline 35 & 3.5450596 & 3543 & 3.5493712 & 3578 & 3:5536403 & 3613 & 5 \\
\hline 3509 & 3.5451834 & 3544 & 3.5494937 & 3579 & 3.5537617 & 3614 & 3.557988 I \\
\hline 3510 & 3.5453071 & 3545 & 3.5496162 & 3580 & 5.5538830 & 3615 & 3.5581083 \\
\hline & 30 & & & 3581 & \(3 \cdot\) & & \\
\hline 35 & 3.5455545 & 3547 & 3.5498612 & 3582 & 3.5541256 & 3617 & \\
\hline 35 & 3.54567 & 3548 & 3.5499836 & 3583 & 3.5542468 & 3618 & 3.5584686 \\
\hline 13514 & 3.5458017 & 3549 & 3.5501060 & 3584 & 3.5543680 & 3619 & 6 \\
\hline 3515 & 3.5459253 & 3550 & 3.5502283 & 3585 & 3.5544892 & 3620 & \\
\hline & 3.54604 & 3551 & 3.5 \({ }^{2}\) & 3586 & 305546103 & 3621 & \\
\hline & 3.5461724 & 3552 & 3.5504730 & 3587 & 3.5547314 & 3622 & . 5589484 \\
\hline & 3.5462958 & 3553 & 3.5505952 & 3588 & 3.5548524 & 623 & 3.5590683 \\
\hline 3519 & 3.5464193 & 3554 & 3.5.507174 & 3589 & 3.5549735 & 3624 & .5591882 \\
\hline 3520 & 3.5465427 & 3555 & 3.5508396 & 3590 & 3.5550944 & 3625 & . 5593080 \\
\hline & 2.546666 & & & 3591 & 3.5552154 & & 5594278 \\
\hline 35 & 3.5467894 & 3557 & 3.5510839 & 3592 & 3.5553363 & 8 & 3.5595476 \\
\hline 35 & 3.5469126 & 3558 & 3.5512059 & 3593 & 3.5554572 & 28 & 3.5596673 \\
\hline & 3.5470359 & 3559 & 3.5513280 & 3594 & 3.5555781 & 29 & . 5597870 \\
\hline 3525 & 3.5471591 & & 3.5514500 & 3595 & 3.5556989 & & \\
\hline & 3.5472823 & 3561 & 3.5515720 & 3596 & 3.5558197 & 363 I & . 5600262 \\
\hline & 3.5474055 & 3562 & 3.5516939 & 3597 & 3.5559404 & 3632 & .5601458 \\
\hline & 2.5475286 & 3563 & 3.5518158 & 3598 & 3.556061 & & 3.5602654 \\
\hline 3529 & 3.5476517 & 3564 & 3.5519377 & 3599 & 3.5561818 & 3634 & 3.5603849 \\
\hline 3530 & i.5477748 & 3565 & 3.5520595 & 3600 & 3.5563025 & 3635 & 35605044 \\
\hline 3531 & 3.5478977 & 3.5 & 3.5421813 & 3601 & 3.5564231 & & . 606339 \\
\hline 3532 & 3.5480207 & 3567 & 3.5523031 & 3602 & 3.5565437 & 3637 & 3.5607433 \\
\hline 3533 & \[
3.5481436
\] & 3568 & 3.5524248 & 3603 & 3.5566643 & 3638 & 3.5608627 \\
\hline 35 & 3.5482665 & 3569 & -3.5525465 & 3604 & 3.5567848 & 3639 & 3.5609820 \\
\hline 353 & 3.5483896 & 3570 & 3.5526682 & 3605 & 2.5569053 & 3640 & 3.5611014 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Num.1 Logarithm.}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Num. 1 Logaritbm. \(3676: 3.5653755\)}} & \multicolumn{2}{|l|}{Num.1 Logarithm.} & \multicolumn{2}{|l|}{Num.1 Logaritbm.} \\
\hline & & & & 371 & 3.5694910 & 3746 & 3.5735678 \\
\hline 3642 & 3.56133 .99 & 3677 & 3.5654936 & 3712 & 3.5696080 & 3747 & 3.5736837 \\
\hline 364.3 & 3.5614592 & 3678 & 3.5656117 & 3713 & 3.5697249 & 3748 & 3.5737996 \\
\hline 3644 & 3.5615784 & 3679 & 3.565 .7298 & 3714 & 3.5698419 & 3749 & 3.5739154 \\
\hline 3645 & 3.5616975 & 3680 & 3.5658478 & 3715 & 3.5699588 & 3750 & 3.5740313 \\
\hline & 3.5618167 & 3681 & 3.5659658 & 3716 & 3.5700757 & 3751 & 3.57.41471 \\
\hline & 3.5619358 & 3682 & 3.5660838 & 3717 & 3.5701926 & 3752 & 3.5742628 \\
\hline 3648 & 3.5620548 & 3683 & ?.5662017 & 3718 & 3.5703094 & 3753 & 3.5743786 \\
\hline 3649 & 3.5621739 & 3684 & 3.5663196 & 3719 & 3.5704262 & 3754 & 3.5744943 \\
\hline 3650 & 3.5622929 & 3685 & 3.5664375 & 3720 & 3.5705429 & 3755 & 3.5746099 \\
\hline 3651 & 3.5624118 & 368 & 3.5665553 & 3721 & 3.5706597 & 3756 & \\
\hline 3652 & 3.5625308 & 3687 & 3.566673 I & 3722 & 3.5707764 & 3757 & \\
\hline 3653 & 3.5626497 & 3688 & 3.5667909 & 3723 & 3.5708930 & 3758 & 2.5749568 \\
\hline 365.4 & 3.5627685 & 3689 & 3.5669087 & 3724 & 3.5710097 & 3759 & 3.5750723 \\
\hline 3655 & 3.5628874 & 3690 & \(3 \cdot 5670264\) & 3725 & 3.5711263 & 3760 & \\
\hline & 3.5 & 3691 & 3.5571440 & 3726 & 3.5712428 & 3761 & 3.5753033 \\
\hline 365 & 3.5631250 & 3692 & 3.5672617 & 3727 & 3.5713594 & 3762 & 2.5754188 \\
\hline 365 & 3.5632437 & 3693 & 3.5673793 & 3728 & 3.5714759 & 3763 & 3.5755342 \\
\hline 3659 & 3.5633624 & 3694 & 3.5674969 & 3729 & 3.5715924 & 3764 & 3.5756496 \\
\hline 3660 & 3.5634811 & 3695 & 3.5676144 & 3730 & 3.5717087 & 3765 & 3.5757650 \\
\hline 3661 & 3.563 599 & 3696 & 3.5677320 & & 3.5718252 & 3766 & 3.5758803 \\
\hline 3662 & 3.5637183 & 3697 & 3.5678494 & 3732 & 3.5719416 & 3767 & 3.5759956 \\
\hline 3663 & 3.5638369 & 3698 & 3.5679669 & 3733 & 3.5720580 & 3768 & i.5761109 \\
\hline 3664 & 2.5639555 & 3699 & 3.5680843 & 3734 & 3.5721743 & 3769 & 3.5762261 \\
\hline 3665 & 3.5642740 & 3700 & 3.5682017 & 3735 & 3.5722906 & 3770 & 3.5763413 \\
\hline 3666 & 3.5641925 & 3701 & 3.5683192 & 3736 & 3.5724069 & 3771 & 3.5764565 \\
\hline 3667 & 3.5643109 & 3702 & 3.5684364 & 3737 & 3.5725231 & 3772 & 3.5765717 \\
\hline 3668 & 3.5644293 & 3703 & 3.5685537 & 3738 & 3.5726393 & 3773 & 3.5766868 \\
\hline 3669 & 3.5645477 & 3704 & 3.5686710 & 3739 & 3.5727555 & 3774 & \\
\hline 3670 & 3.5646661 & 3705 & 3.5687882 & 3740 & 7.5728716 & 3775 & 3.5769169 \\
\hline 3671 & 3.5647844 & 3706 & 3.5689054 & 37 & 3.5739877 & 377 & 3.5770321 \\
\hline 3672 & 2.5649027 & 3707 & 3.5690226 & 3742 & 3.573103 & 3777 & 3.5771470 \\
\hline 3673 & 3.5650209 & 3708 & 3.5691397 & 3743 & 3.5732 & 3778 & 3.5772620 \\
\hline 3674 & 3.5651392 & 3709 & 3.5692568 & & \[
3.573
\] & 37 & 3.5773769 \\
\hline 367 & 3.5652573 & 3710 & 3.5693739 & 37 & 3.5734518 & 37 & . 57749 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline -1 \(\log\) & \multicolumn{2}{|l|}{Num. [Logarithm:} & \multicolumn{2}{|l|}{Num.1 Logarithm.} & \multicolumn{2}{|l|}{Num.1 Logaritbm} \\
\hline 37813.5770007 & 3816 & 3.5816084 & & 3.5855735 & 3886 & 3.5895028 \\
\hline 3782 3.5777215 & 3817 & 3.5817222 & 3852 & 3.5856863 & 3887 & 2.5896145 \\
\hline 3783 3.5778363 & 3818 & 3.5818359 & 3853 & 3.5857990 & 3888 & 3.5897262 \\
\hline 37843.5779511 & 3819 & 3.5819497 & 3854 & 3.5859117 & 3889 & 3.58983791 \\
\hline 378513.5780659 & 3820 & 3.5820634 & 3855 & 3.5860244 & 3890 & 3.5899496 \\
\hline 37863.5781806 & 3821 & 3.5821770 & 3856 & 2.5861370 & 3891 & 2 \\
\hline 13787 ?.5782953 & 3822 & 3.5822907 & 3857 & ?.5862496 & 3392 & 3.5901728 \\
\hline 3788 13.5784.100 & 3823 & 3.5824043 & 3858 & 3.58636221 & 3893 & i.5c02844 \\
\hline 3789 3.5785246 & 3824 & 3.5825179 & 3859 & 3.5864748 & 3894 & 3.5903959 \\
\hline 13790 3.5786392 & 3825 & 3.5826314 & 3860 & 3.5865873 & 3895 & 3.5905075 \\
\hline & 3826 & & 3 & \(3 \cdot 5866998\) & 6 & \\
\hline 37923.5788683 & 3827 & 3.5828585 & 3862 & 3.5868123 & 3897 & 3.5907304 \\
\hline 3793 3.5789828 & 3828 & 3.5821799 & 3863 & 3.5869247 & 3898 & -5908418 \\
\hline 37943.5790973 & 3829 & 3.5830854 & 3864 & 3.5870371 & 3899 & ?-5909532 \\
\hline 379513.5792118 & 3830 & 3.5831988 & 3865 & 3.5871495 & 3900 & 3.5910646 \\
\hline 37963.5793262 & 3831 & i. 5 & 3866 & 3.5872618 & 3901 & 3.5911759 \\
\hline 3797 3.5794406 & 3832 & 3.5834255 & 3867 & 3.5873742 & 3902 & 3.5912873 \\
\hline 37983.5795550 & 3833 & 3.5835388 & & . 3.5874865 & 3503 & 3.5913985 \\
\hline 37993.5796693 & 3834 & 3.583652 I & & 3.5875987 & 3904 & 3.5915098 \\
\hline 3800 5.5797836 & 3835 & 3.5837654 & 3870 & 3.5877110 & 3905 & 210 \\
\hline 3801 & & & 3871 & 3.5 & & \\
\hline 38023.5850121 & 3847 & 3.5839918 & 3872 & 3.5879353 & 3907 & 3.59 \\
\hline 38033.5801263 & 3848 & 3.5841050 & 3873 & 3.5880475 & 3908 & 3.591954 \\
\hline 3804 2.5802405 & 3849 & 3.5842181 & 3874 & 3.5881596 & 3909 & 3.592065 \\
\hline 3805 3.5803547 & 3840 & 3.58433 .12 & 3.875 & 3.5882717 & & 3. \\
\hline 38063.58 & 3841 & 3.) & 3876 & 3.5883838 & 3911 & 3.5922878 \\
\hline \(38073.5805^{929}\) & 3842 & 3.5845574 & & 3.5884958 & 39 & 3.5923988 \\
\hline 3808.3 .5806969 & 384.3 & 13.5846704 & & , .5886078 & & 1.5925098 \\
\hline 3809.3 .5808110 & 3844 & 43.5847834 & 38 & 3.5887198 & 391 & 3.5926208 \\
\hline 3810 2.5809250 & 3845 & 3.5848963 & 38 & 3.5888317 & 3915 & 3.5927318 \\
\hline \(11-.58103\) & & 3.5850093 & 3881 & 3.5889436 & & 3.5928427 \\
\hline 3812 3.5811529 & 3.847 & 3.5851222 & & 23.5890555 & 391 & 3.592 .9536 \\
\hline & 3848 & 3.5852351 & & 3.5891674 & 39.1 & . 3.5930644 \\
\hline 3814
3 3.5813807 & 3849 & 3.5853479 & & 43.5892792 & 391 & 3.5931753 \\
\hline 3815 2.5814945 & 3850 & 03.5854607 & 38 & 13.5893910 & 39 & 3.5932861 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\frac{\text { Num. L Logarithmo. }}{39211.3 .5953968}
\]}} & \multicolumn{4}{|l|}{Num [Logarithm. \({ }^{\text {a }}\) Num. 1 Logasithm.} & \multicolumn{2}{|l|}{\(\frac{\text { Num.1 Logarithm. }}{402013.0048738}\)} \\
\hline & & 395013 & \(3 \cdot 5972563\) & & 3.0010817 & & \\
\hline 3922 3. & 3.5935076 & 3957 & & 3992 & & & \\
\hline 139233. & 3.5936183 & 3958 & 3.5974758
3.597585 & 3993 & & & 51973 \\
\hline \(3924 \mid 3\). & 3.5937290 & 3959 & 3.5975855
3.5976952 & 39943. & 3.6014080
3.6015168 & 4029
4030 & .6051973 \\
\hline 39253 & 3.5938397 & 3960 & \(3.597695^{2}\) & \(3995{ }^{3}\) & , 15108 & 4030 &) \\
\hline & & 3961 & 3.5978048 & 3990 & 6016255 & 4031 & \\
\hline & 3.594 .0609 & 3962 & 3.5979145 & 3997 & 3.6017341 & 4032 & . 605 \\
\hline \[
\begin{aligned}
& 713 \\
& 813
\end{aligned}
\] & 3.5941715 & 3963 & 3.5980241 & 399813 & 3.6018428 & 40 & 6056282 \\
\hline 39293 & 3.5942820 & 3964 & 3.5981336 & \(3999{ }^{3}\) & 3.6019514 & 4034 & \\
\hline 3930 & 3.594 .3925 & 3965 & 3.5982423 & 40003 & 3.6020600 & 4035 & 6058435 \\
\hline \multirow[t]{2}{*}{\[
3931
\]} & \multirow[t]{2}{*}{3.5945030} & \multirow[t]{2}{*}{. 3966} & \multirow[t]{2}{*}{3.5983527} & 4001 & \multirow[t]{2}{*}{3.6021685} & 4036 & 3.6059512 \\
\hline & & & & 4002 & & 4237 & 3.6060587 \\
\hline & \(3 \cdot 594613\)
3.594723 & 3968 & 3.5985717 & 4.003 & 3.6023856 & 4038 & 3.6061663 \\
\hline 3934 & 3.59472 & 3969 & 3.59868 II & 4004 & 3.6024941 & 4039 & 3.6062738 \\
\hline 3935 & 3.5949447 & 3970 & 3.5987905 & 4005 & 3.6026025 & 4040 & 3.6063814 \\
\hline & & & & & 3.6027109 & 4041 & 3.6064 .888 \\
\hline 3936 & 3.59505 & & \[
3.5990092
\] & & 3.6028193 & 4042 & 3.60659031 \\
\hline 3937
3938 & 3.5951654 & 397 & \[
\begin{aligned}
& 3.5990092 \\
& 13.5991186
\end{aligned}
\] & \[
\begin{aligned}
& 4007 \\
& 4008
\end{aligned}
\] & 3.6029277 & 4043 & 3.6067037 \\
\hline 3938 & 13.5952757 & 3973 & \[
\begin{array}{l|l|l}
3.5991180 \\
1 & 3.5902279
\end{array}
\] & 4009 & 3.6030361 & 4044 & .6068111 \\
\hline 3939 & 3.5953860 & 3974 & \[
\begin{aligned}
& 3.5992279 \\
& 3.5993371
\end{aligned}
\] & 4009 & 3.6031444 & 404.5 & 3.6069185 \\
\hline 3940 & 3.5954962 & 3975 & 3.5993371 & 4010 & 3.6031444 & 404.5 & \\
\hline & & & 3.5994464 & 4011 & 3.6032527 & 404.6 & 3.6070259 \\
\hline 3942 & 3.5957166 & & 3.5995556 & 4012 & 3.6033602 & 4047 & 3.6071331 \\
\hline 39.43 & 3.5958268 & 3978 & 83.5996648 & 4913 & 3.6034692 & 4048 & 3.6072405 \\
\hline 3944 & 4.5959369 & 3979 & 93.5997739 & 4014 & 3.6035774 & 4049 & 13.6073478 \\
\hline 3945 & 3.5960470 & 3980 & 03.5998831 & 4015 & 3.6036855 & 4050 & 0 \\
\hline & & & & & & 4051 & 13.6075622 \\
\hline 3946 & 3.5961571 & 3981 & \begin{tabular}{|l|l|}
1 & 3.5999922 \\
2.6001013
\end{tabular} & 4016 & 73.6039018 & & 23.6076694 \\
\hline 3947 & 3.5962671 & 3982 & 23.6001013 & 4017
4018 & 733.6039018 & & 33.6077760 \\
\hline 3948 & 83.5963771 & 3983 & 33.6002103. & 4018 & \[
\begin{aligned}
& 8.6040099 \\
& 2.604 \text { I I } 80
\end{aligned}
\] & 405 & 退 3.6078837 \\
\hline 3949 & 93.5964871 & 3984 & \begin{tabular}{|l|l|}
4 & 3.6003193 \\
5 & 3.6004283 \\
\hline
\end{tabular} & & 9+3.6041180 & 4055 & 53.6079909 \\
\hline 3950 & 03.5965971 & 3985 & 53.6004283 & 4020 & O 3.6042261 & 4055 & 53.0079909 \\
\hline & 070 & & 6,3.6005 373 & 4021 & I 3.6043341 & & 63.6080979 \\
\hline 2 & \[
2 \left\lvert\, \begin{aligned}
& 3.5907070 \\
& 3.5968 \mathrm{I} 69
\end{aligned}\right.
\] & & 873.6006462 & & 23.6044421 & & 73.6082050 \\
\hline & \[
\begin{array}{l|l}
3.5900109 \\
3 & 3.5969268
\end{array}
\] & 3988 & \(883.600755^{\text {I }}\) & & 33.6045500 & & 83.6083120 \\
\hline & 43.5970367 & 398 & 993.6008640 & & 43.6046580 & & 93.6084190 \\
\hline & 3.5971465 & & 903.6009729 & 4025 & 53.6047659 & & 3. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Nuni.I Logarithm. & Num. Logarithm. & Num. Logarithm. & & |Logarithm. \\
\hline 40613.0086330 & 40963.6123599 & 41313.0160552 & 4166 & 3 \\
\hline 40623.6087399 & 40973.6124660 & 41323.6161603 & 4167 & 3.6198235 \\
\hline 40633.6088468 & 40983.6125720 & 41333.6162654 & 4168 & 3.6199277 \\
\hline 40643.6089537 & 40993.6126779 & 41343.6163705 & 4169 & 3.6200319 \\
\hline \(4065 / 3.6090605\) & \(4100 \mid 3.6127839\) & 413513.6164755 & 4170 & 3.6201360 \\
\hline 40663.6091674 & 41013.6128898 & 41363.6165805 & 4171 & 3.6202402 \\
\hline 40673.6092742 & 41023.6129957 & 41373.6166855 & 4172 & 3.620344 \\
\hline 40683.6093809 & 41033.6131015 & 41383.6167905 & 4173 & 3.6204484 \\
\hline 4069 3.6094877 & 41043.6132073 & 41393.6168954 & 4174 & 3.6205524 \\
\hline 40703.6095944 & 41053.6133132 & 41403.6170003 & 4175 & 3.6206565 \\
\hline 40713.609701 I & 13.6134189 & 4141 \({ }^{\text {P.6171052 }}\) & 4176 & 3.6207605 \\
\hline 49723.6098078 & 41073.6135247 & 41423.6172101 & 4177 & 3.6208645 \\
\hline 40733.6099144 & 41083.6136304 & 41433.6173149 & 4178 & 3.6209684 \\
\hline 40743.6100210 & 4109 3.6137361 & 41443.6174197 & 4179 & 3.6210724 \\
\hline 40753.6101276 & 4110 3.6138418 & 414513.6175245 & 4.180 & 3.62 II763 \\
\hline 40763.6102342 & 411130139475 & 41463.6176293 & 418 I & 3.6212802 \\
\hline 4077)3.6103407 & 41123.614053 I & 41473.6177340 & 4182 & 3.6213840 \\
\hline 407813.6104472 & 4113 3.6141587 & 414813.6178387 & 4183 & 3.6214879 \\
\hline 40793.6105537 & 41143.6142642 & 41493.6179434 & 4184 & 3.6215917 \\
\hline 40803.6106602 & 41153.6143698 & 41503.6180481 & 4185 & 3.6216955 \\
\hline 40813.6107666 & 41163.5144754 & 41513.6181527 & 4186 & \\
\hline 40823.6108730 & 41173.6145809 & 41523.6182573 & 4187 & 3.6219030 \\
\hline 40833.6109794 & 4118 3:6146863 & 41533.6183619 & 4188 & 3.6220067 \\
\hline 4084 3.6110857 & 41193.6147918 & 41543.6184665 & 4189 & 3.6221104 \\
\hline 408536111921 & 4120 ?.6148972 & 41553.6185710 & 4190 & 3.6222140 \\
\hline 40863.6112984 & 41213.6150026 & 41562.6186755 & 4191 & 3.6223177 \\
\hline 40873.6114046 & 41223.6151080 & 41573.6187800 & 4192 & 3.62242 I 3 \\
\hline 4088 3.6115109 & 41233.6152133 & 41583.6188845 & 4193 & 3.6225249 \\
\hline 40893.6116171 & 41243.6153187 & 4159 ?.6189889 & 4194 & 3.6226284 \\
\hline 40903.6117233 & 41253.6154240 & 41603.6190933 & 4195 & 3.6227320 \\
\hline 140913.6118295 & 41263.6155292 & 4161 3.6191977 & 4196 & 2.6228355 \\
\hline 40923.6119356 & 41273.6156345 & 41623.6193021 & 4197 & 3.6229390 \\
\hline 40933.6120417 & 41283.6157397 & 41633.6194064 & 4198 & 3.6230424 \\
\hline 40943.6121478 & 41293.6158449 & 41643.6195107 & 4199 & 3.6231459 \\
\hline 40952.6122539 & 413013.6159501 & 41653.6196150 & 4200 & 3.6232493 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Num, Logarithm. & & Logarithm.. & Num. \({ }^{\text {I }}\) & Logarithm. & Num. 1 & \\
\hline 42013.6233527 & 4236 & 3.626955 & 4271 & 5 & 4300 & 34074 C \\
\hline 42023.6234560 & \(42: 37\) & 3.6270585 & 42723 & 3.630631 & 4307 & 54174.9 \\
\hline 42033.6235594 & 4238/3 & 3.6271610 & 4273 & 3.6307329 & 4308 & 6342757 \\
\hline 420433.623 .6627 | & 423913 & 3.6272634 & 4274 & 3.6308345 & 4309 & 65 \\
\hline 420513.6237660 & 424013 & 3.6273659 & 4275 & 3.6309362 & 4310 & 3 \\
\hline 03. & 42 & 3.6274683 & 42763 & 3.6310377 & 4311 & \\
\hline 73.6239725 & 4242 & 3.6275706 & 427713 & 3.6311392 & 4312 & 3.6346788 \\
\hline 420813.6240757 & 42 & 3.6276730 & 427813 & 3.6312408 & 4313 & 3.6347995 \\
\hline 42093.6241789 & 4244 & 3.6277754 & 4279 & 3.6313 .423 & 4314 & 3.6348801 \\
\hline 42103.6242821 & 4245 & 3.6278777 & 4280 & 3.6314438 & 4315 & 3.6349808 \\
\hline |42II|3.624385 & 4 & 3.6279800 & 4281 & 3.6315452 & 4316 & 3.6350814 \\
\hline |4212|3.6244883 & 4247 & 3.6280823 & 4282 & 3.6316467 & 4317 & 3.6351820 \\
\hline 421333.6245915 & 4248 & 3.6281845 & 4283 & 3.63 .17481 & 4318 & 3.6352822 \\
\hline 42143.6246945 & 4249 & 3.6282867 & 4284 & 3.6318495 & & \\
\hline 4215:3.6247976 & 4250 & 3.6283889 & 4285 & 3.6319 & 4320 & \\
\hline 42163.6249006 & 4241 & 3.628491 I & 4286 & 3.6320522 & 4321 & \\
\hline 42173.6250036 & 4252 & 3.6285933 & 4287 & 3.6321535 & 4322 & 3.6356848 \\
\hline 42183.6251066 & 4253 & 3.6286954 & 4288 & 3.6322548 & 432 & 3.6357852 \\
\hline 42193.6252095 & 4254 & 3.6287975 & 4289 & 3.6323560 & 4324 & 3.6358857 \\
\hline 42203.6253124 & 4255 & 3.6288096 & 4290 & 3.6324573 & 4325 & 3.6359861 \\
\hline \(4221{ }^{3.62}\) & & 3. & 4291 & 3.6325585 & & 3.6360865 \\
\hline 4.2223 .6255182 & 4257 & 3.6291036 & 4292 & 3.6326597 & 4327 & 3.6361869 \\
\hline 42233.6256 & 4258 & 3.6292057 & 4293 & 3.6327609 & 4328 & 3.6362872 \\
\hline 42243.6257239 & 4259 & 3.6293076 & 4294 & 3.6328620 & 4329 & 3.6363876 \\
\hline \(44^{225} 3.6258267\) & 4260 & 3.6294096 & 4295 & 3.6329632 & & 3.6364879 \\
\hline 42263.6259295 & 4261 & 3:6295 I I5 & 4296 & 3.63 .30643 & 43 & 3.6365882 \\
\hline 4227
4.6260322 & 4262 & 3.6296134 & 4297 & 3.6331653 & 4332 & 3.6366884 \\
\hline 42283.6261350 & 4263 & 3.6297153 & 4298 & 3.6332664 & & 3.6367887 \\
\hline 42293.6262377 & 4264 & 3.9298172 & 4299 & 3.6333674 & 4 & 3.6368889 \\
\hline 42303.6263404 & 4265 & 3.6299190 & & 3.6334685 & & 3.6369891 \\
\hline 423 I 3.6264430 & 426 & 3.6300208 & 4301 & 3.6335694 & & 3.6370893 \\
\hline 142323.6265457 & 4267 & 3.6301226 & 4302 & 23.6336704 & & 6371894 \\
\hline 42333.6266483 & 4268 & 3.6302244 & +4303 & 33.63377 I 3 & & 3.6372895 \\
\hline 42343.6267509 & 4269 & 3.6303262 & 4304 & 43.6338723 & & 3.6373896 \\
\hline 42353.6268534 & \(4{ }^{1} 4270\) & 3,6304279 & 14305 & 53.6339722 & 4 & 3.6374897 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Num & Logarithm. & N & m. & & Logaritbm. & & - \\
\hline 434 & 3.6375898 & 4376 & 3.6410773 & 44.11 & 3.6445371 & 4446 & 3.6479695 \\
\hline 4342 & 3.6376898 & 4377 & 3.6411765 & 4412 & 3.64 .46355 & 4447 & 3.64 .80671 \\
\hline 4343 & 3.6377898 & 4378 & 3.6412758 & 4413 & 3.6447339 & 4448 & 3.6481648 \\
\hline 4344 & 3.6378898. & 4379 & 3:641 3749 & 4414 & 2.6448323 & 4449 & 3.6482624 \\
\hline 43,45 & 3.6379898 & 4380 & 13.6414741 & 44.15 & 3.6449307 & 4450 & 13.6483600 \\
\hline & 3.6380897 & 4381 & 3.6415733 & 4416 & 3.6450291 & 5 I & \\
\hline 4347 & 3.6381896 & 4382 & i.6416724 & 4417 & 3.6451274 & 4452 & \\
\hline 4348 & 3.6.382895 & 4383 & 3.6417715 & 4418 & 3.6452257 & 4453 & 3.6480527 \\
\hline 4349 & 3.6383894 & 4384 & 3.6418705 & 4419 & 3.6453240 & 4454 & 3.6487502 \\
\hline 4350 & 2.6384893 & 4385 & 3.6419696 & 4420 & 3.6454223 & 4455 & \\
\hline & & & & 442 I & 3.6455205 & & \\
\hline 4352 & 3.6386886 & 4387 & 3.6421676 & 4422 & 3.6456187 & 4457 & 3.6490426 \\
\hline 4353 & 3.6387887 & 4388 & 3.6422666 & 4423 & 3.6457169 & 4458 & 3.6491401 \\
\hline & 3.6388884 & 4389 & 3.6423656 & 4424 & 3.6458151 & 4459 & 3.6492375 \\
\hline 4355 & 3.6389882 & 4390 & 3.6424645 & 4425 & 3.6459133 & 4460 & 3.6493349 \\
\hline & 3.6390879 & 4391 & 3.6425634 & 4426 & 3.6460114 & 4461 & \\
\hline & 3.6391878 & 4392 & 3.6426623 & 4427 & 3.6461095 & 4462 & 3.6495296 \\
\hline 4358 & 3.6392872 & 4393 & 3.64276 I 2 & 4428 & 3.6462076 & 4463 & 3.6496269 \\
\hline 4359 & 3.6393869 & 4394 & 3.6428601 & 4429 & 3.6463057 & 4464 & 3.6497242 \\
\hline 4360 & 3.6394865 & 4395 & 3.6429589 & 4430 & 3.6464037 & 4465 & 3.6498215 \\
\hline 4 & 3.6395861 & 4396 & 3.6430577 & & 3.6465017 & & \\
\hline 4362 & 3.6396857 & 4397 & 3.6431565 & 4432 & 3.6465997 & 4467 & 3.6500160 \\
\hline 43 & 3.6397852 & 4398 & 3.6432552 & 4433 & 3.6466977 & 4468 & 3.6501132 \\
\hline 4364 & 3.6398847 & 4399 & 3.6433540 & 4434 & 3.6467957 & 4469 & \\
\hline 4365 & 36399842 & 4400 & ?.6434527 & 4435 & 3,6468936 & 4470 & 3.6503075 \\
\hline & 3.6400837 & 4401 & 3.6435514 & 4436 & 3.6469915 & 4471 & \\
\hline 4367 & 3.6401832 & 4402 & 3.6436500 & 4.437 & 3.6470894 & 4472 & 3.6505018 \\
\hline 43.68 & 3.6402826 & 4403 & 3.6437487 & 4438 & 3.6471873 & 4473 & 2.6505989 \\
\hline 4369 & 3.6403820 & 4404 & 3.6438473 & 4439 & 2.6472851 & 4474 & \\
\hline 4370 & 3.6404814 & 4405 & 3.6439459 & 4440 & 3.6473830 & 4475 & 3.6507930 \\
\hline 4371 & 3.6405808 & 4406 & 3.6440445 & 4441 & 3.6474808 & 44 & 3.6508901 \\
\hline 1437.2 & 3.6406802 & 4407 & 3.6441430 & 4442 & 3.6475785 & 4477. & 3.6509871 \\
\hline 4373 & 3.6407795 & 4408 & 3.6442416 & 4443 & 3.6476763 & 4478 & 3.651084 I \\
\hline 4374 & 3.6408788 & 4409 & 3.6443401 & \% 5444 & 3.6477740 & 4479 & 3.65 I1811 \\
\hline 437 & 3.6409781 & & 3.6444386 & 4445 & 3.6478718 & 4480 & 3.6512780 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Num 1 Log & -130 & Num.1 Logarithm. & Num.1 Logarichm. \\
\hline 1 3.6647360 & 46563.6080130 & 4691|3.6712654 & 47.26|3.6744937 \\
\hline 46223.6648299 & 46573.6681062 & 46923.6713580 & 47273.6745856 \\
\hline 4623 3.6645239 & 46583.6681995 & 46933.6714506 & 47283.6746775 \\
\hline 46243.6650175 & 46593.6682927 & 46943.6715431 & 47293.6747693 \\
\hline 46253.6651117 & 46603.6683859 & 46953.6716356 & 473013.6748611 \\
\hline & & 46963.6717281 & 313.6749529 \\
\hline 3.6652995 & 46623.6685723 & 46973.6718206 & 4732 2.5750447 \\
\hline 462813.6653934 & 4663 3.6686654 & 469813.67191 .30 & 473313.6751365 \\
\hline 46293.6654873 & 46643.6687585 & 46993.6720054 & 47343.6752283 \\
\hline 46303.6655810 & 46653.6688516 & 47003.6720979 & 47353.6753200 \\
\hline 46313.6656748 & 46663.6689447 & 4701 3.6721903 & 33.6754117 \\
\hline 46323.6657685 & 46673.669037 & 47023.6722826 & 47373.6755034 \\
\hline 4633 :.6658023 & 46683.6691308 & 47033.6723750 & 47383.6755951 \\
\hline 46343.6659560 & 46693.6692239 & 47043.6724673 & 47393.6756867 \\
\hline 463513.6660497 & 4670 3.6693169 & 470513.6725596 & 4740 3.6757783 \\
\hline 46363.6661434 & 46713.6694099 & & 47413.6758700 \\
\hline 4637 3.6662371 & 46723.6695028 & 47073.6727442 & 47423.6759615 \\
\hline 4638.3 .6963307 & 46733.6695958 & 47083.6728365 & 3.6760531 \\
\hline 4639.3 .6664 & 46743.6696887 & 47093.6729287 & 47443.6761447 \\
\hline 46403.6665180 & 46753.6697816 & 4710 ? 6730209 & 47453.6762362 \\
\hline 4641 ? & 46763.6698745 & 13.6731131 & 3.6763277 \\
\hline 46423.6667 & 46773.6699674 & 47.123 .6732053 & 47473.6764192 \\
\hline 46433.6667987 & 46783.6700602 & 47133.6732974 & 47483.6765106 \\
\hline 46443.6668922 & \[
46793.6701530
\] & \[
143.6733896
\] & 4749 3.6766022 \\
\hline 46453.6669857 & 4680 & 47153.6734817 & 475013.6766936 \\
\hline 46463.6670792 & 46813.6703386 & 47163.6735738 & 47513.6767850 \\
\hline 46473.6671727 & 46823.6704314 & \(4717{ }^{2.6736659}\) & \[
4752 \mid 3.5768764
\] \\
\hline 46482.6672661 & \(4683,3.6705242\) & 47183.6737579 & 47533.6769678 \\
\hline 46493.66735 & 4684 & 47193.6738500 & \(47543.677059=\) \\
\hline 45503.667 & 46853.6707096 & 47203.6739420 & 47553.6771505 \\
\hline 1485130 & \[
46863.6708
\] & \(4721,3: 6740340\) & 56.6772418 \\
\hline \[
\mid 16521: 6676397
\] & \[
4687 / 3.6708950
\] & 47223.6741260 & 4757 | 3.6773332 \\
\hline 1653 26.6677331 & \[
46883.6709876
\] & 47233.674217 .9 & 47583.6774244 \\
\hline 4654 ?.6678264 & 46893.6710802 & 47243.6743099 & 47593.6775157 \\
\hline 1465512.6679197 & 469013.6711728 & 472512.6744018 & 476013.6776069 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Num. T Logarithm.} & \multicolumn{2}{|l|}{Num. Logaritbm.} & \multicolumn{2}{|l|}{Num. 1 Logarithm.} & \multicolumn{2}{|l|}{Num. [Log aritbm.} \\
\hline -61 & 3.5776982 & & & & & & \\
\hline 4762 & 3.5777894 & 47 & 3.68096 & 4832 & 3.684126 & & \\
\hline 4763 & 3.5778806 & 4798 & 3.6810602 & 4833 & 3.6842168 & 8 & \\
\hline 4764 & 3.5779718 & 4799 & 3.6811507 & 4837 & 3.6843066 & 4869 & \\
\hline 4765 & 3.6780639 & 4800 & 3.6812412 & 4835 & 3.6843965 & 4870 & \\
\hline & & & & 4836 & & 71 & \\
\hline & 3.6782452 & 4802 & 3.6814222 & 4837 & 3.684576 I & 4872 & \\
\hline & 13.6783362 & 4803 & 3.6815126 & 4838 & \(3.6846659^{\circ}\) & 4873 & \\
\hline 4769 & 3.6784273 & 4804 & 3.6816030 & 4839 & 3.6847556 & 4874 & \\
\hline 47 & 2.6785184 & 4805 & 3.6816934 & 4840 & 3.6848455 & 4875 & \\
\hline & & & & & & & \\
\hline & 3.6787007 & 4807 & 3.6818742 & 4842 & 3.68502 .48 & 4877 & \\
\hline & 3.6787914 & 4808 & 3.6819645 & 4843 & 3.6851145 & 4878 & 3.6882418 \\
\hline & 3.6788824 & 4809 & 3.6820548 & 4844 & 3.6852041 & 4879 & 3. \\
\hline 7775 & 3.6789734 & 4810 & 3.682145 & 4845 & 3.6852938 & & \\
\hline & & 48 II & & & 3.6853834 & 4881 & \\
\hline & 3.679 & 4812 & 3:6823256 & 4847 & 3.6854730 & 4882 & 3.6885978 \\
\hline & 3.679 & 4813 & 3.6824159 & 4848 & 3.6855626 & 4883 & 3.6886867 \\
\hline & 3.679 & 4814 & 3:6825061 & 4849 & 3.6856522 & 488 & \\
\hline & 3.6794279 & 4815 & 3.6825963 & 4850 & 3.6857417 & 4885 & \\
\hline & & & 3, 8 & & & 4886 & \\
\hline & 3.67 & 4817 & 3.6827766 & 4852 & 3.6859208 & 4887 & 3.6890423 \\
\hline & 3.679 & 4818 & 3.6828668 & 4853 & 3.6860103 & 4888 & 3.6891312 \\
\hline & 3.6797.912 & 4819 & 3.6829569 & & 3.6860998 & 4889 & 3.6892200 \\
\hline & 36798819 & & 3.6830470 & 4855 & 3.6861892 & 4890 & \\
\hline & & 4821 & & & & 4891 & \\
\hline & 3.68006 & 4822 & 3.683 & & 2.5863681 & 4892 & \\
\hline & 3.6801541 & 4823 & 3.6833173 & 4858 & 3.686 & 489 & \\
\hline & 3.6802448 & 4824 & 3.6834073 & 4859 & 3.6865469 & 4894 & \\
\hline 4790 & 3.6803355 & & 3:6834973 & 4860 & 3.6866363 & 4895 & , \\
\hline & & & & & & & \\
\hline & 3.6805168 & & 3.6836773 & 48 & 3.686814 & & , \\
\hline & 3.6806074 & 4 & 3.6837673 & 4 & 3.686904 & 489 & ,69 \\
\hline & 3.68 & 48 & 3.6838572 & 48 & 3.6869936 & 48 & \\
\hline & 3.6807886 & & 3.6839471 & & 3.6870828 & 4900 & 3.6901961 \\
\hline
\end{tabular}

\section*{Rrrer 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Num.1 & 2 & & & & & & \\
\hline 13 & 3.0902847 & 4930 & & & & & \\
\hline 49023 & 3.690373 & 4937 & 3.6934631 & 49 & 3.696531 & & \\
\hline 4903 & 3.6904619 & 4938 & 3.693551 & 4973 & 3.6966185 & 50083 & 3.6996643 \\
\hline 1490413 & 3.6905505 & 49393 & 3.6936390 & 4974 & & & 3.69975101 \\
\hline 490513 & 3.6906390 & 4940 & 3.6937269 & 4975 & 3.6967931 & 5010 & \\
\hline & & & & & & 5011 & \\
\hline 14907 & 3.6908161 & 4942 & 3.6939027 & 4977 & 3.6969676 & & 3.7000111 \\
\hline 490813 & 3.6909046 & 494313 & 3.6939906 & 497 & 3.6970549 & & 3.7000977 \\
\hline & 3.690993 & 4944 & 3.6940785 & 4979 & 3.6971421 & 43 & \\
\hline 4910 & 3.6910815 & 4945 & 3.6941663 & 4980 & 3.6972293 & 5 & 3.7002709 \\
\hline & & & 3.694254 & & & & 3.7003575 \\
\hline 4912 & 3.6912584 & 4947 & 3.694341 & 4982 & 3.697403 & & 3.700444 T \\
\hline 49133 & 3.6913467 & 4948 & 3.6944297 & 4983 & 3.6974909 & 5018 & 3.7005307 \\
\hline 49143 & 3.6914352 & 4949 & 3.6945174 & 4984 & 3.6 & & 3.7006172 \\
\hline 4915 & 3.6915235 & 4950 & 3.6946052 & & 3.6 & 3 & 3.7007037 \\
\hline 49 & & 49 & & 4986 & & & \\
\hline & 3.6917002 & 4932 & 3.6947806 & 4987 & 3.6978394 & 2 & 3.7008767 \\
\hline 49 & 3.6917885 & 4953 & 3.6948683 & 4988 & 3.6979264 & & 3.7009632 \\
\hline 4919 & 3.6918768 & 4954 & 3.6949560 & 4989 & 3.6980135 & & \(3.7,010496\) \\
\hline 4920 & 3.6919651 & 495 & 3.6950437 & 4990 & 3.6981005 & 5025 & \\
\hline & 3.692053 & 49 & 3.5951313 & & 3.6981876 & & \\
\hline 4922 & 3.6921416 & 4957 & 3.6952189 & 4992 & 3.6982746 & & 3.7013089 \\
\hline 4923 & 3.6922298 & 4958 & 3.6953065 & 4993 & 3.6983616 & 5028 & 3.7013952 \\
\hline & i.6923180 & 4959 & 3.6953941 & & & & \\
\hline 4925 & 36924062 & 4960 & ?.6954817 & 4995 & 3.6985355 & & 3.7015680 \\
\hline & 3.6924944 & 4961 & 3.69556 .92 & 4996 & 3.6986224 & & - \\
\hline 4927 & 3.6925825 & 4962 & 3.6956568 & 4997 & 3.6987093 & & \\
\hline 4928 & 3:6926707 & 4963 & 3.6957443 & 4998 & 3.6987963 & & 3.7018269 \\
\hline 14929 & 3.6927588 & 4964 & 3.695831 & 4999 & ?.6988831 & 5034 & 3.7019132 \\
\hline 4930 & 3.6928469 & 4965 & 3.6959193 & 5000 & 3.6989700 & 5035 & 3.7019995 \\
\hline 4031 & I 3.6929350 & & 3.6960067 & & 3.6990569 & 503.6 & 3.7020857 \\
\hline 4932 & 23.6930231 & & 3.6960942 & 5002 & 3.6991437 & 5037 & 3.7021719 \\
\hline 4933 & 3 3:093 I I I I & I 4968 & 3.6961816 & \[
5003
\] & 33.6992305 & 5038 & 3.7022582 \\
\hline +934 & 43.6931991 & 4969 & 93.6962690 & 5004 & 3.6993173 & 5039 & 3.7023444 \\
\hline \(\underline{+235}\) & 5! 3.6932872 & 214970 & 3:6963.564 & 5005 & 12.699404 I & 5040 & 13.7024305 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Num.1 Logarithm.} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Num logaritbm.}} & \multicolumn{2}{|l|}{Num. L Logarithmat} & \multicolumn{2}{|l|}{Num.T Logarithm.} \\
\hline 50413. & 2.7025167 & 507613. & & \(5 \times 13\) & 3.7085059 & 5146 & .7114698 \\
\hline 23. & 3.7026028 & 50773. & 3.7056072 & 12 & 708.5008 & 5147 & 3.7115542 \\
\hline 50433. & 3.7026890 & 50783. & 3.70 & 51133 & & & \\
\hline 50443. & 3.702775 & 50793. & 3.7057782 & 51143 & & & \\
\hline 5045 & 3.7028612 & 8080 3 & 3.7058637 & 5115 & & & \\
\hline \multirow[b]{2}{*}{5046} & & & & & & & \\
\hline & & & 3.7060347 & 5117 & 3.7090154 & 5152 & \\
\hline 50473. & 3.7030333
3.703 II 93 & 5082 5083 & 3.7061201 & 51183 & 3.7091003 & 5153 & \\
\hline 50483 & 3.7031193 & 5084 & 3.7062055 & 51193 & 3.709185 F & 5154 & \\
\hline 50493 & 3.7032054
3.7032914 & 5085 & 3.7062910 & 5120 & 3.7092700 & 5155 & \\
\hline 5050 & 3.7032914 & 5085 & 3.7062910 & & & & \\
\hline & & & & 5121 & 3.70 & & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 5052 \\
& 5053 \\
& 5054
\end{aligned}
\]} & 3.7034633 & 5087 & 3.7064617 & 5122 & 3.709439 & 5157 & \\
\hline & 3.7035493 & 5088 & 3.7065471 & 512 & 3.70952 & & \\
\hline & \(3.703635^{2}\) & 5089 & 3.7066324 & 51 & 3.709609 & & \\
\hline 5055 & 3.7037212 & 5090 & 3:7067178 & 51 & & 5160 & \\
\hline \multirow[t]{2}{*}{} & & & & 5126 & 3.709 & & \\
\hline & & & & 5127 & 3.7098633 & 5162 & \\
\hline 5056 & \[
3.7038929
\] & \[
\begin{aligned}
& 5092 \\
& 5093
\end{aligned}
\] & \[
\begin{aligned}
& 3.7068884 \\
& 13.7069737
\end{aligned}
\] & 5128 & 3.7099480 & 5163 & \\
\hline \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& 5058 \\
& 5059
\end{aligned}\right.
\]} & \[
\left\lvert\, \begin{aligned}
& 3.7039788 \\
& 3.7040647
\end{aligned}\right.
\] & \[
\begin{aligned}
& 5093 \\
& 5094
\end{aligned}
\] & \(3 \begin{aligned} & 3.7009737 \\ & 3.7070589\end{aligned}\) & 29 & 3.7100327 & 5164 & \\
\hline & \[
\begin{aligned}
& 3.7040647 \\
& 3.704 .1505
\end{aligned}
\] & 5094 & \[
\begin{aligned}
& 7 \\
& 5.70705 .89 \\
& 3.7071442
\end{aligned}
\] & 5130 & 3.7101174 & 5105 & 3.7130703 \\
\hline \multirow[b]{2}{*}{5061} & & & & & & & \\
\hline & 3.7 .042363 & & & & \[
3.71028
\] & 5167 & \\
\hline 5062 & 3.704322 I & & \[
\begin{array}{l|l|l|l|l|}
7 & 3.7073146 \\
8.7073998
\end{array}
\] & 5133 & 3.7103713 & 5168 & 3.7133225 \\
\hline \multirow[t]{2}{*}{5063
5064
506} & 3.7044079
30704937 & 5098
5099 & \[
\begin{array}{l|l}
83.7073998 \\
9 & 3.7074850
\end{array}
\] & 5134 & 3.7104559 & 5169 & 3.7134065 \\
\hline & \[
\begin{aligned}
& 3.7044937 \\
& 43.7045794
\end{aligned}
\] & 5099
5100 & \[
\begin{array}{l|l}
3.7074850 \\
3.7075702
\end{array}
\] & 5145 & 3.7105404 & 517.0 & 3.7134905 \\
\hline 5065 & & & & & & & \\
\hline 5066 & & 5101 & 3.7076553 & 13 & 3.7 & & 3.7135745 \\
\hline & \[
\begin{array}{l|l}
3.7040052 \\
3.7047509
\end{array}
\] & 5102 & 23.7077405 & 5137 & 3.7107096 & 5172 & 3.7136585 \\
\hline \[
|5007|
\] & 3.7048366 & 5103 & 3.7078256 & 51 & 3.71079 & 5173 & 3.7 \\
\hline 5069 & 3.7049223 & 5104 & 43.7079107 & 51 & 3.7108786 & 5174 & \\
\hline 5070 & 3.7050080 & 5105 & 53.7079957 & 514 & 3.7109631 & 5175 & 3.7 \\
\hline \multirow[t]{2}{*}{} & & & & & 6 & & 3.7139943 \\
\hline & & & \[
73.7081659
\] & & 3.7111321 & & 3,7140782 \\
\hline 5072 & \[
\begin{array}{l|l}
3.7051792 \\
3 & 3.7052649
\end{array}
\] & 5108 & 83.7082509 & 5143 & 33.7112165 & 51 & 3.7141 \\
\hline \multirow[t]{2}{*}{\[
\left|\begin{array}{c}
5073 \\
5074
\end{array}\right|
\]} & \[
\begin{array}{l|l|l|}
\hline & 3.7052049 \\
4 & 3.7053505
\end{array}
\] & 5109 & 93.7083359 & 5144 & 43.7113010 & 5 & 3.71 \\
\hline & & ¢ 10 & 13.708420 & 51 & 3071138 & 415180 & 3.714 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline unim. 1 Logarithm. & \multicolumn{2}{|l|}{Num.1 Logatithm.} & \multicolumn{2}{|l|}{Num.1 Logaritbm.} & & I Logarathm. \\
\hline \begin{tabular}{|l|l|l|l|l|}
\\
5321 & 725993
\end{tabular} & 5356 & \(3.7288 \overline{406}\) & 539 I & \(3.73 \overline{16693}\) & 54 & 3:73447.98 \\
\hline 5322.3 .7260749 & 5357 & 3.7289216 & 5392 & 3.7317499 & 54.27 & 3.7345598 \\
\hline 53233.7261565 & 5358 & \(3 \cdot 7290027\) & 5393 & 3.7318304 & 5428 & 3.6346398 \\
\hline \(5324 \mid 3.7262380\) & 5359 & 3.7290838 & 53.94 & 3.7319109 & & 3.7347198 \\
\hline 53253.7263196 & 5300 & 3.7291648 & 5395 & 3.7319914 & 5430 & 3.7347998 \\
\hline 53.2613 .7264012 & 5361 & 3.7292458 & 53.96 & 3.7320719 & 5431 & \\
\hline 53.3273 .7264827 & 5362 & 3.7293268 & 5397 & 3.7321524 & 543 & \\
\hline 5328.13 .7265642 & 5363 & 3.7294078 & 5398 & 3.7322329 & 543 & 3.73503 .97 \\
\hline 5329 |3.7266457 & 5364 & 3.7294888 & 5399 & 3.7323133 & 543 & 3.7 .351196 \\
\hline 53308.7267272 & 5365 & \(3 \cdot 7295697\) & 5400 & 3.7323938 & 5435 & \\
\hline 313.7268087 & 5366 & 3.7296507 & 5401 & 3.7324742 & 5436 & \\
\hline 5332 3.7268901: & 5367 & 3.7297316 & 5402 & 3.7325546 & 5437 & \\
\hline 5333 3.7269716 & 5368 & 3.7298125 & 5403 & 3.7326350 & 5438 & 3.7354392 \\
\hline 53343.7270531 & 5369 & 3.7298934 & 5404 & 3.7327153 & 5439 & 3.7355191 \\
\hline 53353.7271344 & 53.70 & 3.7299743 & 54051 & 3.7327957 & 5440 & 3.7355989 \\
\hline 53363.7272158 & 5371 & 3.7300551 & 5406 & 3.7328760 & 5441 & 3.7356787 \\
\hline [5337 3.7272972 & 53.72 & 3.7301360 & 5407 & 3.7329564 & 5442 & 3.7357585 \\
\hline ¢5338 3.7273786 & 5373 & 3.7302168 & 54081 & 3.7330367 & 544 & 3.7358383 \\
\hline 5339 3.7274599 & 5374 & 3.7302977 & 5409 & \(3 \cdot 7.331170\) & 5444 & 3.735918 I \\
\hline 53403.7275413 & 5375 & 3.7303785 & 5410 & 3.7331973 & 5445 & 3.7359979 \\
\hline 534153.7276226 & 5376 & 3.7304593 & . 541 II & 3.7332775 & & 3.7360776 \\
\hline 53423.7277039 & 5377 & 3.7305400 & 5412 & 3.7333 .578 & 54 & 3.7361574 \\
\hline 534312.7277852 & 5378 & 3.7306208 & 5413 & 3.7334380 & 5448 & 3.7362371 \\
\hline \begin{tabular}{|l|l|}
5344 & 2.7278664 \\
5345 & 3.7278477
\end{tabular} & 5379 & 3.7307015 & 5414 & 3.7335181 & 5449 & 3.7363168 \\
\hline 53453.7279477 & 5380 & 3.7307823 & 5415 & 3.7335985 & 5450 & 3.7363965 \\
\hline 53463.7280290 & 538 I & 3.7308630 & 5416 & 3.7336787 & 545 I & 3.7.364762 \\
\hline \(5347.3 .728110{ }^{\prime}\) & 5382 & 2.7309437 & 5417 & 3.7337588 & 5452 & 3.7 .3655 .58 \\
\hline 153483.7281914 & 5383 & 3.7310244 & 5418 & -7338990 & 5453 & 3.7366355 \\
\hline 5.349 3.7282726 & 5384 & 3.73 T1551 & 5419 & 3.7339191 & 5454 & 37367151 \\
\hline 53503.7233538 & 5385 & 3.7311857 & 5420 & ?.7339993 & 5455 & 3.7367 .948 \\
\hline 53513.7284349 & 5386 & \(3.73 \cdot 12663\) & 542.1 & . 7340794 & 54 & \\
\hline 53523.7285161 & 5387 & 3.7313470 & 5422 & 3.7341595 & 5457 & 2.7369540 \\
\hline 5353.3 .7285972 & 5388 & 3.7314276 & 5423 & 3.7342396 & 5458 & 3.7370335 \\
\hline 5354 3.7286-84 & 5389 & 37315082 & 5424 & 3.7343197 & 545:9 & 3.7371131 \\
\hline 53553.7287595 & 5390 & 3.7315888 & 54253 & 3.7343997 & 5460 & 3.7371926 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 L & \multicolumn{2}{|l|}{Num. Logarithm:} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Num.l Logarithm. } \\
& 5531 / 3.7428037
\end{aligned}
\]}} & & \\
\hline 54013.7372722 & 5493 & \(3 \cdot 7400467\) & & & 55 & 2 \\
\hline 5462 \({ }^{\text {2 }}\) 3.7373517 & 5497 & 3.7401257 & 5532 & 3.7428822 & 5567 & 3.7456212 \\
\hline 546333.7374312 & 5498 & 3.7 .402047 & 5533 & 3.7429607 & 5568 & \(3 \cdot 7456992\) \\
\hline 54643.7375107 & 5499 & 3.7402837 & 5534 & \(3.743038^{2}\) & 556 & 3.7457772 \\
\hline 54653.7375902 & 5500 & \(3 \cdot 7403627\) & 5535 & \(3 \cdot 7431176\) & 5570 & \(3 \cdot 74585.52\) \\
\hline 154663.73766 & 5501 & \(3 \cdot 7404416\) & 5.536 & 3.7431961 & 5571 & \\
\hline |546713.7377 & 5502 & 3.7405206 & 5537 & 3.7432745 & 55 & 3.7460111 \\
\hline 546813.7378285 & 5503 & 3.7405995 & 5538 & 3.7433530 & 55 & \\
\hline 54693.7379079 & 5504 & 3.7406784 & 5539 & 3.7434314 & 5574 & 3.7461670 \\
\hline 5470 3.7379873 & 5505 & \(3 \cdot 7407573\) & 5540 & 3.7435098 & 5575 & \(3 \cdot 7462449\) \\
\hline 13.7380667 & & & 5541 & \(3 \cdot 743588\). & & \\
\hline 54723.7381461 & 5507 & 3.7409151 & 5542 & 3.7436665 & 5577 & 3.7464006 \\
\hline 54733.7382254 & 5508 & 3.7409939 & . 55.43 & 3.7437449 & 5578 & \(3 \cdot 7464785\) \\
\hline 15.4743 .7383048 & 5509 & 3.7410728 & 5544 & 3.7438232 & 5579 & 3.7465564 \\
\hline 54753.7383841 & 5510 & 3.7411516 & 5545 & 3.7439015 & 5580 & \(3 \cdot 7466342\) \\
\hline 54763.7384634 & 5511 & 3.7412304 & 5546 & 3.7439799 & 5581 & \\
\hline 15477 3.7385427 & 5512 & 3.7413092 & 5547 & 3.7440582 & 5582 & 3.7467898 \\
\hline [5478 3.7386220 & \(55^{13}\) & 3.7413880 & 5548 & 2.7441365 & 5533 & 3.7468676 \\
\hline 54793.7387013 & 5514 & 3.7414668 & 5549 & 3.7442147 & 5584 & 3.7469454 \\
\hline 5480 3.7387806 & 5515 & 3.7415455 & 5550 & 3.7442930 & 5585 & 3.74 .70232 \\
\hline 548 I 3.7388598 & 5516 & 3.7.416243 & & .7443712 & & 009 \\
\hline 54823.7389390 & 5517 & 3.7417030 & 5552 & 3.7444495 & & 3.747 .1787 \\
\hline 54833.7390182 & 5518 & 3.7417817 & 5553 & 3.7445277 & . 5588 & 3.7472564 \\
\hline 54843.7390974 & 5519 & 3.7418604 & 5554 & 3.7446059 & 5589 & 3.7473341 \\
\hline 54853.7391766 & 5520 & 3.7419391 & 5555 & 3.7446841 & 5590 & 3.7474 r18 \\
\hline 54.863 .7392558 & 5521 & 3.7420177 & 5556 & 3.7447622 & 5591 & 3.7474895 \\
\hline 54873.7393350 & 5522 & 3.7420964 & 5557 & 3.7 .448404 & 5592 & 3.7475672 \\
\hline 5488,3.7394141 & 5523 & \(2.742^{1} 1750\) & 55 & 3.7449185 & & 3.7476448 \\
\hline [5489. 3.7394932 & 5524 & 3.7422537 & 5559 & 3.7449967 & 5594 & 3.7477225 \\
\hline 54903.7395723 & 5525 & 3.7423323 & 5560 & 3.7450748 & 5595 & 3.7478001 \\
\hline \(5491,2.7396514\) & 5526 & 3.7424109 & 5561 & 7.7451529 & & 478778 \\
\hline | 54923.7397305 & 5527 & 3.7424895 & 5562 & 3.7452310 & 5597 & 3.7479553 \\
\hline 54933.7398096 & 5528 & 3.7425680 & 5563 & 3.7453091 & 5598 & 3.7480329 \\
\hline 5494|3.7398896 & 5529 & 3.7426466 & 5564 & 3.745387 .1 & 5599 & 3.7481105 \\
\hline 5495:2.7399677 & 5530 & 2.742725 & 5565 & 3.7454652 & 5600 & 3.7481880 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Num.1 Logarithm.} & \multicolumn{2}{|l|}{Num.T Logarithm.} & \multicolumn{2}{|l|}{Num. Logarithm.} & \multicolumn{2}{|l|}{Num. T Logarithm.} \\
\hline 560113 & 3.7482656 & 5636 & 3.7509709 & 5071 & 3.7530596 & 5706 & 3,7563318 \\
\hline 56023 & 3.748343 I & 56373 & 3.7 .510480 & 5672 & 3.7537362 & 5707 & 307.564079 \\
\hline 5603 & 3.7484206 & s638 & 3.7511251 & 5673 & 3.7538128 & 5708 & 3.7564840 \\
\hline & 3.7484981 & 56391 & 3.7512021 & 5674 & 3.7538893 & 5709 & 3.7565600 \\
\hline 56053 & 3.7485756 & 5640 & 3.7512791 & 5675 & 3.7539659 & 5710 & 3.7566361 \\
\hline & & 5641 & 3.7513561 & 5676 & & 5711 & \\
\hline & 3.7487306 & 5642 & 3.7514331 & 5677 & 3.7541189 & 5712 & 3.75678 \\
\hline & 3.7488080 & 5643 & 3.7515100 & 5678 & 3.7541954 & 5713 & 3.75 \\
\hline O) & 3.7488854 & 5644 & 3.7515870 & 567.9 & 3.7542719 & 5714 & 3.7569402 \\
\hline 5610 & 3.7489629 & 5645 & 3.7516639 & 5680 & 3.7543483 & 5715 & 3.75701 \\
\hline & & & 3.7517409 & 5681 & 3.7. 4.4248 & . 5716 & \\
\hline 5612 & 3.7491177 & 5647 & 3.7518178 & 5682 & 3.7545012 & 5717 & 3.7571682 \\
\hline 5613 & 3.7491950 & 5648 & 3.7518947 & 5683 & 3.7545777 & 5718 & 3.75724 .41 \\
\hline 5614 & 3.7492724 & 5649 & 3.7519716 & 5684 & 3.7546541 & 5719 & 3.7573201 \\
\hline 5615 & 3.7493498 & 5650 & 3.7520484 & 5685 & 3.7547305 & 5720 & 3.7573960 \\
\hline 5616 & 3.7494271 & 5651 & 3.7521253 & 5686 & 3.7548069 & 5721 & 3.7574719 \\
\hline & 3.7495044 & 5652 & 3.7522022 & 5687 & 3.7548832 & 5722 & 3.7575479 \\
\hline 8 & 3.7.495817 & 5653 & 3.75227 .90 & 5688 & 3.7549596 & 57 & 3.7576237 \\
\hline 9 & 3.7496590 & 5654 & 3.7523558 & 5689 & 3.7550359 & 57 & 3.7576996 \\
\hline ; 620 & 3.7497363 & 5655 & 3.75243 .6 & 5690 & 3.7551123 & 5725 & 3.7377755 \\
\hline & & 565 & 3.7525094 & 5091 & 3.7551886 & 5726 & \\
\hline & 3.7498908 & 5657 & 3.7 .525862 & 5692 & 3.7552649 & 5727 & 3:7579272 \\
\hline & 3.7499681 & 5658 & 3.7526629 & 5693 & 3.7553412 & 5728 & 3.7580030 \\
\hline 5624 & 3.7500453 & 5659 & 3.7527397 & 5694 & 3.7554175 & 5729 & 3.7580788 \\
\hline 5625 & 3.7501225 & j 660 & 3.7528164 & 5695 & 3.7554937 & 57 & \\
\hline & 3.7501997. & 5661 & 3.7528932 & 5696 & 3.7555700 & 5731 & \\
\hline 627 & 3.7502769 & 5662 & 3.7529699 & 5697 & 3.7556402 & 5732 & 3.7583062 \\
\hline 5628 & 3.7503541 & 5663 & 3.7530466 & 5698 & 3.7557224 & 573 & 3.7583819 \\
\hline ;629 & 3.7504312 & 5664 & 3.7531232 & 5699 & 3.7557987 & 573 & \\
\hline j630. & 3.750,084 & 5665 & 3.7531999 & 5700 & 3.7558749 & 5735 & 53.75 \\
\hline 5631 & 3.7505855 & 5666 & 3.7532766 & 57 & 3.7559510 & & 3.7586091 \\
\hline 5632 & 3.7506626 & 5667 & 3.7533532 & 5702 & 3.7560273 & & . 758 \\
\hline 5633 & 3 3.7507398 & 5668 & 3.7534298 & 5703 & 3.7561034 & 573 & 3.758 \\
\hline 5634 & 43.7508168 & 5669 & 3.7535065 & 5704 & 4.7561795 & 5739 & 93.7588 \\
\hline & 513.75089 & ¢670 & 013.753583 & 57 & .75625 & 57 & 3.7580 \\
\hline
\end{tabular}

\section*{SIIIf}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Num. Logarithm.} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Nun. } 1 \text { Logarithm. } \\
& 577613.7616272
\end{aligned}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& \text { Num.I Logarittbm. } \\
& 5811 \mid 3.7642509
\end{aligned}\right.
\]}} & \multicolumn{2}{|l|}{(Num: Logarithm} \\
\hline & - & & & & & 5846 & \\
\hline & & 5777 & 3.7617024 & & & & \\
\hline & 3.759 & 5778 & 3.7617775 & 58 I 3 & & & \\
\hline & 3.759 & 5779 & & & & & \\
\hline 745 & & ¢78 & & 581 & & 5850 & \\
\hline & & & & & & & \\
\hline & & & 3.762078 & & & & \\
\hline & 3.7595 & & 3.7621532 & & & & \\
\hline & 3.759 & 5784 & 3.7622283 & 5819 & 3.7648 & & \\
\hline 50 & & \$7.85 & 3.7623034 & 5820 & 3.764 & 555 & \\
\hline & & & & & & & \\
\hline & 3.7598189 & & 3.762453 & 5822 & & & \\
\hline 5753 & 3.7598944 & & 3.7625285 & 5823 & & & \\
\hline & 3.7599699 & 5789 & 3.7626035 & 5824 & & 59 & \\
\hline 5755 & 3.7600453 & 5790 & & & 3.76 & 60 & \\
\hline & & & & & & & \\
\hline & 3.7601962 & 5792 & 3.762 & & \(3.765445^{\circ}\) & 5862 & \\
\hline & 3.7602717 & 5793 & 3.7629 & & 3.7655195 & 5863 & \\
\hline 5759 & 3.760347 I & 94 & & 29 & 3.76559 & 5864 & \\
\hline 57.60 & i.7604225 & 5795 & & 5830 & 3.76 & 58 & \\
\hline & & & & & & & \\
\hline & & & 3. \({ }^{2}\) & 58 & 3.7 & 5867 & \\
\hline & & 5798 & 3.76 & 5833 & 3.7658920 & 586 & \\
\hline & & & & & 3.7659664 & 5869 & \\
\hline & 3.7 & & 3.763428 & & 3,766040 & 58 & \\
\hline & & & & & & & \\
\hline & 3.7 & & 3.76357 & & 3.7661897 & & \\
\hline & & & 3.76365 & & 3.7662642 & & \\
\hline & & 5804 & 3.7637274 & 5839 & 3.7663385 & 5874 & \\
\hline 57 & & & & 5840 & 3.7664128 & 5875 & \\
\hline & & & , & & & & \\
\hline & 3.7 & & 3.7639518 & 5842 & 3.7665616 & 5877 & \\
\hline & \[
3.76
\] & & 3.7640266 & 5843 & 3.7666359 & 5878 & 3.7692296 \\
\hline & 3.7614768 & & 3.7641014 & 5844 & & 5 & \\
\hline 5775 & 520 & & 7641761 & & 3.7667845 & & 3.7603773 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & ogarith & \multicolumn{2}{|l|}{Num. [Logiritgm.} & \multicolumn{2}{|l|}{} & & \\
\hline 0021 & 3.7796086 & 6056 & 3.7821959 & 6091 & 2.7846886 & 6126 & 3.7.871770 \\
\hline 6022 & 2.7797408 & 6057 & 3.7822576 & 6092 & 3.7847599 & 6127 & \[
|3.7872479|
\] \\
\hline 6023 & 3.7798129 & 6058 & 3.7823293 & 6093 & 3.7848312 & 6128 & \\
\hline 6024 & 3.7798850 & 6059 & 3.7824010 & & 3.7849024 & 61 & \\
\hline 6025 & 3.7799571 & 6060 & 3.7824 .726 & 6095 & 3.7849737 & 6130 & \\
\hline 6026 & 3.7800291 & 6061 & 3.7825443 & 6096 & 3.7850450 & 6131 & \\
\hline 6027 & 3.7801012 & 6062 & 3.7826159 & 6097 & 3.7851162 & 6132 & \[
\left|\begin{array}{l}
7.78753 .131 \\
3.78760211
\end{array}\right|
\] \\
\hline 6028 & 3.7801732 & 6063 & 13.7826876 & 6098 & 3.7851874 & 6133 & \[
3.7876730
\] \\
\hline 6029 & 3.7802453 & 6064 & 3.7827592 & 6099 & 3.7852586 & 6134 & \[
3.7877438
\] \\
\hline 6030 & 3.7803173 & 6065 & 3.7828308 & 6100 & 3.7853298 & 6135 & 3.7878146 \\
\hline 603-1 & 3.7803893 & 6066 & 3.7829024 & 6101 & 3.7854010 & 61 & \\
\hline 6032 & 3.7804613 & 6067 & 3.7829740 & 6102 & 3.7854722 & 6137 & 3.7879561 \\
\hline 6033 & 3.7805333 & 6068 & 3.7830456 & 6103 & 3.7855434 & 6138 & 3.7880269 \\
\hline 6034 & 3.7806053 & 6069 & 3.783 I 171 & 6104 & 3.7856145 & 6.I 39 & \\
\hline 6035 & 3.7806773 & 6070 & 3.7831887 & 6105 & 3.7856857 & 6140 & \\
\hline 603 & 3.7807492 & 607.1 & 3.7832602 & 6106 & 3.7857568 & 61 & \\
\hline 6037 & 3.7808212 & 6072 & 3.7833318 & 6107 & \(3.7858279^{\circ}\) & 6142 & \[
\begin{aligned}
& 3.7882391 \\
& 3.7883098
\end{aligned}
\] \\
\hline 6038 & 3.780893 .1 & 6073 & 3.7834033 & 6108 & 3.7858990 & 6143 & \[
\begin{aligned}
& 3.7883098 \\
& 3.7883805
\end{aligned}
\] \\
\hline 6039 & 3.7809650 & 6074 & 3.7834748 & 6109 & 3.785 .9701 & 61 & \\
\hline 6040 & 3.7810369 & 6075 & 3.7835463 & 6110 & 3.7860412 & 6145 & \\
\hline & 3.7811088 & 6076 & 3.7836178 & 6111 & 3.7861124 & & \\
\hline \(60+2\) & 2.78 II 807 & 6077 & 3.7836892 & 6112 & \[
3.7861833
\] & 6147 & \\
\hline 6043 & 2.7812526 & 6078 & 3.7837607 & 6II3 & 3.7862544 & 6148 & \[
3.7887339
\] \\
\hline \begin{tabular}{|l}
6044 \\
6045
\end{tabular} & 2.7813245
3.7813963 & 6079 & 3.7838321
3.7830036 & 6114 & 3.7863254 & 614 & \[
3.7888045
\] \\
\hline 16045 & 3.7813963 & 6080 & 13.7839036 & 6II5 & 3.7863965 & & 3.7888751 \\
\hline 604 & \[
3.78 \mathrm{r} 468 \mathrm{r}
\] & 6.081 & 3.7839750 & 6116 & & & \\
\hline 6047 & 3.7815400 & 6082 & 3.7842464 & 6117 & 3.7865385 & 61 & \[
\begin{aligned}
& 3.7889457 \\
& 3.7890163
\end{aligned}
\] \\
\hline 6048 & 3.7816118 & & 3.7841178 & & 3.7866095 & 6153 & \[
\begin{array}{l|l|l}
2.7890163 \\
3 & 3.7890865
\end{array}
\] \\
\hline 6049 & 3.7816836 & 6084 & 3.7841892 & 6119 & 3.7866805 & & \[
3.7891575
\] \\
\hline 60.50 & 3.7817554 & 6085 & 3.7842606 & 6120 & 3.7867514 & 615 & \[
\begin{aligned}
& 3.7891575 \\
& 3.7892281
\end{aligned}
\] \\
\hline 6051 & 3.7818272 & 6086 & . 3.7843319 & 6121 & 3.7868224 & & \\
\hline 16052 & 3.7818989 & 6087 & 3.7844033 & 6122 & \[
3.7868933
\] & 615 & \[
\left\lvert\, \begin{aligned}
& 3.7 .792 .986 \\
& 3.7893691
\end{aligned}\right.
\] \\
\hline 6053 & 2.7819707 & 6088 & 3.7844746 & 6123 & \[
3.7869643
\] & 6158 & \[
3.7894397
\] \\
\hline 6054 & 3.78204 .24 & 6089 & 3.7845460 & 6124 & \[
3.7870352
\] & & \[
3.7895102
\] \\
\hline 6055 & 3.7821141 & 6090 & 3.7846173 & 612 & \(\underline{3.7871061}\) & & \[
\begin{array}{r}
3.7095102 \\
3.7895807 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Num. 1 Logarithm.} & \multicolumn{2}{|l|}{Num. \({ }^{\text {L Logaritbm. }}\)} & \multicolumn{2}{|l|}{\[
\frac{\text { Num. } 1 \text { Logarithm. }}{6231 \mid 3.7945578}
\]} & \multicolumn{2}{|l|}{\[
\frac{\begin{array}{l}
\text { Nuni.I Logaritbm. } \\
6266 \mid 3.7969904
\end{array}}{\text { and }}
\]} \\
\hline 616130 & 3.7896513 & 6196|3 & 3.7921114 & & & & 3.7907059 \\
\hline 3. & 3.7807217 & 61973 & 3.7921815 & 62 & 46274 & 6268 & 3.7971290 \\
\hline 633 & 3.7897922 & 6198 & 3.7922516
3.7023216 & 62 & 3.7947668 & 6269 & 971983 \\
\hline 643. & 3.7898626 & 6199 & & 6235 & 3.7 & 6270 & \\
\hline 6165 & \(3 \cdot 7899331\) & & 3.7 & 6235 & \multirow[b]{2}{*}{3.7949061} & \multirow[b]{2}{*}{6271} & \multirow[b]{2}{*}{3.7973368} \\
\hline & & & \[
\overline{3.7924617}
\] & \(\overline{6236}\) & & & \\
\hline & & & & 6237 & 3.7949757 & & \\
\hline 3. & 3 & 6202 & & 6238 & 3.7950454 & & \\
\hline & 3.790144 & 620 & 3.7926718 & 6239 & 3.7951150 & & \\
\hline 3.70 & 3.7902148 & \multirow[t]{2}{*}{6205} & \multirow[t]{2}{*}{3.7927418} & \multirow[t]{2}{*}{6240} & & \multirow[t]{2}{*}{\[
16275
\]} & \\
\hline 6 i 70 & \(3.790285^{2}\) & & & & \[
3.7951040
\] & & \multirow[t]{2}{*}{3.7976829} \\
\hline & & & & & 252542 & & \\
\hline 3 & 3.7904259 & & -7 & 6242 & & & \\
\hline 73 & 3.7904963 & 6208 & 3.7 & & & & \\
\hline 6174 & 3.7905666 & 6209 & 3.7930217
3.7930916 & 62 & & - & \\
\hline & 3.7906370 & & 3.7930916 & 6245 & & \multirow[b]{2}{*}{6281} & \multirow[b]{2}{*}{3.7980288} \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{3.7907073} & \multirow[b]{2}{*}{62 FI} & \multirow[t]{2}{*}{3.7931615} & 624.6 & 3.7956020 & & \\
\hline & & & & & & 6282 & 3.79809 \\
\hline & 3.7907776 & 6212 & 3.7932314 & 6247 & 3.7957410 & 6283 & \\
\hline 61 & 3.790 & & & 6249 & 3.7958105 & & \\
\hline & 3.7 & 6215 & \[
\begin{aligned}
& 3.7! \\
& 3.7!
\end{aligned}
\] & 6250 & 3.7958800 & & \\
\hline & 3.790988 & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
63.7935110
\]} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{13.7959495} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \overline{6286} \\
& 6287
\end{aligned}
\]} & \multirow[t]{2}{*}{3.7} \\
\hline & & & & & & & \\
\hline & \[
\begin{aligned}
& 3.7910587 \\
& 3.7911290
\end{aligned}
\] & 6217 & 3.7935809 & 625 & 3.7960190 & & \\
\hline 6183 & 3.791199 & 6218 & 3.793650 & 6253 & & & \\
\hline 6184 & 3.7912695 & \multirow[t]{2}{*}{6220} & \multirow[b]{2}{*}{3.7937904} & \multirow[t]{2}{*}{6255} & \multirow[t]{2}{*}{3.7962273} & \multirow[t]{2}{*}{6290} & 3 \\
\hline 6185 & 3.7913397 & & & & & & \multirow[t]{2}{*}{3.7987197} \\
\hline & & & & & & & \\
\hline & 3.79140 & & & 6257 & \[
3.7963662
\] & 6292 & 3.7987887 \\
\hline & 3.7914801 & \[
\begin{aligned}
& 6222 \\
& 6223
\end{aligned}
\] & \[
\begin{array}{l|l|l}
2.7939300 \\
3 & 3.7939998
\end{array}
\] & 6298 & \[
3.7964356
\] & 6293 & 3.3988577 \\
\hline 8 & 3.7915503 & 6223
6224 & \[
\begin{array}{l|l|l|}
\hline & 3.7939998 \\
4 & 3.7940696
\end{array}
\] & 6259 & & 6294 & \\
\hline 6189 & 3.7916205 & 6224 & & 6260 & 03.7965743 & 629.5 & 3.7 \\
\hline & 3.7 & 0225 & 3.794139 & & & & \\
\hline & & & 3.7942091 & & 3.7960437 & & 3.7991337 \\
\hline & 3.7918309 & & 3.7942789 & 62 & 3.79671 & & \[
\begin{aligned}
& 3.7 \\
& 3.7
\end{aligned}
\] \\
\hline & 23.7918309
3.7919011 & 6228 & 3.7943486 & 6263 & & 62 & 93.79 \\
\hline & 3.7 & 6229 & 3.7 & & & & O 3.79 \\
\hline & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Num.1 Logatithm.}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\frac{\text { Nun. } 1 \text { Logaritbm. }}{633613.8018152}\)}} & \multicolumn{2}{|l|}{Num. Logatithm.} & \multicolumn{2}{|l|}{Num. |Logarithm.} \\
\hline & & & & 63 & 3.8042076 & 6406 & |3.8065869 \\
\hline 6302 & 3.7994784 & 63.37 & 3.8018837 & 6372 & 3.8042758 & 6407 & 7 \\
\hline 6303 & 3.7995473 & 6338 & 3.8019 522 & 6373 & 3.8043439 & 6408 & \\
\hline 6304 & 3.7996162 & 6339 & 3.8020208 & 6374 & 3.8044121 & 6409 & \\
\hline 6305 & 3,799685 1 & 6340 & 3.8020893 & 6375 & 3.8044802 & 6410 & \\
\hline 6306 & & 6341 & & 6376 & & 6011 & \\
\hline 63 & 3.7998228 & 6342 & 7.8022262 & 6377 & 3.8046164. & 60 & \\
\hline 63 & 33.7998917 & 6343 & 3.8022947 & 6378 & 13.8046845 & 6013 & 3.8070612 \\
\hline 6309 & 3.7999605 & 6344 & 3.8023632 & 6379 & 3.8047526 & 6014 & \\
\hline 6310 & 3.8090294 & 6345 & 3.8024316 & 6380 & 3.8048207 & 6015 & 3.8071967 \\
\hline & & & & & & 64 & \\
\hline 63 & 3.800167 & 63.47 & 3.8025685 & 6382 & 3.8049568 & 6417 & 3.8073320 \\
\hline 631 & 3.8002358 & 6348 & 3.8026369 & 6383 & 3.8050248 & 6418 & 3.8073997 \\
\hline 63 & 3.8003046 & 6349 & 3.8027053 & 6384 & 3.8050929 & 6419 & 3.8074674 \\
\hline 6315 & 3.8003734 & 6350 & 3.8027737 & 6385 & 3.8051609 & 6420 & \\
\hline & & 6351 & 3.8028421 & 6386 & 3.8052289 & 1 & \\
\hline & 3.8005109 & 6352 & 3.8029105 & 6387 & 3.8052969 & 642 & 3.8076703 \\
\hline \(63: 8\) & 3:8005796 & 6353 & 3.8029789 & 6388 & 3.8053649 & 6423 & \\
\hline 6319 & 3.8006484 & 6354 & 3.8030472 & 6389 & 3.8054229 & 6424 & 3.8078055 \\
\hline 6320 & 3.8007171 & 6355 & 3.8031156 & 6390 & 3.8055002 & 6425 & \\
\hline 6321 & 3.8007858 & 6356 & 3.8031839 & 6391 & 3.8055688 & 6426 & \\
\hline 63.2 & 3.8008545 & 6357. & 3.80 .32522 & 6392 & 3.8056;68 & 6427 & 3.8080083 \\
\hline 6323 & 3.8009232 & 6358 & 3.8033205 & 6393 & 3.8057047 & 6428 & \\
\hline 6324 & 3.8009919 & 6359 & 3.8033888 & 6394 & 2.8057726 & 6429 & \\
\hline 6325 & 38010605 & 6360 & 2.8034571 & 6395 & 3.8058405 & 6430 & \\
\hline 6326 & 3.8011292 & 6361 & 3.8035254 & 6396 & 3.8059085 & 6.431 & \\
\hline 6327 & 3.8011978 & 6362 & 3.8035937 & 6397 & 3.8059763 & 6432 & 3.8083460 \\
\hline 6328 & 3.8012665 & 6363 & 3.8036619 & 6398 & 3.8060442 & 6433 & 3.8084136 \\
\hline 6329 & 3.8013351 & 6364 & 3.8037302 & 6399 & \(\because 8061121\) & 6434 & 3.80848 I \\
\hline 6330 & 3.80140 .37 & 6365 & 3.8037984 & 6400 & 3.8061800 & 6435 & 3.3085485 \\
\hline 63 & & 6366 & 3.8038666 & 6401 & 2.8062478 & & \\
\hline 63 & 3.8015409 & 6367 & 3.3039348 & 6402 & 3.8063157 & 6437 & 3.8086835 \\
\hline 6333 & 3.8016095 & 6368 & 3.8040031 & 6403 & 3.806383 .5 & 6438 & 3.8088 \\
\hline 6334 & 3.8016781 & 6369 & 3.8040712 & 6404 & 3.8064513 & 6439 & \\
\hline 335 & 3.8017466 & 6370 & 3.8041394. & 64059 & 3.8065191 & & 3.8088859 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Num. 1 & & N & 38ıI3068 & & 38136477 & & \\
\hline 54 & 3.8089533 & 6476 & 3.8 I 1306 & 6511 & 3.8136477 & & 159760 \\
\hline & 3:8090207 & 6477 & 3.8113739 & 6512 & 3.8137144 & 65 & 160423 \\
\hline 6443 & 3.809088 I & 6478 & 3.8114409 & 6513 & 3.8137811 & 65 & 3.8161087 \\
\hline 6 & 3.8091555 & 6479 & 3.8115080 & 6514 & 3.8138478 & 65 & 3.8161750 \\
\hline 6445 & 3.8092229 & 6480 & 3.8115750 & 6515 & 3.8139144 & 655 & 3.8162413 \\
\hline & 3.8092903 & 6481 & 3.8116420 & 6516 & 3.81398 & 65 & 3.8163076 \\
\hline & 3.8093577 & 6482 & 3.8117090 & 65.17 & 3.8140477 & 65 & 3.81637391 \\
\hline 644.8 & 3.8094250 & 6483 & 3.8 -117760 & 6518 & 3:8I4I 144 & 65 & 3.8164402 \\
\hline 6449 & 3.8094924 & 6484 & 3.8118430 & 6519 & 3.8141810 & 655 & 3.8165064 \\
\hline 6450 & 3.8095597 & 6485 & 3.8119100 & 6520 & 3.8142476 & 6555 & 3.8165726 \\
\hline & & 64.86 & 3.8119769 & 6521 & & & 3.8166389 \\
\hline 6452 & 3.8096944 & 6487 & 3.8120439 & 6522 & 3.8143808 & 655 & 3.8167052 \\
\hline 6453 & 3.8097617 & 6488 & 3.8121108 & 6523 & 3.8144474 & 655 & 3.8167714 \\
\hline 64 & 3.8098290 & 6489 & 3.8121778 & 6524 & 3.8145140 & 65 & 3.81 .68376 \\
\hline 6455 & 3.8098962 & 6490 & 3.8122447 & 6525 & 3.8145805 & 6 & 3.8169038 \\
\hline 64.5 & & 64.91 & 3.8123116 & 6526 & 308146471 & & 3.8169700 \\
\hline 64 & 3.8100308 & 6492 & 3.8123785 & 6527 & 3.8147136 & 65 & 3.8170362 \\
\hline 16458 & 3.8100980 & 6493 & 3.8124454 & 6528 & 3.8147801 & 65 & 3.8171024 \\
\hline 6459 & 3.8101653 & 6494 & 3.8125123 & 6529 & 3.8148467 & 65 & 3.8171686 \\
\hline 6460 & 3.8102325 & 6495 & 3.8125792 & 6530 & 3.8149132 & 65 & \\
\hline & & 6496 & \(3: 8126460\) & 6531 & 3.8149797 & & 3.8173009 \\
\hline 6462 & 3.8103670 & 6497 & 3.8127129 & 6532 & 3.8150462 & 65 & 3.8173670 \\
\hline 6463 & 3.8104342 & 6498 & 3.8127797 & 6533 & 3.8151127 & & 3.8174331 \\
\hline 6464 & 3.8105013 & 6499 & 3.8128465 & 6534 & 3.8151791 & 65 & 3.8174993 \\
\hline 6465 & 3.8105685 & 6500 & 3.8129134 & 6535 & 3.8152456 & 65 & 3.8175654 \\
\hline 6466 & 3.8106357 & 6501 & 3.8129802 & 6536 & 3.8153120 & 65 & 3.8176315 \\
\hline 6467 & 3.8107029 & 6502 & 3.8130470 & 6537 & 3.8153785 & 65 & 3.8176976 \\
\hline 6468 & 3.8107700 & 650 & 3.8131138 & 65 & 3.8154449 & 65 & 3.8177636 \\
\hline 6469 & 3.8108371 & 6504 & 3.8131805 & 6539 & 3.8i55 113 & 657 & 3.8178297 \\
\hline 6470 & 3.8109043 & 6505 & 3.813 .2473 & 6540 & 388155777 & 6575 & 3.8178958 \\
\hline & 3.8109714 & 6506 & 3.8133 & 6541 & 3.8156441 & & 618 \\
\hline & 3.81 IO 385 & 6507 & 3.8133808 & 6542 & 3.8157105 & 657 & 3.8180278 \\
\hline & 3.8111056 & 6508 & 3.8134475 & 6543 & 3.8157769 & 6578 & 3.8180939 \\
\hline 6474 & 3.8111727 & 6509 & 3.8135143 & 6544 & 3.8158433 & 6579 & 3.8181599 \\
\hline 647 & 3.8II2398 & 65 & 3.8135810 & 654 & 3.8159096 & 658 & 38182259 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Num. 1 & Logari & N & ogarithm. 1 & & 1 Logayitlom. & N & m. \\
\hline 6581 & 3.8182919 & 6616 & 3.8205955 & 0051 & 3.8228869 & & 3.8251664 \\
\hline 6582 & 3.8183579 & 6617 & 3.8206611 & 6652 & 3.8229522 & 6687 & 3.8252313 \\
\hline 6583 & 3.8184239 & 6618 & 3.8207268 & 6653 & 3.8230175 & 6688 & 3.8252963 \\
\hline 16584 & 2.8184898 & 6619 & \(3.8: 07924\) & 6654 & 3.8230828 & 6689 & 3.8253612 \\
\hline 6585 & 3.8185558 & 6620 & 1.8208580 & 6655 & 3.8231481 & 6690 & 3.8254261 \\
\hline & 3.8186217 & 6621 & 3.8209236 & 6656 & 3.8232133 & 6691 & \\
\hline & 3.8186877 & 6022 & 3.8209892 & 6657 & 3.8232786 & 6692 & 3.8255559 \\
\hline 6588 & 3.8187536 & 6623 & 3.8210548 & 6658 & 3.8233438 & 6693 & 3.8256208 \\
\hline 6589 & 3.8188195 & 6624 & 3.8211203 & 6659 & 3.8234090 & 6694 & 3.8256857 \\
\hline 6590 & 2.8188854 & 6625 & 3.8211859 & 6660 & 3.8234742 & 6695 & 3.8257506 \\
\hline 6591 & 13.8189513 & 66 & 3.8212514 & 6661 & 2.8235394 & 6699 & \\
\hline 659 & 3.8190172 & 6627 & 3.8213170 & 6662 & 3.8236046 & 6697 & 3.8258803 \\
\hline 6593 & 3.819083 I & C628 & 3.8213825 & 6663 & 3.8236698 & 6698 & 3.8259451 \\
\hline 6594 & 3.8191489 & 6629 & 3.8214480 & 6664 & 3.8237350 & 6699 & 3.8260100 \\
\hline 6595 & 3.8192148 & 6630 & 3.8215135 & 6665 & 3.8238002 & 6700 & \\
\hline 6596 & 3.8192806 & 663 I & & 6666 & 3.8238653 & 6701 & \\
\hline 6597 & 3.8193465 & 6632 & 3.8216445 & 6667 & 3.8239305 & 6702 & 3.8262044 \\
\hline 6598 & 3.8194123 & 6633 & 3.8217100 & 6668 & 3.8239956 & & \(3.82626 ¢ 2\) \\
\hline 6599 & 3.8194781 & 6634 & 3.8217755 & 6669 & 3.8240607 & 6704 & \\
\hline 6600 & 3.8195439 & 6635 & 3.8218409 & 6670 & 3.8241258 & 6705 & 3.8263988 \\
\hline 660 I & & & 3.821 & 6671 & 13.824190 & 6706 & \\
\hline 6602 & 3.8196755 & 6637 & 3.8219718 & 6672 & 3.8242560 & 6707 & 3.8265283 \\
\hline 660 & 3.8197413 & 6638 & 3.8220372 & 6673 & 3.82432 II & 6708 & 3.8265932 \\
\hline 660 & 5.819807 I & 6639 & 3.8221027 & 6674 & 3.8243862 & 6709 & 3.8266578 \\
\hline 660 & 38198728 & & ?.8221681 & 6675 & 13.82445.13 & 6710 & 19.8267225 \\
\hline 6606 & 3.8199386 & 6641 & 3.8222335 & 6576 & & 6711 & \(\therefore 8.267872\) \\
\hline 6607 & 3.8200043 & 6642 & 3.8222989 & 6677 & 3.8245814 & 6712 & 3.8268519 \\
\hline 6608 & 3.8200700 & 6643 & 3.8223643 & 667 & 3.8246464 & & 3.8269166 \\
\hline 6609 & 3.8201358 & 6644 & 3.8224296 & 6679. & 2.82471.14 & 6714 & 3.8269813 \\
\hline 6610 & 3.8202015 & 6645 & \(3.822495^{\circ}\) & 6680 & 3.8247765 & 6715 & 3.3270460 \\
\hline & & 6646 & 3.8225 .603 & & & & 27110\% \\
\hline 16612 & \(3.8203: 28\) & 6647 & 3.8226257 & 6682 & 3.8249065 & 6717 & 3.8271753 \\
\hline \(66: 3\) & 3.8203985 & 6648 & 3.8226910 & 6683 & 3.8249715 & 6718 & 3.8272400 \\
\hline 66 & 3.820464 .2 & 6649 & 3.8227563 & 6684 & 3.8250364 & 6719 & 3.8273046 \\
\hline 661 & 2.8205898 & 6650 & 3.8228216 & (68) & 3.8251014 & 6720 & 3.8273693 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\frac{\text { Num.1 Logaritbm. }}{0721 / 3.8274339}
\]}} & \multicolumn{2}{|l|}{Num. 1 Log 2 ritibm.} & \multicolumn{2}{|l|}{Num. 1 Legaritbm.} & \multicolumn{2}{|l|}{Num I Logarithm} \\
\hline & & 67561 & \(3.8296 \overline{996}\) & 6791 & 3.8319337 & & \\
\hline 6722 & 3.8274985 & 6757 & 3.8297539 & 6792 & 3.8319977 & 6827 & - \\
\hline 23 & 3.827563 I & 6758 & 3.8298182 & 6793 & 3.8320616 & 6828 & 3.8342935 \\
\hline 24 & 3.8276277 & 6759 & 3.8298824 & 6794 & 3.8321255 & 6829 & 3571 \\
\hline 6725 & 3.8276923 & 6760 & 3.8299467 & 6795 & 3.8321895 & 6830 & 4207 \\
\hline & & 6761 & 3.8300109 & 6796 & 3.8322534 & 6831 & \\
\hline & & 6762 & 3.8300752 & 6797 & 3.8323173 & 6832 & 3.33454791 \\
\hline 6728 & 3.8278860 & 6763 & 3.8301394 & 6798 & 3.8323812 & 6833 & 3.9346114 \\
\hline 6729 & 3.8279505 & 6764 & 3.8302036 & 6799 & 3.8324450 & 68 & 34,6750 \\
\hline 6730 & 3.828015 I & 6765 & 3.8302678 & 6800 & 3.8325089 & 6835 & 8 \\
\hline 67 & & 6766 & 3.8303320 & 680 & 3.8325728 & 6836 & \\
\hline 6732 & 3.8281441 & 6767 & 3.8303962 & 680 & 3.8326366 & 6837 & 348656 \\
\hline 6733 & 3.8282086 & 6768 & 3.8304603 & 6803 & 3.8327005 & 683 & 3.8349291 \\
\hline 6734 & 3.828273 I & 6769 & 3.8305245 & 6804 & 3.83276 & 6839 & . 8349926 \\
\hline 6735 & 3.8283376 & 6770 & 3.8305887 & 68 & 3.832 & 6840 & \\
\hline 6736 & 3.8284022 & 6771 & 3.8306528 & 6806 & 3.8328919 & 6841 & 3.8351196 \\
\hline 37 & 3.8284665 & 6772 & 3.8307169 & 6807 & 3.8329558 & 6842 & 3.8351831 \\
\hline 78 & 3.8285310 & 6773 & 3.830781 II & 6808 & 3.8330195 & 6843 & 3.8352465 \\
\hline 6739 & 3.8285955 & 6774 & 3.8308452 & 6809 & 3.8330833 & 6844 & 3.8353100 \\
\hline 6740 & 3.8286599 & 6775 & 3.8309093 & 6810 & 3.833147 I . & 6845 & 3.8353735 \\
\hline & 3. 8287243 & 6776 & 3.8309734 & 68II & 3.8332109 & 6846 & \\
\hline 6742 & 3.8287887 & 6777 & 3.8310375 & 6812 & 3.8332746 & 6847 & \\
\hline 67 & 3.92885 .32 & 6778 & 3.8311016 & 681 & 3.8333384 & 6848 & \\
\hline 6744 & 1.8289176 & 6779 & 3.8311656 & 6814 & 3.8334021 & 6849 & \\
\hline 6745 & 3.8289820 & 6780 & 3.8312297 & 6815 & 3.8334659 & 685 & \\
\hline & 3.8290463 & 6781 & 3.8312937 & 681 & 3.8335296 & 6851 & \\
\hline 67 & 3.8291107 & 6782 & 3.8313578 & 6817 & 3.8335933 & 6852 & 3.8358174 \\
\hline 674 & 3.8291751 & 6783 & 3.8314218 & 6818 & 3.8336570 & 685 & 3.8358807 \\
\hline 6749 & 3.8292394 & 6784 & 3.8314858 & 681.9 & 3.8337207 & 6854 & 3.835944 I \\
\hline 6750 & 3.8293038 & 6785 & 3.8315499 & 682 & 3.3337844 & 6855 & 3.8360075 \\
\hline & 681 & 6786 & 3.8316139 & & 3.8338480 & & \\
\hline 75 & 3.8294324 & 6787 & 3.8316778 & 6822 & 3.8339117 & 6857 & 3.8361341 \\
\hline & 3.8294967 & 6788 & 3.8317418 & 682 & 3.8339754 & 6858 & 3.8361975 \\
\hline & 3.8295611 & 6789 & 3.8318058 & 682 & 3.8340390 & 685 & 3.8362608 \\
\hline & 3.8296254 & 6790 & 12.8318698 & 68 & 3.8341027 & 6860 & 2.836324 \\
\hline
\end{tabular}

\section*{T:15}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Logaritbm. & Num I & Logarithm. & & m. & & I Logarithm. \\
\hline O8 & 3.8363874 & 6896 & 3.8385973 & 6931 & 3.8407959 & & 35 \\
\hline 6862 & 3.8364507 & 6897 & 3.8386602 & 6932 & 3.8408586 & & \\
\hline 6853 & \(3.836 s^{\prime} 140\) & 6898 & 3.8397232 & 6933 & 3.8409212 & 6968 & \[
3.843108 \mathrm{I}
\] \\
\hline 6864 & 13.8365773 & 6899| & 3.8387861 & 6934 & 3.8409838 & & \\
\hline 6865 & 3.8366405 & 6900 & 3.8388491 & 6935 & 3.8410465 & & \\
\hline 6866 & 3.8367038 & 6901 & & 6936 & 3.8411091 & & \\
\hline 6867 & 3.8367670 & 6902 & 3.8389750 & 6937 & 3.84111717 & & \\
\hline 6868 & 3.8368303 & 6903 & 3.8390379 & 6938 & 3.8412343 & & \[
\left.\begin{aligned}
& 74 \\
& 7
\end{aligned} \right\rvert\,
\] \\
\hline 6869 & 3.8368935 & 6904 & 3.8391008 & 6939 & 3.8412969 & & \[
\begin{aligned}
& 97 \\
& 19
\end{aligned}
\] \\
\hline 6870 & 3.8369567 & 6905 & 3.8391637 & 6940 & 3.8413595 & 6975 & \\
\hline 6871 & 3.8370199 & 690 & 3.8392266 & 6941 & & 6976 & \\
\hline 6872 & 3.8370832 & 6907 & 3.8392895 & 6942 & 3.8414846 & 6977 & 3.8436687 \\
\hline 6873 & 3.8371463 & 6908 & 3.8393523 & 6943 & 3.84 .15472 & 6978 & 3.8436687
3.84373 \\
\hline 6874 & 3.8372095 & 6909 & 3.8394152 & 6944 & 3.8416097 & 6979 & 3.8437932 \\
\hline 6875 & 3.8372727 & 6910 & 3.8394780 & 6945 & 3.8416722 & 6980 & \\
\hline 6876 & 3.8373359 & 6911 & 3.8395409 & 6946 & 3.8417348 & 6981 & \\
\hline 6877 & 3.8373990 & 6912 & 3.8396037 & 6947 & 3.8417973 & 6982 & 3.8439798 \\
\hline 6878 & 3.8374622 & 6913 & 3.8396666 & 6948 & 3.8418598 & & 3.8440420 \\
\hline 6879 & 3.8375253 & 6914 & 3.8397294 & 6949 & 3.8419223 & 698 & \\
\hline 6880 & 3.8375884 & 6915 & 3.8397922 & 6950 & 3.8419848 & 6985 & 3.8441664 \\
\hline & 3.8376516 & 6916 & 3.83985 .50 & 6951 & 3.8420473 & & 42286 \\
\hline 6882 & 3.8377147 & 6917. & 3.8399178 & 6952 & 3.8421098 & & \\
\hline 6883 & 3.8377778 & 6918 & 3.8399806 & 6953 & 3.8421722 & 6988 & \\
\hline 6884 & 3.8378409 & 6919 & 3.8400433 & 6954 & 3.8422347 & 6989 & \\
\hline 6885 & 3.8379039 & 6920 & 3.8401061 & 6955 & 3.8422971 & 69 & 3.8444772 \\
\hline 6886 & 3.8379670 & 692 I & 3.8401684 & 6956 & 3.8423596 & 6991 & 3.8445393 \\
\hline 6887 & 3.8380301 & 6922 & 3.8402316 & 6957 & 3.8424220 & 6992 & \[
\begin{aligned}
& .044) 393 \\
& 3.8446014
\end{aligned}
\] \\
\hline 6888 & 3.8380931 & 6923 & 3.8402943 & 6958 & 3.8424844 & 69 & \[
3.8446635
\] \\
\hline 16889 & 3.8381562 & 6924 & 3.8403571 & 6959 & 3.8425468 & & 3.8447251 \\
\hline 6890 & 3.8382192 & 6925 & 3.8404198 & 6960 & 3.8426092 & 6995 & \(3.844787 \%\) \\
\hline 6891 & 3.8382822 & 6926 & 3.8404825 & & 13.8426710 & & 448498 \\
\hline 689 & 13.8383453 & 6927 & 3.8405452 & 6962 & 3.8427340 & \[
6997
\] & 3.8449119 \\
\hline 6893 & 3.8384083 & 6928 & 3.8406079 & 6963 & 3.8427964 & 6998 & 3.8449739 \\
\hline 6894 & 3.8384713 & 6929 & 3.8406706 & 6964 & 3.8428588 & 6999 & 3.8450360 \\
\hline 6895 & 3.8385343 & 6930 & 3.8407332 & 6965 & 3.8429211 & 7000 & 13.8450980 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Num. 1 Logarithm.}} & \multicolumn{2}{|l|}{Num. [Logaritim.} & \multicolumn{2}{|l|}{Num. 1 Logarithm.} & \multicolumn{2}{|l|}{Num. \({ }_{\text {[Logarit) }}\)} \\
\hline & & 7035 & 3.8473255 & 7071 & 3.8494808 & 7106 & \\
\hline & 3.84 .52221 & 7037 & 3.8473876 & 7072 & 3.8495423 & 7107 & 3.8516863 \\
\hline 3 & 3.845284 .1 & 7038 & 3.3474493 & 7073 & 3.9496037 & 7108 & 3.8517474 \\
\hline 7004 & 3.8453461 & 7039 & 3.8475110 & 7074 & 3.8496651 & 7109 & \\
\hline 7005 & 3.8454081 & 7040 & 3.8475727 & 7075 & 3.8497264 & 7110 & 3.8518696 \\
\hline 6 & 3.84547 & 7041 & 3.847634 & 7076 & \(3.8+97878\) & 7111 & 3.8519307 \\
\hline 7007 & :8.8455321 & 7042 & 3.8476960 & 7077 & 3.8498492 & 7112 & 3.8519917 \\
\hline 7008 & 13.84 .55941 & 7043 & 3.8477577 & 7078 & 3.8499106 & 7113 & 3.8520528 \\
\hline 9 & 3.8456501 & 7044 & 3.8478193 & 7079 & 3.8499719 & 7 & 3.8521139 \\
\hline 7010 & 3.8457180 & 7045 & 3.84788 Io & 7080 & 3.8500333 & 7115 & 3.8521749 \\
\hline & 3.8457 & & 3.8479426 & 70 & 3.8500946 & 7116 & \\
\hline 7012 & 3.8458419 & 7047 & 3.8480043 & 7082 & 3.8501559 & 7117 & 3.8522970 \\
\hline 7 & 3.8459038 & 7048 & 3.8480659 & 7083 & 3.8502172 & 7118 & 3.8523580 \\
\hline & 3.8459658 & 7049 & 3.8481275 & 7084 & 3.8502786 & 7 & 3.8524190 \\
\hline 7015 & 3.8460277 & 7050 & 3.8481891 & 7085 & 3.8503399 & 7120 & 3.852480 c \\
\hline 7016 & 3.8460896 & 7051 & 3.8482507 & 7086 & 3.850401 & 7121 & 3.8525410 \\
\hline 7017 & 3.8461515 & 7052 & 3.8483123 & 7087 & 3.8504624 & 7 & 0 \\
\hline 7018 & 3.8462134 & 7053 & 3.8483739 & 7088 & 3.8505237 & & 26629 \\
\hline 70 & 3.84 .62752 & 7054 & 3.8484355 & 7089 & 3.8505850 & 7124 & 3.8527239 \\
\hline 7020 & 3.8463371 & 7055 & 3.8484970 & 7090 & 3.8506462 & 5 & 3.8527849 \\
\hline & & 7056 & 3.8485586 & 700 & \(3.850 \% 07\) & 7126 & \\
\hline & 3.8464608 & 7057 & 3.8486201 & 7092 & 3.8507687 & 7127 & 3.8529068 \\
\hline 7023 & ? 8.8465227 & 7058 & 3.8486817 & 7093 & 3.8508300 & 7128 & 3.8529677 \\
\hline 7024 & 3.8465845 & 7059 & 3.8487472 & 709 & 3.8508012 & & 3.853 .0286 \\
\hline 7025 & 3.8466463 & 7060 & 3.8488087 & 70 & .8509524 & 7130 & 3.8530895 \\
\hline 7026 & & 7061 & 3.8488662 & 7096 & 3.8510136 & 7131 & 3.8531504 \\
\hline 7 & 3.8467700 & 7062 & 3.8489277 & 7097 & 3.8510748 & 7132 & 3.8532113 \\
\hline 28 & 3.84683 I 8 & 7063 & 3.8489892 & 7098 & 3.8511360 & 71 & 3.8532722 \\
\hline & 3.8468935 & 7064 & 3.84905 37 & 7099 & 3.8511972 & 7134 & \\
\hline 7030 & 3.8469553 & 7065 & 3.8491122 & 7100 & 3.8512583 & 7135 & 3.8533940 \\
\hline 7031 & 3.847017 & 7066 & 2.8491736 & & 3.8513195 & & \\
\hline 7032 & 3.8470789 & 7067 & 3.8492351 & 7102 & 3.8513807 & 7137 & 3.8535157 \\
\hline 7033 & 3.8471406 & 7068 & 3.8492965 & 7103 & 3.8514418 & 7138 & 3.8535765 \\
\hline 7034 & 3.8472024 & 7069 & 3.8493580 & 7104 & 3.8515030 & 71 39 & 3.8536374 \\
\hline , & 12.8472641 & 70 & 12.8494194 & 710 & 3.8515641 & 71 & 536982 \\
\hline
\end{tabular}

Tstet2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Num.1 & Logarithm. & Num & Logaritim. & Num.1 & Logarithm. & Nu & Logarithm: \\
\hline 7141 & 3.8537 & 7176 & 3.8558824 & 7211 & 3.8579955 & & \\
\hline 7142 & 3.8538198 & 7177 & 3.8559429 & 7212 & 3.8580557 & 7247 & \\
\hline 17 & 3.8538806 & 7.78 & 3.8560035 & 7213 & 3.858159 & 7248 & \\
\hline 7 & 3.8539414 & 7179 & 3.8560640 & 7214 & 3.8581761 & 7249 & \\
\hline 7145 & 3.8540022 & 7180 & 3.8561244 & 7215 & 3.8582363 & 7250 & 3.8603380 \\
\hline & & 7181 & & 7216 & & & \\
\hline & 3.8541238 & 7182 & 3.8562454 & 7217 & 3.8583567 & 7252 & \\
\hline 7 & 3.8541845 & 7183 & 3.8563059 & 7218 & \(3.858+169\) & 7253 & \\
\hline 7149 & 3.8542453 & 7184 & 3.8563663 & 7219 & 3.8584770 & 7254 & \\
\hline 775 & 3.8543060 & 7185 & 3.8564268 & 7220 & 3.8585372 & 7255 & - \\
\hline & & & & & & & \\
\hline 7152 & 3.85 & 7187 & 3.85654 .76 & 7222 & 3.8586575 & 7257 & \\
\hline 7153 & 3.8544882 & 7188 & 3.8566081 & 7223 & 3.8587176 & 7258 & \\
\hline 715 & 3.8545489 & 7189 & 3.8566685 & 7224. & 3.8587777 & 7259 & \\
\hline 7155 & 3.8546096 & 7190 & 3.8567289 & 7225 & 3:8588379 & 7260 & \\
\hline 7156 & & 7191 & 3.8567893 & 7226 & 3.8588980 & 7261 & \\
\hline 1757 & 3.8547 & 21 & 3.8568497 & 7227 & 3.858958 I & 726 & \\
\hline 7158 & 3.8547917 & 7193 & .8569101 & 72 & 3.859018 I & 726 & \\
\hline 7159 & 3.8548524 & 7194 & 3.85697 & 7229 & 3.8590782 & 726 & \\
\hline 71.60 & 3.8549130 & 7195 & 3.85703 & 7230 & 3.8591383 & 7265 & \\
\hline & & & & & & & \\
\hline 7162 & 3.8550343 & 7 & 3.8571515 & 7232 & 3.8592584 & 7267 & 3.861355 \\
\hline 7163 & 3.8550949 & 7198 & 3.8572118 & 7233 & 3.8593185 & 7268 & 3.8614149 \\
\hline 7164 & 3.8551556 & 7199 & 3.9572722 & 7234 & 3.8593785 & 72 & 3.8614747 \\
\hline 7165 & 3.8552162 & 72 & 3.8573325 & 7235 & 3.8594385 & 727 & \\
\hline & \(3.855^{2}\) & 7201 & 3.8573928 & 723 & 3.850 & 7271 & \\
\hline 7 & 3.855337 & 7202 & 3.857453 I & 7237 & 3.859 & 727 & 3.8616939 \\
\hline 1716 & 3.855398 & 7203 & 3.8575134 & 7238 & 3.8596 & 727 & 3.8617136 \\
\hline 17169 & 3.8554586 & 7204 & 3.8575737 & 7239 & 3.8596786 & 727 & 3.8617733 \\
\hline 7170 & 3.8555192 & 20 & 3.8576340 & 7240 & 3.85:97386 & 7275 & 3.8618330 \\
\hline & & & & 7241 & 3.8597985 & & \\
\hline 17172 & 3.8556403 & 7207 & 3.8577545 & 72 & 3.8598585 & 727 & 3.861952 \\
\hline 7173 & 3.8557008 & 7208 & 3.8 & 7243 & 3.859918 & 727 & 3.8620120 \\
\hline - & 3.8557614 & 720 & 3.8578750 & 72 & 3.8599784 & 7279 & 3.8620717 \\
\hline & 3.855821 & & 8579353 & 17245 & 3.860038 & & 3.8621 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| Num. Loogatithm.}} & \multicolumn{2}{|l|}{Num. 1 Logarithin. 1} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Num. |Logarithmi. 738613.8684093}} \\
\hline & & 7316 & 3.8642737 & \[
7351
\] & \[
3.8663464
\] & & \\
\hline & 3.8622507 & 7317 & 3.8643331 & 7352 & & & \\
\hline & 3.8623103 & 7318 & 3.8643924 & 7353 & & & \\
\hline & 3.8623699 & 7319 & 3.8644517 & 7354 & & 73 & \\
\hline 7285 & 3.8624296 & 73:20 & & & & & \\
\hline & & & & 7356 & & & \\
\hline & & & 3.8646297 & 7357 & 3.86670 & 7392 & \\
\hline & & 7323 & 3.8646890 & 7358 & 3.86675 & 7393 & \\
\hline & 3.8626679 & 7324 & 3.8647483 & 7350 & & 994 & \\
\hline 7290 & 3.8627275 & 7325 & 3.8648076 & 736 & & 7395 & \\
\hline & \multirow[t]{2}{*}{3.8} & \[
\overline{7326} \mid
\] & \multirow[t]{2}{*}{3.8648669} & \multirow[t]{2}{*}{7361} & 3.8669368 & 396 & 3.8689969 \\
\hline & & & & & \[
|3.8669958|
\] & 7397 & 3.8690556 \\
\hline 7292 & 3.8628467 & \[
\left|\begin{array}{l}
7327 \\
7328
\end{array}\right|
\] & \[
\begin{aligned}
& 3.8649262 \\
& 3.8649855
\end{aligned}
\] & 7363 & \[
3.8670547
\] & 73 & \\
\hline 7 & \(3: 8629062\) & \[
\begin{aligned}
& 7328 \\
& 7329
\end{aligned}
\] & \begin{tabular}{l}
3.8049855 \\
3.86504 .47
\end{tabular} & 7364 & \[
\left|\begin{array}{l}
3.0071138 \\
3.86713
\end{array}\right|
\] & 7399 & 3.8691730 \\
\hline 7294 & 3.8629658
3.8630253 & 7329
7330 & \[
\begin{aligned}
& 3.86504 .47 \\
& 3.865 \text { IO4. }
\end{aligned}
\] & 7365 & 3.8671728 & 7400 & \\
\hline & 3.8630253 & 7330 & 3.8651040 & 7365 & & & \\
\hline & 3. 8 & 7331 & 3.8651632 & 7356 & 3.8672317 & 7401 & 3.8692904 \\
\hline 72 & \[
\left\lvert\, \begin{aligned}
& 3.8030040 \\
& 3.8631443
\end{aligned}\right.
\] & 7332 & 3.8652225 & 7367 & 3.8672907 & 740 & 3.8693491 \\
\hline & 3.8631443
3.8632039 & 7333 & 3.8652817 & 736 & 3.8673496 & 74 & \\
\hline 7 & \[
\left\{\begin{array}{l}
3.8632039 \\
3.8632634
\end{array}\right.
\] & 734 & 3.8653409 & 7369 & 3.8674086 & 7404 & \\
\hline 7299
7300 & \[
\begin{aligned}
& 3.8632634 \\
& 3.8633229
\end{aligned}
\] & 7335 & 3.8654001 & 7370 & 3.8674675 & 7405 & \\
\hline 7300 & & \multirow[b]{2}{*}{7336} & \multirow[b]{2}{*}{3.8654593} & \multirow[t]{2}{*}{7.371} & \multirow[b]{2}{*}{3.8675264} & \multirow[b]{2}{*}{7406} & \multirow[b]{2}{*}{3.8695837} \\
\hline \[
|\overline{7301}|
\] & 3.8633823 & & & & & & \\
\hline & \[
3.8634418
\] & 7337 & 3.8655185 & 737 & 3.86758 & 7407 & \\
\hline & 3.86 & 73 & 3.8655777 & 737 & 3.86 & & \\
\hline & \({ }_{3} .8635608\) & 7339 & 3.8656369 & 737 & 3.8677031 & 74 & \\
\hline \[
|7305|
\] & 38636202 & 73 & 3.8656961 & & 3.8677620 & & \\
\hline \multirow[t]{2}{*}{7306} & 3.8636797 & & 3.8657552 & 7376 & 3.8678209 & 7411 & 3.8698768 \\
\hline & & 7342 & 3.8658144 & 737 & 3.8678798 & 7412 & 3.8699354 \\
\hline & 3.863798 & 7 & 3.8658735 & 7378 & 3.8679387 & 74 & 10 \\
\hline & 3.8638580 & 7344 & 3.8659327 & 7379 & 3.8679975 & 74 & \\
\hline \[
7310
\] & 3.8639174 & 73 & 3.8659918 & 738 & 3.8680564 & 7415 & \\
\hline 7311 & 3,8639768 & 7346 & 3.8660509 & 7381 & 3.868 I15 \({ }^{2}\) & 7416 & 3.87.01697 \\
\hline & & 73 & 3.8661100 & 738 & 3.8681740 & & \\
\hline & 3.8640956 & 7348 & 3.8661691 & 738 & 3.86823 & 74 & 3.8702868 \\
\hline & 33.8641550 & 73 & 3.8662282 & & 3.86829 & & 3 \\
\hline & 3.8642143 & & 13.8662873 & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Num. 1 Logarithm.} & \multicolumn{2}{|l|}{Num.| Logarithm. 1} & \multicolumn{2}{|l|}{Num. 1 Logtaitbm.} & \multicolumn{2}{|l|}{\[
\frac{\text { Nun. I Log arithm. }}{7006 \mid 3.8875688}
\]} \\
\hline 7561 & 3.8785792 & 7590 & & & & & \\
\hline 7562 & 3.8786367 & 7597 & 3.880642 I & 7632 & & 7668 & \\
\hline 7563 & 3.8786941 & 7598 & 3.8806993
3.8807564 & 7633 & 2.8827522 & 766 & 87 \\
\hline 7564 & 3.8787515
3.8788089 & 7599
7600 & | 3.8807564 & 7635 & 3.8828090 & 7670 & \\
\hline 7565 & & & & & & & \\
\hline & & 7601 & 3.88 & 7636 & & 7671 & \\
\hline & 3.8 & 7602 & 3.8809279 & 7637 & 3.88292 & 7672 & \\
\hline & 3.8789 & 7003 & 3.8809850 & 7638 & 3.8829797 & 7573 & \\
\hline 69 & 3.8790385 & 76 & 2.8810421 & 7639 & 3036.5 & & \\
\hline 7570 & 3.8790959 & 7605 & 3.8810992 & 7640 & 0934 & & \\
\hline & & 76 & & 764 & & & \\
\hline & & 7607 & 3.88 & 7642 & 3.8832070 & 7677 & \\
\hline 7573 & 3.8792686 & 76 & 3.88 & 9643 & 3.8832639 & 7678 & 3.8852481 \\
\hline 574 & 3.8793253 & 7609 & -. 8813276 & 7644 & 3.8833207 & & 7 \\
\hline 7575 & 3.8793826 & 7610 & 3.8813847 & 7645 & 3.88337 & & \\
\hline & & & & 7546 & 3.8834343 & & \\
\hline 7577 & 3.879497 & 76 & 3.881 .49 & 7647 & 3.8 & 7682 & \\
\hline 757 & 3.8795546 & I & 3.8815558 & 7648 & & 768 & 4 \\
\hline 75 & \[
3.87961 \mathrm{I}
\] & 7615 & 3.8816699 & 7650 & 3.88366I4 & 7685 & 3.8856435 \\
\hline & & & & & & & \\
\hline & & & & & & 7687 & \\
\hline & 3.8 & 7617 & 3.8817840
3.8818410 & 7652
7653 & \[
\begin{aligned}
& 3.8837750 \\
& 3.8838317
\end{aligned}
\] & 7688 & \\
\hline 75 & 3.8798411 & & \[
\begin{aligned}
& 3.8818410 \\
& 3.88 \mathrm{I} 8980
\end{aligned}
\] & 7654 & 3.8838885 & 7689 & 3.0858699 \\
\hline & & 7619 & & 7655 & 3.8839452 & 7690 & \\
\hline & & & & & & & \\
\hline & 3.8800128 & 7621 & 3.8820120 & 765 & & 7691 & \\
\hline & 3.88007 & 7622 & 3.8820689 & 76 & 3.88 & 7692 & 8.860393 \\
\hline 75 & 3.880127 & 7623 & 3.8821259 & & & 7694 & 3.8861522 \\
\hline & 3.8801846 & 7624
7625 & \begin{tabular}{l}
3.8821829 \\
3.8822398 \\
\hline
\end{tabular} & & 2.8842288 & 7695 & 3.3862086 \\
\hline 7590 & 3.8802418 & 7625 & 3.8822398 & 7660 & & & \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& 7591 \\
& 7592 \\
& 7593 \\
& 7594 \\
& 7595
\end{aligned}
\]} & 3.8802990 & 7626 & 3.8822968 & & 3.884285 & & 3.8862651 \\
\hline & 3.8803562 & 7627 & 3.8823537 & 7662 & 3.88434 & 7697 & .8863215 \\
\hline & 3.8804134 & 7628 & 3.8824107 & 766 & 3.8843988 & 7698 & 779 \\
\hline & 3.8804706 & 7629 & 3.8824676 & 7664 & 3.8844555 & 769 & . 88864343 \\
\hline & 3.88052 & 7630 & .8825245 & 76 & 4512 & 77 & . 886 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Num. 1 & Logarithm. & N & I logaritbm. & & 1 Logarithm. & & \\
\hline 77 & 3.886547 I & 7736 & 3.8885105 & 7771 & 3.8904769 & & 3.8924285 \\
\hline 7702 & 3.8866035 & 7737 & 3.8885726 & 7772 & 3.890 .5328 & & 3.8924842 \\
\hline 7703 & 3.8866599 & 7738 & 3.8886287 & 7773 & 3.8905887 & 7808 & 3.8925398 \\
\hline 7704 & 3.8867163 & 7739 & 3.8886848 & 77 & 3.8906445 & 7.809 & 3.825 \\
\hline 7705 & 3.8867726 & 7740 & 3.8887410 & 7775 & 3.8907004 & 7810 & 3.8926510 \\
\hline & & 7741 & 3.888797 I & 7776 & & 7811 & \[
3.8927066 \mid
\] \\
\hline 7707 & 3.8868854 & 7742 & 3.8888531 & 7777 & 3.8908120 & 7812 & 3.8927622 \\
\hline 7708 & 3.8869417 & 7743 & 3.8889092 & 7778 & 3.8908679 & & 3.8928178 \\
\hline 7709 & 3.8869980 & 7744 & 3.8889653 & 7779 & 3.8909238 & 781 & 3.8928734 \\
\hline 7710 & 3.8870544 & 7745 & 3.8890214 & 7780 & 3.8909796 & 7815 & 3.8929290 \\
\hline 77 & 3.8871107 & 7746 & 3.8890775 & 7781 & 3.8910354 & & 3.8929846 \\
\hline 7712 & 3.8871670 & 7747 & 3.8891336 & 7782 & 3.8910912 & & 3.8930401 \\
\hline 7713 & 3.8872233 & 7748 & 3.8891896 & 7783 & 3.8911470 & 7818 & 3.8930957 \\
\hline 7714 & 3.8872796 & 7749 & 3.8892457 & 7784 & 3.8912028 & 7819 & 3.893 I5I2 \\
\hline 7715 & 3.8873359 & 7750 & 3.8893017 & 7785 & 13.8912586 & 7820 & 3.8932068 \\
\hline 7716 & 3.8873922 & 7751 & & 7786 & 308913144 & 7821 & \\
\hline & 3.8874485 & 7752 & 3.8894 I 38 & 7787 & 3.8913702 & 7822 & 3.8933178 \\
\hline 7718 & 3.8875048 & 7753 & 3.8894698 & 77.88 & 3.8914259 & & 3.8933733 \\
\hline 7719 & 3.8875610 & 7754 & 3.8895258 & 7789 & 3.9214817 & -782 & 3.8934288 \\
\hline 7720 & 3.8876173 & 7755 & 3.8895818 & 7790 & \(3.8 \times 15375\) & 7825 & 3.8934843 \\
\hline 7721 & 3.8876736 & 7756 & 3.8896378 & 7791 & & & 8 \\
\hline 77 & 3.8877298 & 7757 & 3.8896938. & 7792 & 3.8016489 & & 3.8935953 \\
\hline & 3.8877860 & 7758 & 3.8897498 & 7793 & 3.8917047 & 7828 & 3.8936508 \\
\hline & 3.88784 .23
3.8878085 & 7759 & 3.8898058 & 7794 & 3.8917604 & 7829 & 3.8937063 \\
\hline 7725 & 3.8878985 & 7760 & 3.8898617 & 7795 & 3.8918161 & & 3.8937618 \\
\hline 7726 & 3.8879547 & 7761 & 3.8899177 & 7796 & 3.8918718 & \(78 \times 3\) & \\
\hline 7727 & 3.8880109 & 7762 & 3.8899736 & 7797 & 7.8919275. & 783.2 & 3.8938727 \\
\hline 7728 & 2.8880671 & 7763 & 3.8900296 & 7798 & 3.8919832 & & 38939281 \\
\hline \begin{tabular}{|c}
1729 \\
7730
\end{tabular} & 3.8881233 & 7764 & 3.8900855 & 7799 & 3.8920389 & 7834 & \\
\hline 7730 & 3.8881795 & 7765 & 3.8901415 & 7800 & 3:8920946 & 7835 & 3.894039 c \\
\hline 773 & 3.8882357 & 776 & 8901974 & 7801 & 21.503 & & \\
\hline \begin{tabular}{|r}
732 \\
7733
\end{tabular} & 3.8882918 & 7757 & 3.8902533 & 7802 & 3.8922059 & & 3.8941498 \\
\hline 7733 & 7.8883480 & 7768 & 3.8903092 & 7803 & 3.8922616 & . 7838 & 3.8042053 \\
\hline 7734 & 3.8884042 & 7769 & 3.8903651 & 7804 & 3.8923173 & 7839 & 38942607 \\
\hline 7735 & 3.8884603 & 7770 & 2.89042 & 78 & 3.8923729 & 784 & 38943161 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Nuin. Cogaritbm .} & \multicolumn{2}{|l|}{Num I Logarithm.} & \multicolumn{2}{|l|}{Num.flogarithm:} & \multicolumn{2}{|l|}{Num. Logarithm.} \\
\hline 784.1 & 3.89+3715 & 7876 & 3.8963058 & 7913 & 3.8982314 & 7946 & 10.001406 \\
\hline 42 & 3.8944268 & 7877 & 3.8963608 & 7912 & 3.8982863 & 7947 & 3.9002 \\
\hline & 3.8944822 & 7878 & 3.8964160 & 7913 & 3.8983412 & 7948 & 30.9002579 \\
\hline & 3.8945376 & 7875 & 3.8964711 & 7914 & 3.8983960 & 7943 & 3.9003125 \\
\hline & 3.8945929 & 7880 & 3.8965262 & 7915 & 3.8984509 & 7950 & 3.9003671 \\
\hline & & 7881 & & 7916 & & 79 & \\
\hline & 3.8947037 & 7882 & 3.8966364 & 7917 & 3.8985606 & 7952 & \\
\hline & 3.8947590 & 7883 & 3.8966915 & 7918 & 3.8986155 & 7953 & \\
\hline & 3.8948143 & 7884 & 3.8967466 & 7919 & 3.8986703 & 7954 & \\
\hline 7850 & 3.8948697 & 7885 & 3.8968017 & 7920 & 3.8987252 & 7955 & 3.9006402 \\
\hline 7851 & 3 & & & & & & \\
\hline & 3.8949803 & 7887 & 3.8969118 & 79 & 3.898834 & 7957 & 3.90 \\
\hline & 3.8950356 & 7888 & 3.8969669 & 7923 & 3.8988897 & 7958 & 3.9008039 \\
\hline & 3.8950909 & 7889 & 3.8970220 & 7924 & 3.8989445 & 7959 & 5 \\
\hline 7855 & 3.89514 .62 & 7890 & 3.8970770 & 7925 & 3.8989993 & 7960 & \\
\hline 7856 & 3:8952015 & 7891 & 3.8971320 & 79 & 3.8990541 & 79 & 3.9009676 \\
\hline 7857 & 3.8952568 & 7892 & 3.8971871 & 7927 & 3.8991089 & & 3.9 \\
\hline 7858 & 3.8953120 & 7893 & 3.8972421 & 79 & 3.89916 & & \\
\hline 7859 & 3.8953673 & 7894 & 3.8972971 & 79 & 3.8992 & & \\
\hline 7860 & 3.8954225 & 7895 & 3.8973521 & 793 & 3.89927 & 7965 & \\
\hline 7861 & & 7896 & 3.8974071 & 79 & \(3.8993=79\) & 7966 & \\
\hline 7862 & 3.8955330 & 7897 & 3.897462 I & 7932 & 3.8993827 & 796 & 3.9012948 \\
\hline 7863 & \(3.8955^{883}\) & 7898 & 3.897517 I & 7933 & 3.8994375 & 79 & 3.9013493 \\
\hline \multirow[t]{2}{*}{\[
\left|\begin{array}{l}
7864 \\
7865
\end{array}\right|
\]} & 3.8956435 & 7899 & 3.897572 I & 7934 & 3.8994922 & 7969 & \\
\hline & 3.8956987 & 790 & 3.8976271 & 7935 & 3.8995409 & 797 & 3.9014 .583 \\
\hline 7866 & 3.8957539 & OI & 3.8976821 & 793 & 3.8996017 & 797 & 3.9015128 \\
\hline 7867 & 3.8958091 & 7902 & 3.8977370 & 7937 & 3.8996564 & 7972 & 3.9015673 \\
\hline \multirow[t]{2}{*}{7898
7868
787} & 3.8958643 & 7903 & 3.8977920 & 7938 & 3.8.8971 II & 7973 & \\
\hline & 3.8959195 & 790 & 3.8978469
3.8979019 & 7939 & & 7974 & [3.9016702 \\
\hline 7870 & 3.8959747 & 790 & 3:8979019 & 79 & 3.8998205 & 7975 & 3.9017307 \\
\hline & I3.8960299. & 7906 & 3.8979568 & & 3.8998752 & 7976 & 3.9017851 \\
\hline 178.72 & 23.896085 I & 7907 & 3.8980117 & 794 & 3.8999299 & & \\
\hline \multirow[t]{2}{*}{7873} & 3.8961403 & 790 & 3.8980667 & 7943 & 3.899994.6 & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\underline{787513.8962506}\)}} & 7909 & 3.8981216 & & \[
\begin{aligned}
& 4.9 .000392 \\
& 5 \\
& 5.9000939
\end{aligned}
\] & 7979 & 0| 3.9020029 \\
\hline & & 79 & .8981765 & 79 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\frac{\text { Num.1 Logarishm. }}{7981 \mid 3.9020573}
\]}} & Nu & Logaritbm. & \multicolumn{2}{|l|}{Num. \({ }^{\text {Logarithm. }}\)} & & [Logarithm \\
\hline & & 80 & 3.9039577 & 8051 & 13.9058498 & 8086 & j.9077337 \\
\hline 7982 & -.9021117 & 8017 & \(3 \cdot 9040119\) & 8052 & 3.9059038 & 8087 & 3.9077874 \\
\hline 7983 & 3.7021661 & 8018 & 3.5070661 & 8053 & 3.9059577 & 8088 & \(3 \cdot 9078411\) \\
\hline 7984 & 3.9022205 & 8019 & 3.9041202 & 8054 & 3.9060116 & 8089 & 3.9078 \\
\hline 7985 & 3.9022749 & 8020 & 3.9041744 & 8055 & 3.9060656 & 8090 & 3.9079485 \\
\hline 7986 & 3.9523293 & 8021 & 3.9042285 & 8056 & 3.9061195 & & \\
\hline 7987 & 3.9023837 & 8022 & 3.9042827 & 80 57 & 3.9061734 & 8092 & \\
\hline 7988 & 3.9024381 & 8023 & 3.9043368 & 8058 & 3.9062273 & 8093 & 13.9081095 \\
\hline 7989 & 3.9024924 & 802.4 & 3.9043909 & 8059 & 3.9062812 & 8094 & 3.9081632 \\
\hline 7990 & 3.9025468 & 8025 & 3.9044450 & 8060 & 3.9063351 & 8095 & 3.9082169 \\
\hline 79 & 3.902601 & 8026 & 3. & 8061 & 3.9063889 & 8096 & \\
\hline 7992 & 3.9026555 & 8027 & 3.9045533 & 8062 & 3.9064428. & 8097 & 3.908324 I \\
\hline 7993 & 3.9027 C98 & 8028 & 3.9046074 & 8063 & 3.9064967 & 8098 & \(3 \cdot 90837.78\) \\
\hline 7994 & 3.9027641 & 8029 & 3.9046615 & 8064 & 3.9065505 & 8099 & \(3 \cdot 9084314\) \\
\hline 7995 & 3.902818 & 8030 & 3.9047155 & 8065 & 3.9066044 & 8100 & 3.9084850 \\
\hline 79 & 3.90287 & 8031 & 3.9047696 & 8066 & 3.9066582 & 8101 & \\
\hline 79 & 3.9029271 & 8032 & 3.9048 .237 & 80 & 3.9067121 & 8102 & 3.9085922 \\
\hline 7998 & 2.9029814 & 8033 & 3.9048778 & 8068 & 3.9067659 & 8103 & 3.9086458 \\
\hline 7999 & 3.9030357 & 8034 & 3.9049318 & 8069 & 3.9068197 & 8104 & 3.9086994 \\
\hline 8000 & 3.9030900 & 8035 & 3.9049859 & 8070 & 3.9068735 & 8105 & \[
|3.9087530|
\] \\
\hline & 2.903 2443 & & 3.9050399 & 8071 & 3.9069273 & 8106 & 3.9088066 \\
\hline \[
|8002|
\] & 3.9231985 & 8037 & 3.9050940 & 8072 & 3.9069812 & \[
8107
\] & 3.9088602 \\
\hline \[
18003
\] & 3.9032528 & 8038 & 3.9051430 & 8073 & 3.9070350 & \[
8108
\] & 3.9089137 \\
\hline 3004
8005 & 3.9033071
3.9043613 & 8039
8040 & 3.9052020
3.9052560 & 8074 & 3.9070888 & 8109 & 3.9089673 \\
\hline 8005 & 3.9043613 & 8040 & 3.9052560 & 8075 & 3.9071425 & 8110 & 3.9390209 \\
\hline 8006 & \(3.903415^{6}\) & 8041 & 3.9053101 & 8076 & 3.9071963 & 8III & 3.9090744 \\
\hline 8007 & 3.9034698 & 8042 & 3.9053641 & 8077 & 3.9072501 & 8 IT 2 & \[
\left|\begin{array}{l}
3.9091279
\end{array}\right|
\] \\
\hline 8008 & 3.9035241 & 8043 & 3.9054181 & 8078 & 3.9073088 & 8 II 3 & 3.9091815 \\
\hline 8009
8010 & 3.9035783 & 8044 & 3.9054721 & 8079 & 3.9073576 & 81I4 & \[
3.9092350 \mid
\] \\
\hline 3010 & 3.9036325 & 8045 & 3.9055261 & 8080 & 3.9074114 & 8IIS & 3.9092885 \\
\hline 301 & -.9036867 & 8046 & 3.9055801 & 8081 & 3.9074651 & & \\
\hline 18012 & 3.9037409 & 8047 & 3.9056341 & 8082 & 3.9075188 & 8117 & 3.9093955 \\
\hline 8013 & 3.9037951 & 8048 & 3.9056880 & 8083 & 3.9075726 & 8118 & 3.9094490 \\
\hline & 3.9038493 & 8049 & 3.9057420 & 8084 & 3.9076263 & 8119 & 3.9095025 \\
\hline 80 & 3.9039035 & 80501 & 2.9957960 & 808 & 3.9076800 & 81 & 3.9095560 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\frac{\text { Num.1 Logarithme }}{\text { S121 }}\)}} & \multicolumn{2}{|l|}{Num I Logarithis.} & \multicolumn{2}{|l|}{Numi. Logarithis.} & \multicolumn{2}{|l|}{Num. Logatithm.} \\
\hline & & 8156 & .9114772 & 81 & & & \\
\hline & 3.9096630 & 81573 & 305 & 81923. & -9133899 & & \\
\hline 3. & 3.9097165 & 8158 & 837 & 81933. & .9134430 & & \\
\hline & 3.9097699 & 8159 & 3.9116369 & 81943 & 3.9134960 & & \\
\hline 3 & 3.9098234 & 8160 & 3.9116902 & 8195 & & 30 & \\
\hline 63 & 3.9098768 & 8161 & 3.91 & 8196 & 3.9136019 & 8231 & 3.0154526 \\
\hline & 3.9099303 & 623 & 3.911 & 81973. & 3.9136549 & 8232 & 3.9155054 \\
\hline & 3.9099837 & 63 & & & 37079 & 8233 & 3.91 \\
\hline & 3.9100371 & 64 & 3.9119030 & 81 & 3.913 & & \\
\hline & 3.9100905 & 65 & & 820 & & 8235 & I \\
\hline 8131 & & 8166 & 3.912009 & 8201 & 3.9138668 & 8236 & 3.9157163 \\
\hline 3 I 3 I & 3.91 & 8167 & 3.9120626 & 8202 & 3.9139198 & 8237 & 3.9157691 \\
\hline & 3.9101025 & 68 & 3.912115 & 8203 & 3.9139727 & 82 & 3.9 \\
\hline & 3.91030 & 991 & 3.91210 & 8204 & 3.914 & & 5 \\
\hline \[
|8135|^{3}
\] & 3.9103576 & 70 & 3.9122220 & 8205 & & 8240 & 9159272 \\
\hline 8136 & 3.9104109 & 8171 & 3.9122752 & 8206 & 3.9141315 & 8241 & 3.9159799 \\
\hline 3137 & 3.9104643 & 8172 & 3.9123234 & 8207 & 3.9141 & 8242 & 3.9160326 \\
\hline & 3.9105177 & 8173 & 3.9123815 & & 3.9 & & \\
\hline 3139 & 3.9105 & & 3.9124346 & 8209 & 3 & & \\
\hline & 3.9106244 & & 3.9124878 & & & & \\
\hline & & & 3.9125409 & II & 3.9143961 & 8246 & 3.9162433 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 12 \\
& 1^{2} \\
& 3
\end{aligned}
\]} & 3.91073 & 8177 & 3.9125940 & 8212 & 3.9144489 & & 3.9162960 \\
\hline & \(3.9107^{8}\) & \multirow[t]{2}{*}{\[
\begin{aligned}
& 8178 \\
& 8179
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
3 \begin{aligned}
& 3.9126471 \\
& 3.9127002
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 82 \mathrm{I} 3 \\
& 8214
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
3.9145018 \\
3.9145547
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 8248 \\
& 8249
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\left|\begin{array}{l}
3.9163487 \\
3.9164013
\end{array}\right|
\]} \\
\hline & 3.9108 & & & & & & \\
\hline & 3.9108 & \[
818 ?
\] & \[
\begin{aligned}
& 3.9127002 \\
& 3.9127533
\end{aligned}
\] & 8215 & 3.9146076 & 8250 & 3.9164539 \\
\hline & 3.9109444 & 8181 & 3.9128064 & 8216 & 3.9146604 & 8251 & 3.9165066 \\
\hline & 3.9109977 & 8182 & \multirow[t]{2}{*}{3.9128595} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 8217 \\
& 8218
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 3.9147133 \\
& 3.9147661
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 8252 \\
& 8253
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
3
\]} \\
\hline & 83.9110510 & 8183 & & & & & \\
\hline 3149 & 3.91 & \multirow[t]{2}{*}{} & \[
\begin{aligned}
& 3.9129126 \\
& 4.9129656
\end{aligned}
\] & \multirow[t]{2}{*}{\[
\begin{aligned}
& 8218 \\
& 8219 \\
& 8220
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 3.914766 \mathrm{I} \\
& 3.9148190 \\
& 3.9148718 \\
& 3.9148
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 8254 \\
& 8255
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
+\left|\begin{array}{l}
3.9166645 \\
3.9167171
\end{array}\right|
\]} \\
\hline 8 I 50 & 03.91 & & 3.9130187 & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l|l|}
\hline 8151 & 3.9112109 \\
8152 & 3.9112642 \\
8153 & 3.113174 \\
8154 \\
3.9113707 \\
8155 & 3.9114240 \\
\hline
\end{tabular}}} & \multicolumn{2}{|l|}{818613.9130717} & 8221 & 13.9149246 & 8256 & 3.9167697 \\
\hline & & 8187 & 3.9131248 & 8222 & 3.914977 & 8257 & 73.9168223 \\
\hline & & 8188 & 3.9131778 & 82 & 3.915030 & & 83.9168749 \\
\hline & & 81 & 93.9132309 & 822 & 3.915083 & & 9 \\
\hline & & & 3.91328 & & 3.91513 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Nuni.1 Logarithm. & \multicolumn{2}{|l|}{Num. [Logaritlsm.} & \multicolumn{2}{|l|}{Num.1 Logarithm.} & & thm \\
\hline 8201 3.9170326 & 8295 & 3.9188687 & 8331 & 3.9206971 & & 9225179 \\
\hline 82623.9170852 & 8297 & 3.9189211 & 8332 & 3.9207493 & 8367 & 3.9225179
3.9225698
3.922517 \\
\hline 82633.9171378 & 8298 & 3.9189734 & 8333 & 3.9208014 & 8368 & 3.9226217 \\
\hline 82643.9171903 & 8299 & 3.9190258 & 8334 & 3.9208535 & 83 & 3.9226736 \\
\hline 82653.9172429. & 8300 & 3.9190781 & 8335 & 3.9209050 & 837 & 3.9226736
3.922725 \\
\hline 82663.917295 & 8301 & 3.9191304 & 83.36 & 3.92095 & 837 & 2.9227773 \\
\hline 82673.9173479 & 8302 & 3.9191827 & 8337 & \(\therefore .9210098\) & 8372 & 2.9227773
3.9228292 \\
\hline 826813.9174005 & 8303 & 3.9192350 & 8338 & ?.9210619 & 8373 & \(3 \cdot 92288 \mathrm{I}\) I \\
\hline 82693.9174530 & 8304 & 3.9192873 & 8339 & 3.9211140 & 8374 & 3.9229330 \\
\hline 82703.9175055 & 8305 & 3.9193396 & 8340 & 3.9211661 & 8375 & 3.9229848 \\
\hline 82713.9175580 & 8306 & 3.9193919 & 8341 & I & 8376 & \\
\hline 8272 3.9176108 & 8307 & 3.91944.42 & 8342 & 3.9212701 & 8377 & \[
85
\] \\
\hline 1827313.9176630 & 8308 & 3.9194965 & 8343 & 3.9213222 & 8378 & \\
\hline |8874|3.9177155 & 8309 & 3.9195488 & 8344 & 3.9213743 & 8379 & \\
\hline 827533.9177680 & 8310 & 3.9196010 & 8345 & 3.9214263 & 8 & \\
\hline 82763.9178205 & 83 II & 3.9196533 & 8346 & 3.9214784 & 8381 & \\
\hline \(18277 \mid 3.9178730\) & 8312 & 3.9197055 & 8347 & 3.9215304 & 8382 & \[
3.9233477
\] \\
\hline 827812.9179254 & 8313 & 3.9197578 & 8348 & 3.9215824 & & 3.9233995 \\
\hline 82793.9179779 & 8314 & 3.9198.100 & 8349 & 3.9216345 & 8384 & \[
3.92345 \text { I } 3
\] \\
\hline 82803.9180303 & 8315 & 3.9193623 & 8350 & 3.9216865 & 8385 & \[
\left|\begin{array}{l}
3.92345 \text { I } 3 \\
-.9235031
\end{array}\right|
\] \\
\hline 828153.9180828 & 8316 & & 8351 & 7385 & 8386 & \\
\hline 82823.9181352 & 8317 & 3.9199667 & 8352 & 3.9217905 & 8387 & \[
\left\lvert\, \begin{aligned}
& 3.9235549 \\
& 3.9236066 \mid
\end{aligned}\right.
\] \\
\hline 82833.9181877 & 8318 & 3.9200189 & 8353 & 3.2218425 & 8388 & \[
3.9536584
\] \\
\hline 8284 3.9182401 & 8319 & 3.93007 II & 8354 & 3.9218945 & 8389 & \[
\left|\begin{array}{l}
.9450504 \\
3.92371122
\end{array}\right|
\] \\
\hline 8285 3.9!82925 & 8320 & 3.9201233 & 8355 & 3.9219465 & 8390 & \[
102
\] \\
\hline 8286 3.9183449 & 8321 & 3.9201755 & 8356 & 3.9219984 & 8391 & \\
\hline 8287 i.9183973 & 8322 & 3.9202277 & 8357 & 3.9220504 & 8392 & \[
\left\lvert\, \begin{aligned}
& 2.92381 \\
& 3.92 \\
& 3
\end{aligned}\right.
\] \\
\hline 13288!3.9184497 & 8323 & 3.9202799 & 8358 & \begin{tabular}{l}
3.92201024 \\
\hline .922104
\end{tabular} & 8393 & \[
\begin{aligned}
& 3.9238655 \\
& 3.923 .9172
\end{aligned}
\] \\
\hline 32893.9185021 & 8324 & 3.2203321 & 835.9 & 3.9221543 & 8394 & \[
\left|\begin{array}{l}
3.923 .9172 \\
3.923969 .0
\end{array}\right|
\] \\
\hline 82903.9185545 & 8325 & 3.9203842 & 8360 & 3.9222063 & 8395 & 3.9240207 \\
\hline 8291 309! 86069 & 8326 & 3.9204364 & 836.1 & 3.9222582 & 8396 & \\
\hline 132923.9186593 & 8327 & 3.9204886 & 8362 & 3.9223 .02 & 8397 & \[
\left|\begin{array}{l}
3.9240724 \\
3.9241242
\end{array}\right|
\] \\
\hline 82933.9187117 & 8, 28 & 3.9205407 & 8363 & 3.9223621 & 8398 & \\
\hline 829.3 .9187610 & 8329 & 3.9205929 & 8364 & 3.9224140 & 8399 & \[
\left|\begin{array}{l}
3.9241759 \\
3.9242276
\end{array}\right|
\] \\
\hline 329517.9188164 & 8330 & 3.9206450 & 8365 & 3.9224659 & \(\begin{array}{r}8409 \\ \hline\end{array}\) & \[
3.92 .42793
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Num. 1 Logarithm.} & \multicolumn{2}{|l|}{Num. 1 Logarathm.} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nunt. Logarithm. \(_{\text {8471-13.9279347 }}\)}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Num. [Logaritbm.
\[
850013.9297254
\]}} \\
\hline 8 & 3.9243310 & 8436 & 3.9261366 & & & & \\
\hline 8402 & 3.92438 .27 & 84 & 3.9261880 & 8472 & & & \\
\hline 8403 & 3.9244344 & 8438 & 3.9262395 & 8473 & 3.9280372 & & \\
\hline 8 & 3.9244863 & 8439 & 3.9262910 & 8474 & 3.9 & & \\
\hline 8405 & 3.9245377 & 8440 & 3.9263424 & 8475 & 3.9281397 & 8510 & 96 \\
\hline & & & 3.9263939 & 8476 & & 85 II & \\
\hline & 3.92464 & 84.42 & 3.9264453 & & 3.92824 .22 & 8512 & 3 \\
\hline 84 & 3.9246 & 8443 & 3.9264968 & & & 8513 & 6 \\
\hline 84 & 3.9247444 & 8444 & 3.9265482 & 8479 & 3.9283446 & & 6 \\
\hline 8410 & 3.9247960 & 8445 & 3.9265997 & 8480 & 3.9283959 & 8515 & 7 \\
\hline & & & \(3 \cdot 92\) & 8481 & \(3 \cdot 928447\) & & \\
\hline 84 & 3.924 & 8447 & 3.9267025 & 8482 & 3.9284983 & 8517 & 3.9302866 \\
\hline 84 & 3.9249509 & 8448 & 3.9267 .539 & 84 & 3.9285495 & 8518 & 3.9303376 \\
\hline & 3.92500 & 8449 & 3.9268053 & 84 & 3.9280007 & 85.19 & \\
\hline & 3.9250541 & 8450 & 3.9268567 & & 3.9286518 & & \\
\hline 8416 & 3.9251057 & 845 I & 3.9 & & & & \\
\hline 8417 & 3.9251573 & 84 & 3.9269595 & & 3.9287542 & 85 & 3.9305415 \\
\hline & 3.9252089 & & 3.9270109 & & 3.9288054 & & 3.9305925 \\
\hline 8419 & 3.9252605 & 8454 & 3.9270622 & 8489 & 3.9288565 & & \\
\hline 8420 & 3.925312 I & 84:55 & 3.9271136 & 8490 & 3.9289077 & 8525 & \\
\hline 84 & 3.9253637 & & 3.9271650 & & 3.9289588 & & \\
\hline 84 & 3.9254152 & 8457 & 3.9272163 & 8492 & 3.9290100 & 85 & 3.9307963 \\
\hline & 3.92546 .68 & 8458 & 3.9272677 & 8493 & 3.92 & 852 & 3.9308472 \\
\hline & 3:92.55184 & 8459 & 3.9273190 & 8494 & 3.9291123 & 85 & 3.9308981 \\
\hline & 3.9255699 & 8460 & 3.9273704 & 849) & 3.9291634 & & \\
\hline & & & & 8496 & 3.9292145 & & 3.9309999 \\
\hline & 3.9256730 & 8462 & 3.9274730 & 8497 & 3.9292656 & & 3.9310508 \\
\hline 8428 & 3.9257245 & 8463 & 3.9275243 & & 3.9293 I. 67 & & \\
\hline & 3.9257761 & 8464 & 3.9275757 & 8499 & 3.9293678 & 85 & 3.93 II5 26 \\
\hline 8430 & 3.9258276 & 8465 & 3.9276270 & 85.00 & 3.9294189 & 8 & 3.9312035 \\
\hline & 3.92587 & 8466 & 3.9276783 & 8501 & 3.9294700 & & 3.9312544 \\
\hline 8432 & |3.9259306 & 8467 & 3.9277296 & 8502 & 3.92952 .11 & & 3.931 .3053 \\
\hline 8433 & 3.9259821 & 8468 & 3.9277808 & 8503 & 3.9295722 & & 393.13561 \\
\hline 8434 & 4.9260336 & 8469 & 3.9278321 & 8504 & 3.9296233 & & 39314070 \\
\hline 8 & 13.926085 & 8470 & 3.9278834 & 85 & 3.9296743 & & \(\underline{3.9314579}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\overline{\text { Num.1 Logatithm. }}\)}} & \multicolumn{2}{|l|}{Num. 1 Logayithm.} & \multicolumn{2}{|l|}{Num. 1 Logaritina} & \multicolumn{2}{|l|}{Num. |Logarithm.} \\
\hline & & 8576 & 3.9332846 & 8011 & 3.9350536 & 8646 & 3.9368182 \\
\hline 8542 & 2.9315596 & 8577 & 3.9333354 & 8612 & 3.9351040 & 86 & \\
\hline 8543 & 3.93 16154 & 8578 & 3.9333860 & 8613 & 3.9351544 & & \\
\hline 44 & 3.9316612 & 8579 & 3.9334367 & 8614 & & 8649 & \\
\hline 8545 & 3.9317121 & 8580 & 3.9334873 & 8615 & 3.9 & 8650 & \\
\hline & 3.93 & & & & & 8651 & \\
\hline 8547 & 3.9318137 & 8582 & 3.9335885 & 8617 & 3.9353561 & 8652 & \\
\hline & 3.93.18645 & 8583 & 3.9336392 & 8618 & & 86 & \\
\hline 8549 & 3.9319153 & 8584 & 3.9336897 & 8619 & 3.9354569 & 865 & \\
\hline 8550 & 3.9319661 & 8585 & 3.9337403 & 8620 & & 8655 & \\
\hline & & & & & & & \\
\hline & 3.9320677 & 8587 & 3.9338 & 8622 & 3.9 & & \\
\hline 8553 & 3.9321185 & 8588 & 3:9338 & 8623 & & & 3.93741 F C \\
\hline & 3.9321692 & 8589 & 3.9339 & 8624 & 3.935 & & \\
\hline 8555 & 3.932220 & 8590 & 3.933 & 8625 & 3.9357591 & 8660 & 3.9375179 \\
\hline & 3.932 & & & 8526 & & 1 & \\
\hline & 3.93232 & & 3.9340 & 8627 & 3.93 & 2 & 3.9 \\
\hline 8558 & 3.9323723 & 8593 & 3.9341448 & 8628 & 3.9359101 & & \\
\hline 8559 & 3.9324230 & 8594 & 3.9341953 & 8629 & 3.93) & & \\
\hline & 3.9324738 & 8595 & 3.9342459 & 8630 & 3.9360108 & 86 & \\
\hline & & & & & & & \\
\hline 62 & 3.9325 & & 3.9343 & 8632 & 3.9361114 & & \\
\hline 8563 & 3.93262 & 8598 & 3.9343 & 8633 & 3.9361 & 8668 & \\
\hline 8564 & 3.932676 & & 3.93 & 8634 & 3.9362 & 86 & \\
\hline 8565 & 3.93272 & & & 86.5 & 3.93 & 85 & \\
\hline & & & & & 3.9363126 & 1 & \\
\hline 85 & 3.9328288 & 8602 & 3.93 & 863 & 2.936362 & 867.2 & 3.9381193 \\
\hline 8568 & 3693287 & 860 & 3.934649 & 8638 & 3.9364132 & & 3.938169 \\
\hline 8569 & 3.93293 & 8 & 3.9347004 & 8639 & 2.9364635 & & 3.0382 \\
\hline 8570 & 3.9329808 & 8605 & 3.9347509 & 86 & 3.9365137 & 8675 & 5 \\
\hline & & & & & 3.9365640 & & \\
\hline & 3.93308 & 8607 & 3.9348518 & 8642 & 3.9365143 & 867 & . 93 \\
\hline & 3.933 & 8608 & 3.9349022 & 86 & 3.9366645 & 8678 & \\
\hline & 3.9331835 & & 3.9349527 & 86 & 3.9367148 & 8679 & 3.9384697 \\
\hline & 2.933 & & 3.9350032 & & . 936765 & & \\
\hline
\end{tabular}
Num. 1 Logarithm: \begin{tabular}{l|l|l|}
\hline 8681 & 3.9385698
\end{tabular} 86823.9386198 86833.9386698 8684 3.9387198 86853.9387698
86863.9388198 868.7 3.9388698 8688 3.9389198 86893.9389698 \(86903.939 \circ 198\)
86913.9390697 8692 3.9391197 86933.9391697 86943.9392196 8695 3.9392696 8696 3.9393195 86973.9393695 86983.9394194 86993.9394693 8700 3.9395.193 87013.9395692 87023.9396191 87033.9396690 87043.9397189 87015 3.9397688 \(\overline{8706} \overline{3.9398187}\) 87073.9398685 87083.9399184 87.09 3.9399683 87103.9400182 8.7113 .9400680 8712 3.9401179 87133.9401677 871433.9402176 871513.9402674

Num. 1 Logarithm. \(8716 \mid 3.9403172\) 87173.9403670 87183.9404169 \begin{tabular}{l}
\(8719 \mid 3.9404667\) \\
8720 \\
\hline
\end{tabular} 872013.9405165
\(\overline{8721} \overline{3.9405663}\) 87223.9406161 872313.9406659 87243.9407157 87253.9407654 872613.9408152 87273.9408650 \begin{tabular}{|l|l|}
\hline 8728 & 3.9409147 \\
8729 & 3.9409645 \\
\hline 87020142
\end{tabular} 873013.9410142

873 I 3.9410640 87323.941 II 37 87333.9411635 87343.9412132 87353.9412629

87
87373.9413623
87383.9414120
87393.9414617

8740
87413.9415611
87423.9416108
87433.9416605
87443.9417101
87453.9417598
87463.9418095 8747|3.9418591 8748 3.9419088 87493.9419584 8750|3.9420081
Num.1 Logarithm.
87513.9420577
87523.9421073 87533.9421569 87543.9422065 87553.9422561 8756 \(\overline{3.9423058}\)
 \begin{tabular}{l|l|}
8758 & 3.9424049 \\
8759 & 3.9424545
\end{tabular}
87603.9425041
87613.9425537
87623.9426032
87633.9426528
87643.9427024
87653.9427519
\(\overline{8766} \overline{3.9428015}\)
87673.9428510
\begin{tabular}{l}
8768 \\
87.9429005 \\
8769 \\
\hline 3.9429501
\end{tabular}
87703.9429996
87713.9430491
87723.9430986
87733.943148 I
87743.9431976

8775 3.943 2471
87763.9432966
87773.9433461
87783.9433956
87793.9434450
\(8780 \quad 3.9434945\)
878 I 3.9435440
87823.9435934
87833.9436429
87843.9436923
878513.9437418
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Num. 1 L ogatithm.} \\
\hline 878613 & 3.9437912 \\
\hline 87873 & 3. 2438.406 \\
\hline 8788 & 3.9438900 \\
\hline 8789 & 30. 4393951 \\
\hline 8790 & 3.9439880 \\
\hline 8791 & \\
\hline 8792 & \(3 \cdot 9440877\) \\
\hline 8793 & 3.9441371 \\
\hline 8794 & 3.9441865 \\
\hline 8795 & 3.94423 .5 \\
\hline 8796 & \\
\hline 8797 & 3.944.3 \\
\hline 8798 & 3.94438 \\
\hline 8799 & 3.9444 .333 \\
\hline 8800 & 3.94 \\
\hline 8801 & 3.9 \\
\hline 8802 & 3.9 \\
\hline \(8{ }^{2}\) & 3.9446307 \\
\hline 8804 & 3.9446800 \\
\hline 8805 & 3.94472 \\
\hline & \\
\hline 8807 & 369448280 \\
\hline 8808 & 3.2448773 \\
\hline 8809 & 3.9449266 \\
\hline 88 & 3.9449759 \\
\hline 88II & 3.9450252 \\
\hline 8812 & 3.9450745 \\
\hline 8813 & 3.9451238 \\
\hline 8814 & 3.9451730 \\
\hline 8815 & 3.9452223 \\
\hline 8816 & 3.9452710 \\
\hline 8817 & 3.9453208 \\
\hline 8818 & 3.9453701 \\
\hline 8819 & 93.9454192 \\
\hline 882 & O|39454686 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Num.1 Logaritam.} & \multicolumn{2}{|l|}{Num | Logaritbm.} & \multicolumn{2}{|l|}{Num. 1 Logaritbm:} & \multicolumn{2}{|l|}{Num. 1 Logaritbm.} \\
\hline 8821 & 3.9455178 & 885 & 13.9472376 & 8591 & 13.9489500 & 8926 & 13.9506560 \\
\hline 8822 & 3.9455671 & 8857 & 3.9472866 & 8892 & 3.9489994 & 8927 & 507055 \\
\hline 8823 & 3.9456163 & 8858 & 3.9473357 & 8893 & 3.9490483 & 8928 & 3.9507542 \\
\hline 18324 & 3.9456655 & 8859 & 3.9473847 & 8894 & 3.9490971 & 8929 & 3.9508028 \\
\hline & 3.9457147 & 8860 & 13.9474337 & 8895 & 3.9491460 & 8930 & 3.9508515 \\
\hline 8826 & 3.94 & 8861 & 3.9474827 & 8896 & & 893 I & 1-1 \\
\hline 18827. & 3.9458131 & 8862 & 3.9475317 & 8897 & 3.9492436 & 8932 & \\
\hline 88281 & 3.9458623 & 8863 & 3.9475807 & 8898 & 3.9492924 & 8933 & 3.9109973 \\
\hline 8829 & 3.9459115 & 8864 & 3.947 .6297 & 8899 & 3.9493412 & 8934 & 3.9510459 \\
\hline 8830 & 3.9459607 & 8865 & 3.9476787 & 8900 & 3.9493900 & 8935 & 3.9510946 \\
\hline 88 & 3.9460099 & 8866 & & 8901 & & 8936 & 3.95 I 1432 \\
\hline 883.2 & 3.9460591 & 8867 & 3.9477767 & 8902 & \(3 \cdot 9494876\) & 8937 & 3.95 I 19.18 \\
\hline 88.3 & 3.9461082 & 8868 & 3.9478 .257 & 8903 & 3.9495364 & 8938 & 3.9512404 \\
\hline & 3.9461574 & 8869 & 3.947874 & 8904 & 3.9495851 & 8939 & 3.9512889 \\
\hline 8 & 3.9462066 & 8870 & 3.9479235 & 8905 & 3.9496339 & 8940 & 3.9513375 \\
\hline 8836 & 3:9462557 & 8871 & 3.9479726 & 8906 & 2.9496827 & 8941 & \\
\hline 8837 & 3.9463048 & 8872 & 3.9480215 & 8907 & 3.9497314 & 8942 & \\
\hline 8838 & 2.9463540 & 8873 & 3.9480705 & 8908 & \(3.94978 \mathrm{O}_{2}\) & 8943 & 3.9514832 \\
\hline 8839 & 3.9464031 & . 88874 & 3.948 II94 & 8909 & 3.9498290 & 8944 & 3.95153 .18 \\
\hline 8840 & 3.9464523 & 8875 & 3.9481684 & 8910 & 3.9498777 & 8945 & 3.9515803 \\
\hline & & 8876
8877 & & 8911 & 3.9499264 & 894 & 8 \\
\hline 88 & 3.9465505 & 8877 & 3.9482662 & 8012 & 3.0.409752 & 8947 & 3.9516774 \\
\hline 88 & 3.9465990 & 8878 & \(3 \cdot 948315 \mathrm{I}\) & 8913 & \(3 \cdot 9.500239\) & 8948 & 3.9517260 \\
\hline 18844 & 3.9466487 & 8879 & \(3 \cdot 9.48364 \mathrm{I}\) & 8914 & 3.9.900726 & 8949 & 3.9517745 \\
\hline 5845 & 39466978 & & 2.9484130 & 8915 & 3.9501213 & 8950 & 3.9518230 \\
\hline 88.46 & 3.9467469 & 8881 & 3.9484619 & 8916 & 2.9.501701 & 8951 & 3.9518716 \\
\hline & 3.94 .67960 & 888 & \(3 \cdot 9485108\) & 8917 & 3.9.502188 & 8952 & 3.9519201 \\
\hline & ? 3 ¢ 768451 & & 3.9485597 & 8918 & 3.9502675 & 8953 & 3.9519686 \\
\hline 8849 & 3.9468942 & 8884. & 3.9486085 & 8919 & 2.9503162 & 8954 & 3.9520171 \\
\hline 8850 & \(3 \cdot 9469433\) & 888.5 & 3.9486574 & 8920 & 3.9503649 & 8955 & 3.9520656 \\
\hline & 3.9409923 & & 3.9487063 & 892 I & 9504135 & 8956 & 521141 \\
\hline 8852 & 3.9470414 & 8887 & \(3.948755^{2}\) & 8922 & 3.9504622 & 8957 & 3.9521626 \\
\hline 8853 & 3.9470005 & 88.38 & 3.9488040 & 8923 & 3.9505109 & 8958 & 3.9522 III \\
\hline 18854 & 3.9471395 & 8889 & T.94.88529 & 892.4 & 3.9505 .596 & 8959 & 3.9522595 \\
\hline 18 ¢55 & 2.94.71886 & 8800 & 3.9489018 & 8925 & 2.9506082 & 8960 & 2.9523080 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Num.1 Logaritbm.}} & \multicolumn{2}{|l|}{Num. 1 Logarithm:} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\left|\begin{array}{l}
\text { Num. L Logarithm. } \\
0031 \mid 3.955735^{8}
\end{array}\right|
\]}} & \multicolumn{2}{|l|}{Num. 1 Logaritbm} \\
\hline & & 8996 & 309540494 & & & 9366 & \\
\hline & 3.9524049 & 8997 & 3.9540977 & 9032 & 3.9557839 & 寿 & \\
\hline & & 8998 & 3.9541460 & 9033 & 3.9558320 & 9068 & 3.7575115 \\
\hline 896 & \(3 \cdot 95\) & 8993 & 3.9541943 & 9034 & 3.9558800 & 9069 & 3.9575594 \\
\hline 8965 & 3.9525503 & 9000 & 3.954 .425 & 9035 & 3.9559282 & 9070 & \\
\hline & & & & & & & \\
\hline 8967 & 3.9526472 & & & 9037 |3. & & 9072 & \\
\hline 8968 & 3.9526956 & 9 & 954387 & 9038 & 3.9560 & 9073 & \\
\hline 8969 & 3.9527440 & 9004 & 3.9544355 & 9039 & 3.95612 & 90 & \\
\hline 8970 & 3.9527924 & 9005 & 3.9544837 & 9040 & 3.95616 & 907 & \\
\hline & & & & & & & \\
\hline & 3.95288 & 9007 & 3.9545802 & 9042 & 3.95 & 0077 & \\
\hline & 3.95293 & 9008 & 3.9546284 & 9043 & 3.95 & 90 & \\
\hline & 3.9529 & 9009 & 3.9546766 & 9044 & 3.9563605 & 9079 & \\
\hline 8975 & 3.9530345 & 9010 & 3.9547248 & 9045 & & & \\
\hline & 3.9 & & & & & 9081 & \\
\hline & 3.9531 & 9012 & 3.9548212 & 90 & 3.95 & 082 & \\
\hline & 3.953 I & 9013 & 13.9548694 & 904 & 3.956 & & \\
\hline & 3.953 & 1 & 3.9549176 & 9049 & 3.956 & & \\
\hline 89 & 3.9532763 & 015 & 3.9549657 & 9050 & 3.95664 & & \\
\hline & & & & 905 & 3. 5566966 & & \\
\hline & 3.9533730 & 9017 & 3.9550621 & 9052 & 3.9567445 & 87 & \\
\hline & 3.9534214 & 9018 & 3.9551102 & 905 & 3.9567925 & & \\
\hline 89 & 2.953 & 9019 & 3.9551584
3.9552065 & 90 & & & \\
\hline & 3.953 & 90 & 3.9 & 90 & & & \\
\hline & 3.9535664 & & & 905 & 3.95 & & \\
\hline & 3.9536147 & & 3.955302 & 905 & 3.9569844 & & \\
\hline 898 & 3.9536631 & & 3.9553510 & & 1.9570323
3.9570803 & & \\
\hline 8989 & 3.9537114 & 9025 & \[
\begin{aligned}
& 3.9553991 \\
& 3.9554472
\end{aligned}
\] & 9059 & 3.9570803 & 9094 & 3.9588027 \\
\hline 8990 & 3.9537 & 9025 & 3.9554472 & 9060 & 3.9 & 9095 & 3.9)8802 \\
\hline & 2.9538080 & & 3.9554953 & 906 & 3.9571761 & & \\
\hline 8992 & 3.9538563 & 9027 & 3.9555434 & 062 & 3.9572241 & 90 & 3.9588982 \\
\hline 8993 & 3.9539046 & 902 & 3.9555915 & 906 & 3.957272 & & \\
\hline & 3.9539529 & 9029 & 3.9556397 & 906 & 3.95731
3.95736 & 90 & |3.9589937 \\
\hline \multicolumn{8}{|c|}{Xxxxx} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Num.1 Logarithm. & Num I Logaritbm. & Num. [Logarithm. & n. 1 Lo \\
\hline 9101|3.9590891 & 91363.9607561 & \begin{tabular}{l}
9171 3.96241 .07 \\
\hline
\end{tabular} & 613.9640710 \\
\hline 91023.9591368 & 91373.9608036 & 91723.9624640 & 9:073.9641181 \\
\hline 191033.9591845 & 91383.9608512. & 91733.9625114 & 92083.9641653 \\
\hline |9104|3.9592322 & 913913.9608987 & 91743.9625587 & 92093.9642125 \\
\hline 91053.9592799 & \(9140 \mid 3.9609462\) & 9175 3.9626061 & 92103.9642596 \\
\hline 91063.9593276 & 21413.9602937 & 91763.9626534 & 92113.9643068 \\
\hline 9107|3.9593753 & \(9142 / 3.9610412\) & 91773.9627007 & 92123.9643539 \\
\hline 91083.9594230 & 91433.9610887 & 917813.9627481 & 9213.3 .964401 I \\
\hline 9109 3.9594707 & 91443.9611362 & 9179 3.9627954 & 9214309644482 \\
\hline 91103.9595184 & 91453.9611837 & 91803.9628427 & 92153.9644953 \\
\hline 91113.9595660 & 91463.9612312 & 918133.9628900 & 63.9645425 \\
\hline 9112 3.9596137 & 91473.9612787 & 91823.9629373 & 92173.9645896 \\
\hline 91133.9596614 & 91483.9613262 & 91833.9629846 & 92183.9646367 \\
\hline 9114 3.9597090 & 91493.9613736 & 91843.9630319 & 92193.9646838 \\
\hline 9115 3.9597567 & 9150 3.9614211 & 91853.9630792 & 92203.9647309 \\
\hline 91163.95980 .43 & 91513.9614686 & 91863.9631264 & 92213.9647780 \\
\hline 91173.9598520 & 915233.9615160 & 91873.9631737 & 23.9648251 \\
\hline 91183.9598996 & 91533.9615635 & 91883.9632210 & \(3{ }^{3}\) \\
\hline 91.193 .9599472 & 91543.9616109 & 91893.9632683 & 92243.9649193 \\
\hline 91203.9599948. & 91553.9616583 & 91903.9633155 & 92253.9649664 \\
\hline 91213.9600425 & 91563.9617058 & 91913.9633628 & \(26: 3.9650134\) \\
\hline 191223.9600901 & 91573.9617532 & 91923.9634100 & \(9227|3.9650605|\) \\
\hline 91233.9 ¢01 377 & 91583.9618006 & 91933.9634573 & 92283.9651076 \\
\hline 9124 3.9601853 & 91593.9618481 & 91943.9635045 & 22293.9651546 \\
\hline 191253.9602329 & 916033.9618955 & 91953.9635517 & 92303.9652017 \\
\hline 91263.9602805 & 91613.9619429 & 91963.9635990 & 92313.9652488 \\
\hline 91273.9603280 & 91623.9619903 & 91973.9636462 & 92323.9652958 \\
\hline 191283.9603756 & 91633.9620377 & 91983.9636934 & 92333.9653428 \\
\hline \(\mid 91293.9604232\) & 91643.9620851 & 91993.9637406 & 92343.9653899 \\
\hline 91303.9604708 & 91653.9621325 & 92003.9637878 & 92353.9654369 \\
\hline 19131, 3.9605183 & 91663.9621799 & 9201 3.96383 .50 & 923613.9654839 \\
\hline 191.323 .5605659 & 91973.9622272 & 92023.9638822 & \(9237 \mid 3.9655309\) \\
\hline 10133 3.9606135 & 91683.9632746 & 92033.9639294 & 92383.9655780 \\
\hline 9134,3.9606610 & 9.693 .9623220 & 92043.9639766 & 9239 3.9656250 \\
\hline 11353.9607086 & 91703.9623693 & 920513.9640238 & \(9240 \mid 3.9656720\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Num. L Logarithm.}} & \multicolumn{2}{|l|}{Num. I Logarithm.} & \multicolumn{2}{|l|}{Num. [Logarithm.} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Num.I Logarithm.}} \\
\hline & & 94 & 3.9738605 & 9451 & 13.9754778 & & \\
\hline 9382 & 3.9722954 & 9417 & 3.9739126 & 9452 & 3.9755237 & & | 3.97701281 \\
\hline 9383 & 3.9723417 & 9418 & 3.9739587 & 9453 & 3.9755697 & 9488 & [\(\begin{aligned} & 3.9771289 \\ & 3.9771747 \\ & 3.972208\end{aligned}\) \\
\hline 9384
9385 & 3.9723880 & 9419 & 3.9740048 & 9454 & 3.9756156 & 9489 & \[
\left\{\begin{array}{l}
3.9771747 \\
3.9772204
\end{array}\right.
\] \\
\hline 9385 & 3.9724343 & 9420 & 3.9740509 & 9455 & 3.9756615 & 9490 & \[
\left\{\begin{array}{l}
3.9772204 \\
{[3.9772662}
\end{array}\right.
\] \\
\hline 9386 & 3.9724805 & 9421 & 3.9740970 & 94 & & 9491 & \\
\hline 19387 & 3.9725268 & 2 & 3.97414 .31 & 9457 & 3.9757534 & 9492 & \\
\hline 19388 & 3.9725731 & 3 & 3.9741892 & 9458 & 3.9757993 & \[
\begin{aligned}
& 9492 \\
& 9493
\end{aligned}
\] & 3.9773578 \\
\hline 9389 & 3.9726193 & 9424 & 3.9742353 & 9459 & 3.9758452 & \[
\begin{aligned}
& 9493 \\
& 9494
\end{aligned}
\] & \[
\begin{aligned}
& 3.9774035 \\
& 3.9774492
\end{aligned}
\] \\
\hline 9390 & 3.9726656 & \(9+25\) & 3.9742814 & 9460 & 3.9758911 & 9495 & \[
\begin{aligned}
& 3.9774492 \\
& 3.9774950
\end{aligned}
\] \\
\hline 9391 & 3.9727118 & & 3.9743274 & 9461 & 3.9759370 & 6 & \\
\hline 9392
9393 & \[
\begin{aligned}
& 3.9727581 \\
& 3.9728043
\end{aligned}
\] & 9427 & 3.9743735
3.9744106 & 94.62 & 3.9759829 & 9497 & 3.977 .5864 \\
\hline 9394 & 3.9728806 & 9428 & 3.9744196
3.9744656 & 946 & 3.9760288 & 949 & 3.9776322 \\
\hline 9395. & 3.9728968 & 9430 & 3.9745117 & 9465 & 3.976 & 9500 & 3.9776779 \\
\hline 9396 & 3.9729430 & 9431 & & 94.66 & & & \\
\hline 9397 & 3.9729892 & 32 & 3.9746038 & 9467 & 3.9762124 & 9501 & \[
|3.9777693|
\] \\
\hline 9398 & 3.9730354 & 9433 & 3.9746498 & 9468 & 3.9762582 & 9503 & \[
\left|\begin{array}{l}
3.9778150 \\
13.9778607
\end{array}\right|
\] \\
\hline 9399 & 3.9730816 & 9434 & 3.9746959 & 9469 & 3.9763041 & 9504 & \[
\left|\begin{array}{l}
3.9778607 \\
3.9779064
\end{array}\right|
\] \\
\hline 9400 & 3.973.1278 & 9435 & 3.9747419 & 9470 & 3.9763500 & 9505 & \[
\begin{aligned}
& 3.9779064 \\
& 3: 9779521
\end{aligned}
\] \\
\hline 9401 & 3.9731741 & & 3.9747870 & 9.471 & 3.9763958 & 9.506 & \\
\hline 9402 & 3.9732202.
3.9732664 & 943 & 3.9748340 & 9472 & 3.9764417 & 9507 & 3.9780435 \\
\hline 404 & & & 3.9748800 & 9473 & 3.9764875 & 9508 & 3.9780892 \\
\hline 9405 & 3.9733588 & 9442 & 3.9749260
3.9749720 & 9474
9475 & 3.9765334
3.9765792 & 9509
9510 & 3.9781348 \\
\hline)40 & & 944 & 3.9750180 & & & & \\
\hline)40; & 3.9734511 & 9.442 & 3.9750540 & 9477 & \[
\left|\begin{array}{|l|}
3.9766251 \\
3.9766709
\end{array}\right|
\] & 9511 & 3.9782262 \\
\hline)408 & 3.5734973 & 9443 & 3.9751100 & 9478 & & 9512 & 3.9782718 \\
\hline 9409. & 3.9735435 & 9444 & 3.9751560 & 9479 & 3.976767 & 9513 & 3.9783175 \\
\hline 9410 & 3.9735896 & 9445 & 3.9752020 & 9480 & 3.9767025
3.9768083 & & 3.9783631
3.9784088 \\
\hline & & & & & 3.9768083 & 9515 & 3.9784088 \\
\hline 9411 & 3.9736358 & \(9+46\) & 3.9752479 & 9481 & 3.9768541 & 95:16 & \\
\hline 9412 & 3.9736819 & 9447 & 3.9752939 & 9482 & 3.9768999 & 2.51 .7 & 3.9785001 \\
\hline \[
\begin{aligned}
& 7413 \\
& 7414
\end{aligned}
\] & 3.973728 & & 3.9753339 & 9483 & 3.9769457 & 9518 & 3.9785457 \\
\hline 941513 & 3.9738203 & & 3.9753858 & 9. & 3.9769915 & 9519 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Num. 1 Logaritbm.} & \multicolumn{2}{|l|}{Num. \({ }^{\text {Logarithm. }}\)} & \multicolumn{2}{|l|}{Nun.1 Logarithm.} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\left\lvert\, \frac{\text { Num. I Logarittm. }}{9626 \mid 3.9834459}\right.
\]}} \\
\hline & 3.9786826 & 9556 3 & 3.9802761 & 95913 & 3.9818639 & & \\
\hline & 3.9787282 & 9557 & 3.9803216 & 95923 & 3.9819092 & 27 & \\
\hline & 3.9787738 & 9558 & 3.9803670 & 9593 & 3.9819544 & & 835361 \\
\hline & 3.9788194 & 9559 & 3.9804125 & 95 & 3.9819997 & & \\
\hline 95 & 3.9788650 & 9560 & 3.9804579 & 9595 & 20450 & & \\
\hline & & & & & & & \\
\hline & & 9562 & 3.9805487 & 9597 & 3.9821355 & & \\
\hline & 3.9790017 & & 3.9805942 & 959 & 3.9821807 & 9633 & \\
\hline 9529 & 3.9790473 & 9564 & 3.9806396 & 959 & & & - \\
\hline 9530 & 3.9790929 & 956 & 3.9806850 & & & & \\
\hline \[
9531
\] & & & & 9601 & & & \\
\hline 9532 & 3.9791840 & & & 96 & 3.9823617 & 9637 & \\
\hline & 3.9792296 & 95.68 & 3.9808212 & 9603 & & & \\
\hline 9534 & 3.9792751 & 9569 & 3.9808666 & 9604 & & & \\
\hline & 3.9793207 & 9570 & 3.9 & 9605 & & & \\
\hline & 3.9793662 & & & 96 & & & \\
\hline \[
\left.\begin{aligned}
& 9536 \\
& 9537
\end{aligned} \right\rvert\,
\] & 3.9794118 & 95.72 & 3.9810027 & 960 & \(3.982587^{8}\) & & \\
\hline \multirow[t]{2}{*}{+9537 9} & 3.9794573 & 2573 & 3.9810481 & 9608 & 3.9826330 & & \\
\hline & 3.9795028 & 957 & 3.9810934 & 9609 & 3.9826782 & & \\
\hline \[
9539 \mid
\] & 3.9795484 & & 3.981. 388 & 9610 & 3.9827234 & 9645 & . 9843022 \\
\hline \multirow[b]{2}{*}{\[
954 \mathrm{I}^{1}
\]} & \multirow[t]{2}{*}{3.9795939} & & & & & & \\
\hline & & & 3.98 & 96.12 & 3.9828138 & 96. & 3.9843923 \\
\hline \[
\left\lvert\, \begin{aligned}
& 9) 4,4 \\
& 9543
\end{aligned}\right.
\] & 3.9796849 & 9.578 & 3.98127.98 & 9613 & 3.9828589 & 96 & \\
\hline \multirow[t]{2}{*}{\[
9544
\]
\[
|9545|
\]} & 3.9797304 & 9579 & 3.9813202 & 9614 & 3.9829041 & 9649 & \\
\hline & 3.9797759 & 9580 & 3.98136 .55 & 9615 & 3.9829493 & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 9546 \\
& 9547
\end{aligned}
\]} & \multirow[t]{2}{*}{3.9798214} & 958i. & 3.9814108 & 9616 & 3.9829945 & 9651 & 3.9845723 \\
\hline & & \(9{ }^{5} 82\) & 3.9814562 & 6 & 3.9830396 & & 33 \\
\hline 9548 & 3.9798669 & 95 & 3.9815015 & 961 & 3.983 & 9653 & 3.9846623 \\
\hline \multirow[t]{2}{*}{\[
19549
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 3.9799579 \\
& 3.9800034
\end{aligned}
\]} & 9584 & & & 3.9831299 & 965 & \\
\hline & & 9585 & 21 & & 3.9831751 & & \\
\hline 9551 & 3.9800488 & 9586 & 3.9816374 & 2.621 & 13.9832202 & 9656 & 3.9847973 \\
\hline 9552 & 23.9800943 & 9587 & 3.9816827 & 9622 & 3.9832654 & 9657 & 3.8848422 \\
\hline 9553 & 2.9801398 & 9588 & 3.9817280 & 9623 & 3.9833105 & 9658 & 3,988872 \\
\hline & 3.9801852 & 95 & 3.98 I.7733 & 962 & 3.983 .3556 & & 3,984 \\
\hline & 3.9802307 & & 3.9818186 & 96 & 3400 & 96 & 398 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Num.1 & Logarithm. & & & Num. 1 & | Logaritam & & \\
\hline 9661 & 3.9850221 & 9696 & 3.9805926 & 973 & 1.9881575 & 9766 & \\
\hline 9662 & 3.9850670 & 9697 & 3.9866374 & 9732 & 3.9882021 & 9767 & \\
\hline 9663 & 3.9851120 & 9698 & 3.9866822 & 9733 & 3.9882467 & 9768 & 3.9898056 \\
\hline 9664 & 3.9851569 & 9699 & 3.9867270 & 973 . & -.9882913 & 9760 & \\
\hline 9665 & 3.9852019 & 9700 & 3.9867717 & 973513 & 3.9883360 & & \\
\hline 66 & 3.9852468 & 9701 & & 9736 & & 977. & \\
\hline 9667 & 3.9852917 & 9702 & 1.986861 3 & 9737 & 3.9884252 & 9772 & \\
\hline 9668 & 13.9853366 & 9703 & 3.9869060 & 9738 & 3.9884698 & 9773 & 3.9900279 \\
\hline 9669 & 3.9853816 & 9704 & 3.9869508 & 9739 & 3.9885144 & 9774 & 3.9900723 \\
\hline 9 & 3.9854265 & 9705 & 3.9869955 & 9740 & 3.9885590 & 9775 & 3.9901168 \\
\hline & \(3 \cdot 9854714\) & & 3.9870403 & 9741 & & 76 & \\
\hline 9672 & 3.9855163 & 9707 & 3.9870850 & 9742 & 3.9886481 & 9777 & 3.9902056 \\
\hline 9673 & 3.9855612 & 9708 & 3.9871298 & 9743 & 3.9886927 & 97.78 & 3.9902500 \\
\hline & 3.9856061 & 9709 & 3.9871745 & 9744 & 3.9887373 & 9779 & \\
\hline 967 & 3.9856510 & 9710 & 3.9872192 & 9745 & 3.9887818 & 9780 & \\
\hline 6 & 3.9856959 & & & 9746 & 3.9888264 & 9781 & \\
\hline 9677 & 3.9857407 & 9712 & 3.9873087 & 9747 & 3.9888710 & 9782 & 3.9904277 \\
\hline 9678 & 3.9857856 & 9713 & 3.9873534 & 9748 & 3.9889155 & 9783 & 3.9904721 \\
\hline 9679 & 3.9858305 & 9714 & 2.9873981 & 9749 & 3.9889601 & 9784 & \\
\hline 9680 & 3.9858754 & 9715 & 3.9874428 & 9750 & 3.9890046 & 9785 & \\
\hline 9681 & 3.9859202 & & 3.9874875 & 1 & 3.9890492 & 9786 & \\
\hline 6682 & 3.985965 L & 9717 & 3.9875322 & 9752 & 3.9890937 & 9787 & 3.9906496 \\
\hline 9683 & 3.9860099 & 9718 & 3.9875769 & 9753 & 3.9891382 & 9788 & 3.9906940 \\
\hline 9684 & 3.9860548 & 9719 & 3.9876216 & 9754 & 3.9891828 & 9789 & \\
\hline 9685 & 39860996 & 9720 & P.987<663 & 9755 & 3.9892273 & 9790 & 3.9907827 \\
\hline 9686 & 3.986145 & 9721 & 3.9877109 & 9756 & 3.9892718 & & \\
\hline 96 & 3.9861893 & 9722 & 3.9877556 & 9757 & 3.9893163 & 9792 & 3.9908714 \\
\hline 9 & 3.986234 I & 9723 & 3.9878003 & 9758 & 3.9893608 & & 3.9909158 \\
\hline 9689 & 3.9862790 & 9724 & 3.9878449 & 9759 & 2.9894053 & 9794 & 3.9909601 \\
\hline 9690 & 3.9863238 & 9725 & \(\therefore .9878896\) & 9760 & 3.9894498 & 9795 & ?.9910044 \\
\hline 1915 & 3.9863686 & & 2.9879343 & 9761 & 3.9894943 & & \\
\hline 17692 & \(3.986+134\) & 9727 & 3.9879789 & 9762 & 3.9895388 & 9797 & 3.9910931 \\
\hline 0693 & 3.98 & 9728 & 3.9880236 & 9763 & 3.9895833 & 9798 & 3.9911374 \\
\hline 96 & 3.98650 & 9729 & 2.9880682 & 9764 & 3.9896278 & 9799 & 3.9911818 \\
\hline 2695 & 2.9865478 & 9730 & 39881128 & \(976{ }^{\circ}\) & 2.9896722 & 9800 & 2.9912261 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\left|\frac{\text { Num. } 1 \text { Logarithm. }}{9801 \mid 3.9912704}\right|
\]} & \multicolumn{2}{|l|}{Num.i Logarithm.} & \multicolumn{2}{|l|}{Num. 1 Logarithm.} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Num.I Logarithm. 990613.9958983}} \\
\hline & 983613 & 3.9928185 & 9871 & 3.9943612 & & \\
\hline \begin{tabular}{|l|l|}
\hline 9802 \\
9802 & 3.9913147 \\
\hline
\end{tabular} & 98373 & 3.9928627 & 9872 & 3.9944051 & 9907 & 3.9959422 \\
\hline \begin{tabular}{l|l|l}
9802 & 3.9913147 \\
9803 & 3.9913590
\end{tabular} & 9838 & 3.9929068 & 9873 & 3.9944491 & 9908 & 3.9959860 \\
\hline 98043.9914033 & 983913 & 3.9929510 & 9874 & 3.994493 I & 9909 & \\
\hline 9805 3.9914476 & 9840 & \(3.952995{ }^{\text {I }}\) & 9875 & 3.9945371 & 9910 & 60737 \\
\hline 98063.9914919 & 98413 & 3.9930392 & 9876 & 3.99458 & 991 & \\
\hline 9807 3.9915362 & 9842 & 3.9930834 & 9877 & 3.9946251 & 9912 & 6131 \\
\hline 98083.9915805 & 984313 & 3:9931275 & 9878 & 3.9946690 & 9913 & 3.9962051 \\
\hline 98093.9916247 & 9844 & 3.9931716 & 9879 & 3.99471 .30 & 9914 & 3.9962489 \\
\hline 981039.9916690 & 9845 & 3.9932157 & 9880 & 3.9947569 & 9915 & 3.9962927 \\
\hline 981133.9917133 & 9846 & 3.9932598 & 9881 & 3.994800 & 9916 & \\
\hline 198123 & 9847 & 3.9933039 & 9882 & 3.9948448 & 9917 & 3.9963803 \\
\hline 9813 3.9918018 & 9848 & 3.9933480 & 9883 & 3.9948888 & 9918 & 3.9964241 \\
\hline 9854 3.9918461 & 9849 & 3.9933921 & 9884 & 3.9949327 & 9919 & 3.9964679 \\
\hline 981533.9918903 & 9850 & 3.9934362 & 9885 & 3.9949767 & 9920 & \\
\hline 98163 & 9851 & 3.9934803 & 9886 & 3.9950206 & 992 I & 3.9965554 \\
\hline \begin{tabular}{l|l|l}
9816 \\
9817 & 3.9919788
\end{tabular} & 9852 & 3.9935244 & 9887 & 3.9950645 & 99 & 3.9965992 \\
\hline 9818 3.9920230 & 9853 & 3.9935685 & 9888 & 3.9951085 & 9923 & 3.9 \\
\hline 9819 3.9920673 & 9854 & 2.9936126 & 9889 & 3.9951524 & 24 & 3.9966868 \\
\hline 98203.992115 & 9855 & 3.9936566 & 9 & 3.9951963 & 5 & 3.9967305 \\
\hline 98213.9921557 & 9856 & 3.9937007 & 9891 & 3.9952402 & & 3.9967743 \\
\hline 98223.9921999 & 9857 & 3.9937448 & 9892 & 3.995284 I & 9927 & 3.9968180 \\
\hline 98233.9922441 & 9858 & 3.9937888 & 9893 & 3.99 .53280 & 9928 & 3.9968618 \\
\hline 9824 & 9859 & 3.9938329 & 9894 & 2.9953719 & & 3.9969055 \\
\hline \(9825{ }^{2.9923326}\) & 9860 & 3.9938769 & 9895 & 3.9954158 & 99 & 3.9969492 \\
\hline 9826 & 9861 & 3.9939210 & 9896 & 3.9954597 & 993 & I 3.9969930 \\
\hline 98273.9924210 & 9862 & 3.9939650 & 9897 & 3.9955036 & 993 & 3.9970367 \\
\hline 982813.9924651 & 9863 & 3.9940090 & 9898 & 3.9955474 & & 3.9970804 \\
\hline 98293.9925093 & 9864 & 3.994053 I & 9899 & 3.9955913 & 993 & 3.9971242 \\
\hline 98303.9925535 & 9865 & 3.9940971 & 9900 & 3.9956352 & 99 & 53.9971 \\
\hline & 9866 & 3.9941411 & 9901 & 3.9956791 & & 3.9972116 \\
\hline \[
19832 \mid 3.9926419
\] & 9867 & 3.9941851 & 9902 & 23.9957229 & & 73.0972553 \\
\hline 983
983 & 9868 & 3.9942291 & 9903 & 33.9957668 & & 39972990 \\
\hline \begin{tabular}{l|l|l}
9834 & 3.9927302
\end{tabular} & 9869 & 3.9942731 & 99 & 3.9958106 & & 39973427 \\
\hline \(9 8 3 5 \longdiv { 3 . 9 9 2 7 7 4 4 }\) & . 9870 & 2.9943172 & & 99595 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Num. 1 Logatithm.} & \multicolumn{2}{|l|}{Num.| Logar itbm.} & \multicolumn{2}{|l|}{Num. | Logaritbm.} & \multicolumn{2}{|l|}{Nunn.1Logatithm.} \\
\hline 99 & & & 3.9980849 & 9971 & 3.9987387 & 9986 & 3.9993916 \\
\hline 9943 & 3.9975174 & 9958 & & 9972 & 3.9987823 & 9987 & 3.9994350 \\
\hline 9944 & 3.9975611 & 9959 & 3.9982157 & 9973 & 3.9 & 9988 & 3.9994785 \\
\hline 9945 & 3.9976048 & 9960 & 3.9982593 & 9975 & 3.9989129 & 9990 & \\
\hline 9946 & 3.9976485 & 9961 & 3.9983029 & 9976 & 3:9889564 & 9991 & \\
\hline 9947 & 3.9976921 & 9962 & T.9983465 & 9977 & 3.9990000 & 9992 & \\
\hline 9948 & 3.9977358 & 9963 & 3.9283901 & 9978 & 3.9990435 & 9993 & \[
\begin{array}{|l|}
\mid 3.9996524 \\
|3.9996959|
\end{array}
\] \\
\hline 9949 & 3.9977794 & 9964 & 3.9984337 & 9979 & 3.9990870 & 9994 & \\
\hline 9950 & 2.9978231 & 9965 & 3.9984773 & 9980 & 3.9991305 & 9995 & \\
\hline 9951 & 3.9978667 & 9966 & 3.9985209 & 9981 & 740 & 9996 & \\
\hline 9952 & 3.9979104 & 9967 & \[
3.9985645
\] & 9982 & 3.9992176 & 9997 & 3.9998697 \\
\hline \[
\begin{aligned}
& 19953 \\
& 19954
\end{aligned}
\] & 3.997 .9540 & 9968 & 3.9986080 & 9983 & 3.9992611 & 9998 & 3.9999131 \\
\hline \[
\left|\begin{array}{c}
9954 \\
9955
\end{array}\right|
\] & 3.9979976 & 9969 & 2.9986516 & 9984 & 3.9993046 & 9999 & 3.9999566 \\
\hline 9955 & 3.99804 .63 & 59970 & 3.9986952 & 9985 & 3.9993481 & 9 & 4.0000000 \\
\hline
\end{tabular}

FINIS.

Wadnock
\[
\begin{aligned}
& U H \mid=x \\
& 2+3 \mid-7
\end{aligned}
\]

39
\(-20 \quad 2\)```

[^0]: 1. To divide a Circle given into troo Segments according to a Proportion given.
 2. To
